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❖ Re-done the IPMI validation measurement (IPMItool vs. metered plug)

❖ Completed a few more comparison between the x86 (w/out HT) & arm:
- Idle measurements,
- HEP-Score workloads available so far,
- Thread-Scan.

❖ Testing the HEP-Score suite 2023 (and result submission)

❖ Developing an Energy plug-in for the HEP-Score suite

❖ Upcoming ARM cluster at Glasgow site

❖…

Recent Updates

ScotGrid @ Glasgow: Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, Albert Borbely, David Britton



x86_64: Single AMD EPYC 7003 series  (GigaByte)
CPU: AMD EPYC 7643 48C/96T @ 2.3GHz (TDP 300W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

arm64: Single socket Ampere Altra  (GigaByte)
CPU: ARM Q80-30 80C @ 3GHz (TDP 210W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

Available Hardware
Test machines: we have two almost identical servers of comparable price, one with an AMD x86_64 CPU 

(48c/96t), the other with an Ampere arm64 CPU (80c):

The x86_64 CPU can run with Hyper-Threading (96 HT cores), or without (48 physical cores).  

Hyper-threading does not double performances, but adds 10-20% (roughly: 1 ht core ~ 55-60% of 1 

physical core, depending on the task).

The arm64 CPU has no such feature, therefore it can only run with its 80 physical cores.

In the following tests we have compared: 

AMD hyperthreaded (x86 HT), AMD non hyperthreaded (x86 noHT), and ARM (arm).



IPMItool validation



IPMI validation

❖ Instantaneous power is impossible to compare, as 
the number changed too quickly on the metered 
plugs and they almost never matched the IPMI 
readings from the machine.

❖ We did an integrated measurement of the total 
energy for a fixed time (1 hour) of min. (idle) and 
max. (stress) power usage.

❖ The total energy calculated by integrating IPMI 
readings (1 Hz frequency) was compared to the 
kWh reading from the metered plug by resetting 
the meter on start and taking readings after 1h.

Each server has two redundant power supplier, therefore we tried 3 different settings:

✓ 1 power supplier to 1 metered plug (the other supplier was disconnected),

✓ 2 power supplier to 1 metered plug (using a split plug),

✓ 2 power supplier to 2 metered plugs (and readings were added up).

We have re-done a validation of the IPMI readings using our relatively cheap metered plugs (~ 30£ each): 



Monitoring Power

armx86 HT x86 noHT

Grafana dashboard visualizing the execution of a stress test on the arm and x86, (w/o hyper-threading):



Validation Results
Results were a bit confusing (*), with the discrepancy changing sign between arm & x86 … 
However, the error is small enough, with the highest discrepancy being ~ 4%, and comes from idle!

There is some idea about fitting the data separately for the two servers, with a slope and an intercept to 
model the efficiency and power lost of each power supplier…

… but I should to collect more data, as an interpolation over 2 points is not ideal. For instance, repeat 
the measurement for various level of power usage (~ % CPU usage).

(*) the precision of the relatively cheap metered plug might be questionable, 

as well as the human error in starting/stopping the measurement (±1sec ?) 

IPMI exporter Manual read (1h) diff (IPMI - Plug)

job machine HT power(s) meter(s) Time (s) Energy (kWh) Min (W) Max (W) Avg (W) Energy (kWh) Min (W) Max (W) Energy % diff/IPMI

