
WP5 Overview

Sam Eriksen for SWIFT-HEP WP5

1

29th-30th March 2023
GridPP49 & SWIFT-HEP Workshop

https://indico.cern.ch/event/1215829/
https://indico.cern.ch/event/1215829/

Overview
● Overview of WP5 and the roadmap

● Current progress in WP5 (dask-dirac)

● Planned Analysis Grand Challenges

2

WP5: Analysis Systems

3

WP5: Analysis Systems
Run analysis workloads optimally on

distributed resources

4

Anatomy of an analysis workflow

5

data

Task Task Task

data

Task Task

data

Task

data

The cycle (oversimplified)
New idea/extension of
existing work

Publicat
ion

create/modify
code

Run analysis on
laptop/cluster/grid

Understa
nd results

New ideas for
improvement,
mistakes identified, or
updates

One cycle as
short as a day or
as long as a
month

WP1

Analysis step
output

SWIFT-HEP WP 5 in a nutshell

6

Analysis workflow

Data lake

DIRAC

WP5

caching

 data

Task Task Task

 data

Task Task

 data

Task

 data

WP5 in a nutshell:
Run analysis workloads optimally** on distributed (GridPP) resources

** balanced between user-experience and computing efficiency

Roadmap overview

7

Dask to DIRAC
interface
(dask-dirac)

Connect to data
lake (caching)

Specify resource requirements
per analysis component
(portability)

Data lake to
DIRAC (via
Rucio)

Virtual analysis
facility

DIRAC
workflow
manager

Via tags
(slide 26)

REST
API FileCatalog?

Closes example of what we want to achieve: Dask-based Distributed Analysis Facility
(kubernetes slides)

Caching at
analysis step
level

WP1

WP5
1 2

3

4

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://indico.cern.ch/event/1132360/contributions/4759822/attachments/2415720/4133601/Distributed%20Dask-based%20national%20facility%20at%20INFN%20-%20HSF%20-%20Mar%202022.pdf
https://indico.cern.ch/event/813749/contributions/3932529/attachments/2070924/3476556/gdb-k8s_2.pdf

Intermission:
Dask

Scale any Python code
Parallelize any Python code with Dask Futures, letting you
scale any function and for loop, and giving you control and
power in any situation.

 From https://www.dask.org/

Dask can submit to most batch
systems all the same - fantastic from
users’ perspective

Can we use Dask in HEP?

Coffea (Analysis Grand Challenges)

RDataframe

Awkward-array (native support)

FAST-HEP (custom graphs)

8

If infrastructure can be used via
Dask → wide use is possible

SWIFT-HEP Phase 2 (informal planning)

If phase 1 is the prototype, phase 2 will be the production-ready product

1. Scale up: user interface (Jupyter hub, Dask gateway) to accommodate GridPP
communities

2. Automate user experience: analysis computing & physics reports
3. Data security and separation: Develop with WP1 data lake
4. Play on GridPP strengths: Include more non-LHC communities
5. Outreach: A simple enough system could be use for masterclass to

demonstrate HEP analysis at scale (with real data)

9

Progress since last
workshop

10

Dask to DIRAC
interface

(dask-dirac)
Step #1 of WP5

Talking to DIRAC via HTTP

DIRAC is adding HTTP support

● Version 7.3 brings JobManager,
JobMonitor, JobStateUpdate

● Version 8.0 brings more and
token support

● Version 8.1: Everything
available via HTTP

● Can utilize HTTP to make a
“dependency free” DIRAC client

● Github repository
● Once operational, test on

Analysis Grand Challenges

11

https://indico.cern.ch/event/1107386/contributions/4827827/attachments/2439420/4178399/Intro%20%284%29.pdf
https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-7.3-(v7r3)#3-new-https-based-services
https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-8.0
https://github.com/SWIFT-HEP/dask-dirac

