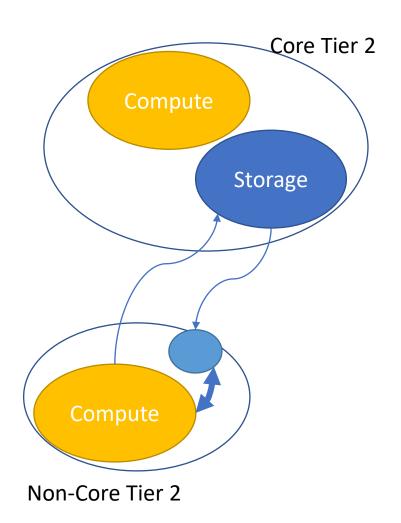
Data Management

(Aspirations and Reality)
28 Mar 2023
GridPP49/SWIFT-HEP

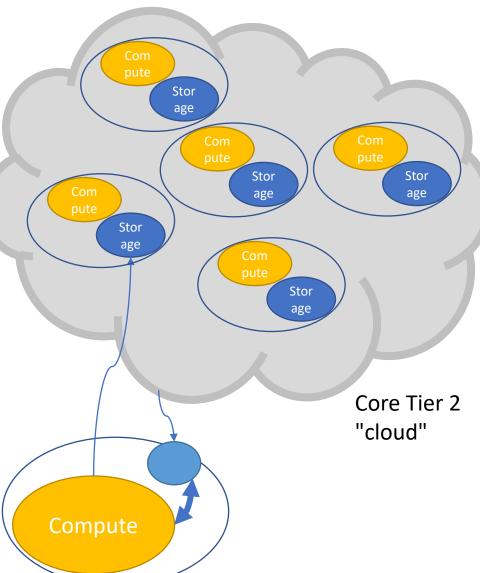
Sam Skipsey (he/they)

GridPP6, DPM retirement + tokens


- GridPP context: GridPP6 consolidates storage at 5-6 Tier-2s, down from ~all 17 in previous GridPPs.
- Most of the sites transitioning away from storage use DPM
 - DPM is also being dropped as a storage solution by WLCG [timescale soon!]
- Move to token auth from x509 also driving this (as DPM does not support this).
- Currently exploring ways of efficiently running "storageless" sites at noncore Tier-2s
 - Xrootd caches, Virtual Placement
- (Core Tier-2s also exploring new technologies xrootd/cephfs + xrootd/rados)

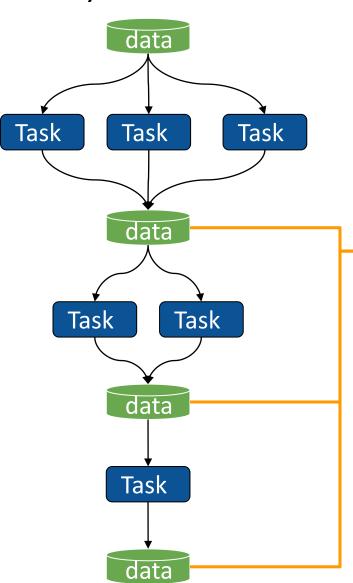
GridPP status ~now

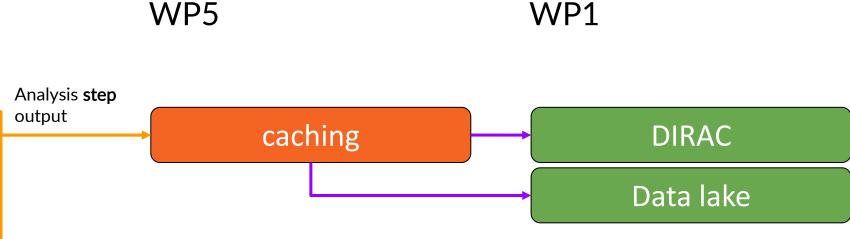
Site	Storage (now)	Storage (if changing)	Network ** [Gb/s]	
RAL-LCG2 (T1)	Echo (X	~2x100Gbps (LHCOPN), LHCONE, Redundant 200Gb/s for RAL site to Janet		
UKI-LT2-Brunel	DPM	XRootD+CephFS		
UKI-LT2-IC-HEP		100		
UKI-LT2-QMUL	Stol	100		
UKI-LT2-RHUL	DPM	Storageless (SE – QMUL)	10	
UKI-NORTHGRID-LANCS-HEP	XRootD+CephFS (+ DPM)	XRootD+CephFS (+dCache)	40	
UKI-NORTHGRID-LIV-HEP	DPM	dCache ?	10	
UKI-NORTHGRID-MAN-HEP	DPM	XRootD+CephFS	40	
UKI-NORTHGRID-SHEF-HEP	Storageles	s (SE – RAL-LCG2)	10	
UKI-SCOTGRID-DURHAM	DPM	(TBD) ?	10	
UKI-SCOTGRID-ECDF	DPM	dCache ?	10	
UKI-SCOTGRID-GLASGOW	Echo (XRoot	20 (testing)		
UKI-SOUTHGRID-BHAM-HEP	Storageles	s (SE – MAN + VP)	10	
UKI-SOUTHGRID-OX-HEP	Storageles	s (SE – RAL-LCG2)	10	
UKI-SOUTHGRID-RALPP		dCache	20	
UKI-SOUTHGRID-SUSX	Storagele	ess (SE – QMUL)	10 3	