sleep amd HT 1 1 3601 0.086 60 148 86 0.088 82 135 -0.002 -1.9%

sleep amd HT 2 1 3601 0.093 72 150 93 0.097 87 156 -0.004 -4.1%

sleep amd HT 2 2 3600 0.092 72 163 92 0.096 89 154 -0.004 -4.1%

stress amd HT 1 1 3600 0.291 68 296 291 0.295 267 300 -0.004 -1.5%

stress amd HT 2 1 3630 0.379 76 446 376 0.387 334 396 -0.008 -2.0%

stress amd HT 2 2 3600 0.372 77 377 372 0.380 334 388 -0.008 -2.2%

sleep arm // 1 1 3600 0.095 93 114 95 0.094 94 109 0.001 1.6%

sleep arm // 2 1 3599 0.104 87 131 104 0.103 102 116 0.001 1.0%

sleep arm // 2 2 3599 0.104 52 123 104 0.102 102 118 0.002 1.9%

stress arm // 1 1 3599 0.236 94 244 236 0.233 197 240 0.003 1.4%

stress arm // 2 1 3600 0.241 92 248 241 0.240 105 246 0.001 0.6%

stress arm // 2 2 3600 0.239 93 247 239 0.236 207 246 0.003 1.1%

sleep amd noHT 1 1 3601 0.134 116 151 134 0.135 133 143 -0.001 -0.7%

stress amd noHT 1 1 3600 0.259 131 269 259 0.263 241 272 -0.004 -1.4%

@

#

@

#



idle



Measuring Idle
Idle measurements show that machines oscillate between different power states when idling. 
Also, each machine seems to have its own peculiarity …

arm x86

The x86 seems to use more idle power when hype-threading is turned off
(139 – 89 = 40 Watts). It is possible that this particular chip enables some sort 
of power optimization together with hyper-threading … however this only 
affects the idle state. Peak power usage does not change with HT.

The arm oscillates between 3 
power states while in idle, 
averaging at ~104 Watts.



Measuring Idle
By comparison, another x86 machines shows a less significant change in idle power usage (~ 3 W).  
when hyper-threading is on/off (example from a standard workernode):

2*x86

2*x86_64: Dual AMD EPYC 7513 series Processors (DELL)
CPU: 2 * AMD EPYC 7513, 32C/64T @2.6GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MHz
HDD: 3.84TB SSD SATA Read Intensive 

* this machine is part of a 2 unit / 4 node chassis.



thread-scan



Thread-Scan
I have used the latest HEP-Score containers available for arm & x86 to characterize performance and 

power consumption with respect to the number of threads.

This was done by fixing the number of threads per copy (-t 1 or 4 depending on the experiment), and 

running an increasing number of copies (-c N) till saturating the CPU.

for NCP in 1 8 20 24 40 48 60 80 96 100
do
singularity run -B ${EXEDIR}:${RESDIR} oras://${CONTAINER} -c ${NCP} -t ${NTH} -e ${NEVTS} 

done

List of HEP-Score containers used:

(except the ATLAS Sim, all these 7 

containers are included in the 2023 

release of HEP-Score ~v2.1)

See:  https://gitlab.cern.ch/hep-benchmarks/hep-workloads-sif/container_registry

WorkLoad Container cp thr/cp evt/thr tot evts

ATLAS Sim atlas-sim_mt-ma-bmk 24 4 20 1920

CMS Gen-Sim cms-gen-sim-run3-ma-bmk 24 4 100 9600

Belle2 Gen-Sim-Reco belle2-gen-sim-reco-ma-bmk 96 1 50 4800

ALICE Deigi-Reco alice-digi-reco-core-run3-ma-bmk 24 4 3 288

ATLAS Gen Sherpa atlas-gen_sherpa-ma-bmk 96 1 500 48000

ATLAS Reco atlas-reco_mt-ma-bmk 24 4 100 9600

CMS Reco cms-reco-run3-ma-bmk 24 4 100 9600

LHCb Sim lhcb-sim-run3-ma-bmk 96 1 5 480

WorkLoad Container cp thr/cp evt/thr tot evts

ATLAS Sim atlas-sim_mt-ma-bmk 24 4 20 1920

CMS Gen-Sim cms-gen-sim-run3-ma-bmk 24 4 100 9600

Belle2 Gen-Sim-Reco belle2-gen-sim-reco-ma-bmk 96 1 50 4800

ALICE Deigi-Reco alice-digi-reco-core-run3-ma-bmk 24 4 3 288

ATLAS Gen Sherpa atlas-gen_sherpa-ma-bmk 96 1 500 48000

ATLAS Reco atlas-reco_mt-ma-bmk 24 4 100 9600

CMS Reco cms-reco-run3-ma-bmk 24 4 100 9600

LHCb Sim lhcb-sim-run3-ma-bmk 96 1 5 480



Example Job Profile

arm

Grafana runtime profiles of the LHCb workload (from HEP containers). The workload was executed ten 
times, increasing the number of copies at each run to progressively fill the CPU …

x86 HT



Thread Scan (8x)
ATLAS CMS Belle2

On ARM, the Energy (Power) 

increase linearly with the n. 

of threads, on x86 saturates 

once hyper-threading starts.

W.r.t. the n. of threads, the 

execution time is constant on 

ARM, while it increases on 
x86 once hyper-threaded.

ALICE

ATLAS reco Sherpa CMS reco LHCb

Note: 

the 1st bin is different 

depending on the work-load, 

some use 1 thread (belle2-
gen-sim, atlas-gen_sherpa,

lhcb-sim), some use 4 (atlas-
sim, cms-gen-sim, alice-digi-reco, 

atlas-reco,cms-reco) …



Thread Scan (averages)

sum

sum

average

geomean

… indeed

ARM is always more energy efficient than x86 ARM has a lower TDP than x86 (trivial)

A physical x86 core is faster than an ARM one, but 
rapidly lose advantage once hyper-threading starts … 



Thread Scan (scores)
As in the HEP-Score suite, we can combine the various scores using a Geometric Mean:

We can then plot the:

{Score} / Watt

Which is equivalent to:

Events / Total Energy

(with some conversion constant k). 

{Score} = n√∏i(WL-Score i)

sum/sum

geomean/average

Conclusions:

When Power (or Energy) is taken into account, 

the ARM appears to be the best choice for HEP workloads.

The higher performance per cores of the x86 are lost once 

hyper-threading starts, and the higher number of physical 

cores on the ARM makes it way more performant  !

see Excel file for details about the plots shown the last 3 slides:  threadScan_gpp49.xlsx



HEP-Score 2023



armx86 HT x86 noHT

HEP-Score 2023 run
Grafana runtime profile of a full run of the 8 most recent HEP-Score containers available for arm & x86:



Power Profiles (runtime)

WorkLoad Container cp thr/cp evt/thr tot evts

ATLAS Sim atlas-sim_mt-ma-bmk 24 4 20 1920

CMS Gen-Sim cms-gen-sim-run3-ma-bmk 24 4 100 9600

Belle2 Gen-Sim-Reco belle2-gen-sim-reco-ma-bmk 96 1 50 4800

ALICE Deigi-Reco alice-digi-reco-core-run3-ma-bmk 24 4 3 288

ATLAS Gen Sherpa atlas-gen_sherpa-ma-bmk 96 1 500 48000

ATLAS Reco atlas-reco_mt-ma-bmk 24 4 100 9600

CMS Reco cms-reco-run3-ma-bmk 24 4 100 9600

LHCb Sim lhcb-sim-run3-ma-bmk 96 1 5 480

Runtime power profile extracted from the arm and the x86 (with and without Hyper-Threading).

Note: the x86 HT run takes the longest because, having more threads, is running more copies (*)

Full list of workloads
(in order of execution).

The number of copies (cp column) 
refers to the x86 HT with 96 total 
threads available.

arm

x86 HT

x86 noHT



HEP-Score results
Again, as I am not running within the HEP-Score suite, I should normalize each WL-Scores myself. 
Luckily there are reference values available:

Arch Max ThreadsWorkLoad cp thr/cp evt/thr tot evts Time (H:m:s) Time (s) Energy(kW*h) <Pow> (W) WL score ref_scores score_n score_n/W score_n/kWh score_n/(kWh/cp)

x86_HT 96 ATLAS Sim 24 4 20 1920 01:22:48 4968 0.5148 373 0.4077 0.286 1.43 0.004 2.77 66.52

x86_HT 96 CMS Gen-Sim 24 4 100 9600 00:43:12 2592 0.2715 377 3.7347 2.665 1.40 0.004 5.16 123.88

x86_HT 96 Belle2 Gen-Sim-Reco 96 1 50 4800 00:05:46 346 0.0347 361 20.2715 15.400 1.32 0.004 37.98 3'645.92

x86_HT 96 ALICE Deigi-Reco 24 4 3 288 00:07:00 420 0.0407 349 0.7713 0.762 1.01 0.003 24.85 596.29

x86_HT 96 ATLAS Gen Sherpa 96 1 500 48000 00:07:32 452 0.0443 353 112.8831 38.580 2.93 0.008 66.09 6'344.95

x86_HT 96 ATLAS Reco 24 4 100 9600 00:16:33 993 0.0980 355 12.1419 9.062 1.34 0.004 13.67 328.13