(This slide derived from James Walder's Xrootd +FTS Workshop talk slides)

GridPP Data Management "Aspirations"

- More efficient storage use, with Core Tier-2s holding local storage volumes (~10PB+)
- More numerous non-Core Tier-2s host a local "cache"/"volatile storage".
 - Most job traffic occurs between local compute and "cache"
 - (stage outs need to happen to a Core Tier-2)
 - (cache needs filled from one or more remote storage elements)
 - Efficiency here is key prestaging / prewarming cache significantly improves potential gains.


GridPP Data Management "Aspirations"



- Previous model risks overloading paired
 Core Tier-2s
 - Also increases risk for Core Tier-2 downtimes, as affects paired non-cores.
- This model diffuses risk... but needs support from Experiment tools to move data.
- ATLAS/Rucio "Virtual Placement"
 - Data moved from "anywhere"
 - Prestaged so our caches are actually efficient (only cache useful data)

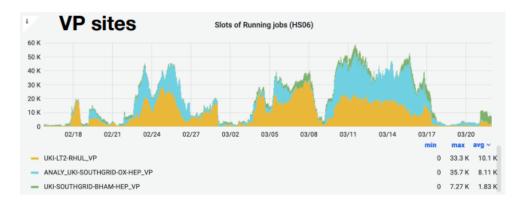
Analysis workflow

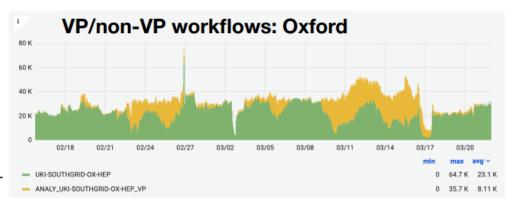
SWIFT-HEP WP 5 data management (aspirations, thanks Luke K)

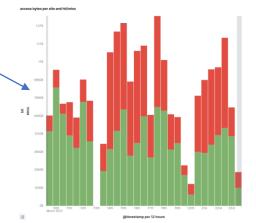
In a nutshell:

Want to store both intermediate and final analysis products in a sharable way on data lake.

Intermediate results should automatically be cleaned up after X days.

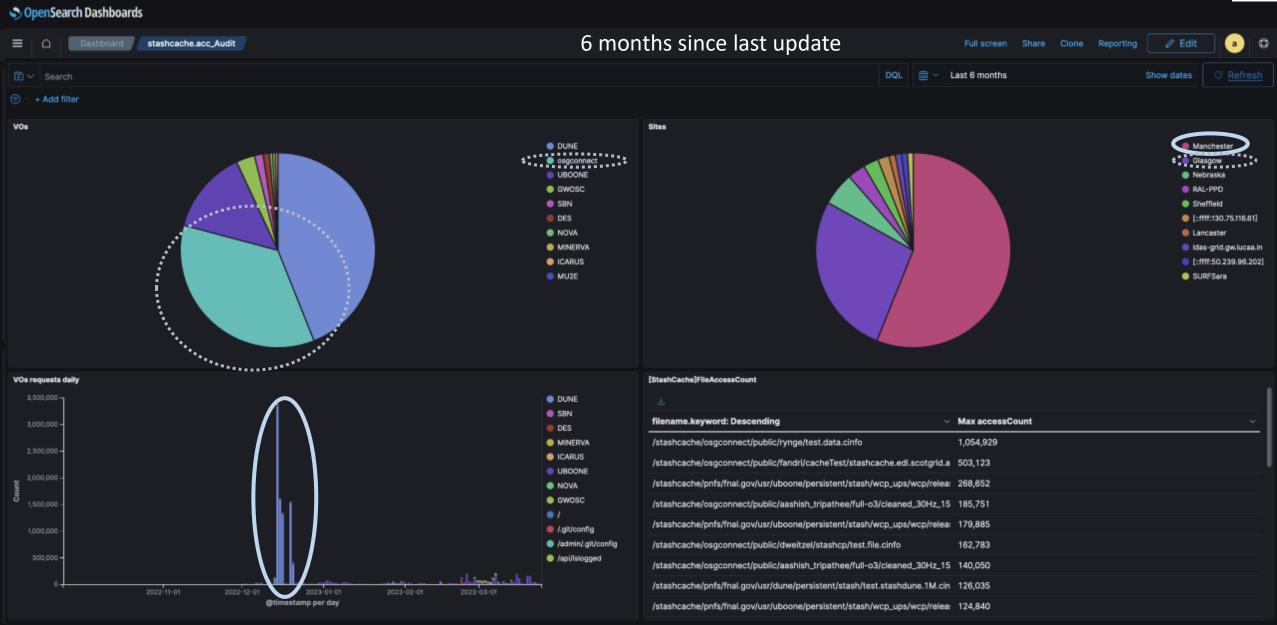

Technologies


- GridPP:
 - Xrootd caches essentially all our "new storage tech" relies heavily on Xroot.
 - "Xcache" [disk backed caching proxy]
 - Caching proxies [memory backed caching proxy]
 - Virtual Placement (working with *Rucio* plugin for ATLAS)
 - StashCache @ Edinburgh
- SWIFT-HEP @ RAL:
 - multiVO Rucio