x86_HT 96 CMS Reco 24 4 100 9600 00:26:11 1571 0.1642 376 6.4016 4.814 1.33 0.004 8.10 194.34

x86_HT 96 LHCb Sim 96 1 5 480 00:08:51 531 0.0480 325 2'803.8279 1'950.000 1.44 0.004 29.97 2'876.92

x86_HT 96 0

x86_noHT 48 ATLAS Sim 12 4 20 960 00:47:30 2850 0.2759 349 0.3684 0.286 1.29 0.004 4.67 56.08

x86_noHT 48 CMS Gen-Sim 12 4 100 4800 00:23:30 1410 0.1397 357 3.4565 2.665 1.30 0.004 9.29 111.43

x86_noHT 48 Belle2 Gen-Sim-Reco 48 1 50 2400 00:03:06 186 0.0174 337 19.2020 15.400 1.25 0.004 71.66 3'439.67

x86_noHT 48 ALICE Deigi-Reco 12 4 3 144 00:04:40 280 0.0249 321 0.5973 0.762 0.78 0.002 31.44 377.31

x86_noHT 48 ATLAS Gen Sherpa 48 1 500 24000 00:04:06 246 0.0236 345 100.9070 38.580 2.62 0.008 110.87 5'321.97

x86_noHT 48 ATLAS Reco 12 4 100 4800 00:11:06 666 0.0593 320 10.1683 9.062 1.12 0.004 18.94 227.26

x86_noHT 48 CMS Reco 12 4 100 4800 00:15:03 903 0.0875 349 5.7325 4.814 1.19 0.003 13.62 163.40

x86_noHT 48 LHCb Sim 48 1 5 240 00:04:51 291 0.0265 328 2'343.9215 1'950.000 1.20 0.004 45.32 2'175.59

x86_noHT 48

arm 80 ATLAS Sim 20 4 20 1600 00:56:19 3379 0.2625 280 0.5445 0.286 1.91 0.007 7.26 145.19

arm 80 CMS Gen-Sim 20 4 100 8000 00:25:34 1534 0.1240 291 5.3713 2.665 2.02 0.007 16.25 325.03

arm 80 Belle2 Gen-Sim-Reco 80 1 50 4000 00:04:46 286 0.0222 280 21.2615 15.400 1.38 0.005 62.16 4'972.96

arm 80 ALICE Deigi-Reco 20 4 3 240 00:05:40 340 0.0232 245 0.8546 0.762 1.12 0.005 48.42 968.50

arm 80 ATLAS Gen Sherpa 80 1 500 40000 00:05:41 341 0.0272 287 128.0047 38.580 3.32 0.012 122.03 9'762.13

arm 80 ATLAS Reco 20 4 100 8000 00:15:52 952 0.0690 261 11.8797 9.062 1.31 0.005 18.99 379.76

arm 80 CMS Reco 20 4 100 8000 00:19:44 1184 0.0944 287 7.4774 4.814 1.55 0.005 16.46 329.26

arm 80 LHCb Sim 80 1 5 400 00:07:11 431 0.0327 273 3'263.3906 1'950.000 1.67 0.006 51.18 4'094.27

arm 80

(*)



HEP-Score results (2)
Normalised scores already look higher for 
the arm than the x86 (i.e., it is more 
efficient at these HEP tasks). 

The advantage becomes even clearer 
when we consider the power usage: the 
arm uses less average power to deliver 
better performance than the x86.

If we consider the total energy, we must 
take into account the different amount of 
work done, which depends on threads (*):

Normalized score over the scaled energy 
(on log scale, because …) 

Geometric mean of the score over the 
total energy (scaled by the n. of copies):

x86_HT 31.13
x86_noHT 25.27
arm 57.01

TO BE UPDATED for CHEP2023 !!!  
this is NOT the best way to plot WL-Scores 

(and the Energy normalization is probably wrong)



energy_plugin



I have committed a first implementation of the energy plug-in to the development branch of the HEP-
Score suite and it is being integrated in the workflow 

This energy plug-in is a Python module that runs alongside with the HEP-Score workloads, while 
extracting CPU and RAM usage, core Frequency, and IPMI (and GPU) power readings. 
When the workload is finished, the plug-in will calculate a number of execution statistics and save 
these, together with the time-stamped runtime data, as a dictionary in a json file.

HEP-Score Energy Plug-In

energy_data.json
{ 

"measurements": {

"2023-02-07T15:49:45.879999Z": {

"cpu": 0.2,

"frq": 1.5,

"ram": 3.7,

"powa": 82.0,

"gpu": 0

},

"2023-02-07T15:49:47.115694Z": {

"cpu": 0.2,

"frq": 1.5,

"ram": 3.7,

"powa": 82.0,

"gpu": 0

}, 

…

"statistics": {

"totaltime": 10,

"sampling": 1.0,

"energy": 0.00025194444444444445,

"gpu_energy": 0.0,

"cpu_min": 0.1,

"cpu_max": 0.2,

"frq_min": 1.5,

"frq_max": 1.5,

"ram_min": 3.7,

"ram_max": 3.7,

"pow_min": 81.0,

"pow_max": 85.0,

"pow_avg": 82.45454545454545,

"gpu_avg": 0.0

}

HEPiX @ CERN: Domenico Giordano, Gonzalo Menendez Borge, Johannes Elmsheuser, etc.

For now the plugin had been 
tested standalone (by me). 
It seems to work, but some more 
testing is needed.

It will be officially integrated into 
the HEP-Score release in v3.0 (?) 



The energy_plugin class implements an internal timer, which is used to regularly grab runtime metrics 
during execution, and an analyser which calculates execution stats from runtime metrics.

Energy Plug-In

Called at regular intervals to 

grab metrics, such as time-

stamp, IPMI power reading, 

CPU usage, etc.

Calculates statistics using 

the ‘trapezoidal sum’, 

which takes care of 

irregular sampling intervals 

or missing time-stamps.

HEP dependencies (~50%)

# Skeleton class by Gonzalo, content by Emanuele (v0.5)

import json, ...
from hepbenchmarksuite.plugins.stateful_plugin import StatefulPlugin
#from hepbenchmarksuite.plugins.extractor import Extractor

class EnergyPlugin(StatefulPlugin):
...
self.dumpfile = "/tmp/ipminfo.txt“

def start(self) -> None:

# IPMI loop function (runtime): dumps system metrics to a dictionary
def grab_metrics(self,start_time):

time_stamp = dt.datetime.utcnow() 
time_key = str(time_stamp.isoformat(timespec='milliseconds')) + "Z"
...
cmd_ipmi = r""" ipmitool dcmi power reading | grep "Instantaneous power reading:" """
powa = self.get_numbers(self.run_command(cmd_ipmi),0)
...

# IPMI analiser functions (postrun): calculates statistics and averages
def calculate_statistics(self, measurements: dict) -> Dict[str, float]:

...
for k in sorted(measurements.keys()):

...
deltaSec = (time_stamp - time_prev).total_seconds()
powAve = (powa + powa0) / 2
...

return self.summary_dict

https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite/-/blob/fc84702f7e90a1ce850abdd461fe6aaf9e374a1c/hepbenchmarksuite/plugins/energy_plugin.py

Option for non-root user (!): 

grab metrics from dump file

Starts the timer (just before 

starting the job) … 



❖ Finalising results in view of CHEP2023 (I will “present” a poster there next May)
https://www.jlab.org/conference/CHEP2023

❖ Submitted ACAT2022 paper (I gave an actual talk there last October)
https://indico.cern.ch/event/1106990/contributions/4991256/

❖ Testing the HEP-Score suite 2023 and result submission:
- successful test on arm & x86, but having issue on a dual socket DELL workernode (2*x86)
(apparently, running 128+ threads as non-root user hits the system’s ulimit),

- result submission is a little tedious (2 * Grid pw per every submission), but it works.

❖ Energy plug-in for the HEP-Score suite in development (and ready for testing)

❖ Upcoming ARM cluster at Glasgow:
… we will soon get ~1k arm64 cores @ Glasgow from Ampere (US), meaning that we will have to solve 
technical issues related to exposing ARM resources on the Grid.  (Any experience within GridPP?)

Summary / Outlook

ScotGrid @ Glasgow: Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, Albert Borbely, David Britton



End

Dr. Emanuele Simili GridPP49 @ Cosener’s 29 March 2023