UK: Cache usage (VP and XCache)

- XCaches used:
 - (Currently) internally on each ECHO WN (at RAL)
 - Internally at a few sites
 - Stashcache (ECDF)
 - On the ingress for sites that have / are transitioning to become storageless (more likely useful for latency, than hit rate)
 - Also exploring the usage of Virtual Placement for ATLAS:
 - Analysis workflows, using partial file reads
 - Not using SLATE (for setup) (docker-compose, or manual)
- Example (last 21 days); For Oxford Xcache, usage from normal production workflows included

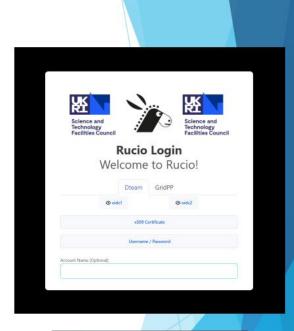
Access type Site	first accesses UKI-SOUTHGRID-OX-HEP	RHUL	following accesses UKI-SOUTHGRID-OX-HEP	RHUL
Count	408,641	38,837	166,415	125,474
Sum of b_hit	275.8TB	1.8TB	241.1TB	14.6TB
Sum of b ₋ miss	92TB	894.6GB	4.4TB	10.4TB
Sum of b_bypass	0B	11.5GB	0B	3 9C4B
Average percentage_read	96.972%	6.141%	75.159%	14.807%
Average rate	10.43	0.23	123.319	0.688
Average sparseness	96.843%	7.561%	90.07%	52.779%

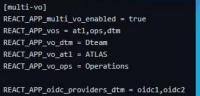


(This slide derived from James Walder's Xrootd +FTS Workshop talk slides)

StashCache @ Edinburgh

Multi-VO Rucio WebUI [George Matthews]


WebUI 2.0


- Move to TypeScript and React
 - Typescript is a superset of JavaSc
 - React is a front-end JavaScript lil
- Move to a fully REST'ful architect
 - Remove direct access to the data
- Ensuring compatibility with Multi
 - Support Multi-VO login
 - Check other pages for compatibil
- Test Multi-VO components render

Multi-VO login

- Tab selection for Vos
 - Clear and easy to use
 - Custom display names set as variables
- Request headers Multi-VO
 - Tabs change which VO is set in the X-Rucio-VO header
- Separate list of OIDC providers for each VO
- Jest Tests

Multi-VO Rucio K8S Deployment (RAL)

- External access for Server final piece of puzzle
 - Ensuring secure external access to Rucio
 - Issues converting NodePort access (easy to setup and use) to DNS based ingress
- Otherwise stable deployment with supporting infrastructure deployed on the cluster for secret management, monitoring, messaging queues.

Thanks: Tim Noble

Multi-VO Rucio Database improvements (RAL)

- Current Rucio DB used connections are between 55-75 for a low-level deployment
- These are low in use frequency and low in load when used (TN has seen between 5 and 17 active at one time with current use) writing one to 100 lines at a time
- Working with Database Team to move the DB to a new DB deployment capable of increased number of connections to support scale tests in future

Thanks: Tim Noble

The other bit we don't talk about (QoS)

- SWIFT-HEP Rucio work also should look at "Quality of Service" awareness, transitions, management at sites.
- The problem is that we don't have a good model for what Quality of Service categories / distinctions the user community wants or cares about.
- (This includes WLCG who also don't have a finalised set of mappings...)
- Some input would be great from the assembled attendees!

Future Work (from November)

- Comparison (side by side?) of VP and Xcaching at Oxford. IN PROGRESS
- Evaluation of the storage system scaling for VP services at Site (wrt site HEPSCORE or other compute capacity measure) IN PROGRESS
- Non-ATLAS solutions: VP is being integrated directly into Rucio, so should be available for any other Experiment using it. (via MultiVO Rucio?)
- More sites moving to cache or low-storage solutions over EoY, start of next.
- HEPSCORE roll-out to other UK sites.
- Power-efficiency work beyond benchmarking [watch this space]

Summary

- GridPP continues to transition (increasingly rapidly) to "storageless" sites configuration.
 - Driven partly by the ongoing DPM transition
- This results in a dependency on Xrootd in our destination configurations.
 (But Virtual Placement is a nice benefit of this w/ Rucio)
- SWIFT-HEP multiVO Rucio work complements this nicely, assuming VP works with it.
- Some unanswered questions remain: for example, whence QoS?