dask_dirac
● Within dask_jobqueue replace PBSCluster with DiracCluster

12

● Public access required to scheduler

● Setup new VM @ bristol with open port(s)

dask_dirac

13

Site 1 Site 2

Site 3

Bristol

● Working version with limitation
○ Workers must be on the same network as scheduler

for jobs to run

○

● This is v 0.1.0 which has been released
○ Github repository

● More details in the most recent monthly chat

dask_dirac

14

Site 1 Site 2

Site 3

Bristol

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1249939/

dask_dirac

15

Failing to gather

Issue: Dask worker has no public IP

Looking into dask-gateway

https://distributed.dask.org/en/latest/journey.html

https://distributed.dask.org/en/latest/journey.html

Analysis Grand Challenges

16

Analysis Grand
Challenges

Step 2: Run Analysis Grand
Challenges at Brunel via DIRAC

(Github repo)

IRIS-HEP currently provides

● ATLAS H→ZZ
● CMS ttbar

What SWIFT-HEP could provide

● CMS Higgs analysis (Imperial)
● LZ Analysis (Bristol)

To start with analyses need to be
able to use Dask.

Later also custom graphs (caching,
portability). 17

https://github.com/SWIFT-HEP/analysis-grand-challenge

Analysis Grand Challenges (IRIS-HEP)
IRIS-HEP are planning to verify work through several analysis grand challenges

Aiming for a realistic workflow, e.g.

● Existing analysis, their example: Higgs → tau tau
● Approx 200 TB of input data, their example: CMS NanoAOD
● Testing performance (speed, resource usage)
● Outputs: statistical inference, tables, control plots, HEP Data
● Other metrics: reproducibility of results (e.g. with REANA)

→ more info IRIS-HEP AGC Tools workshop, 25th of April 2022

18

https://reanahub.io/
https://indico.cern.ch/event/1126109/timetable/?view=standard

Analysis Grand Challenges (SWIFT-HEP)
In SWIFT-HEP we can copy the main test with little extra effort*

19*by swapping the dask-jobqueue configuration: HTCondor → DIRAC

Analysis Grand Challenges (SWIFT-HEP)
In SWIFT-HEP we can copy the main test with little extra effort*
● First test to be run at Brunel
● Will likely need some iterations

What could be a special UK contribution?
● We support many small & medium size experiment → add their examples to

the mix?
● I’m also on LZ → could be the first addition

20

LUX-ZEPLIN
● Direct Dark Matter exp.
● ~250 large collab
● Based at Sanford Underground

Research Facility, South Dakota,
USA

● (same place as Dune)

21

LUX-ZEPLIN Analysis
● From 5-years of running, expect ~ 300TB. First run was 30TB

● Most published analysis is single-core C++ looping over events though some
recent effort has been made to use python and move away from reliance on
single cluster (NERSC)

● Requires multi-tree analysis with isn’t currently supported by coffea

● All data + sims are private, but can be persuaded to share some

22

Summary
and

Outlook

SWIFT-HEP WP5 has started and things
have happened

International scene is testing Dask
workflows for ATLAS and CMS analysis

SWIFT-HEP can use existing efforts for
testing and contribute non-ATLAS/CMS
workflows

First release of dask-dirac interface

23

Backup

24

chatGPT on SWIFT-HEP
SWIFT-HEP is a project focused on developing
and deploying software tools and
infrastructure for high-energy physics (HEP)
research on distributed computing platforms,
such as HPC, cloud, and Grid computing. The
SWIFT-HEP project is a collaboration between
researchers from several HEP institutions and
computer science departments, including
Fermilab, CERN, University of California San
Diego, University of Wisconsin, University of
Manchester, and others.

The main goal of SWIFT-HEP is to create a
unified and flexible framework for HEP data
processing, analysis, and simulation on
distributed computing resources. The
SWIFT-HEP software stack consists of several
components, including the SWIFT workflow
system, which provides a flexible and
user-friendly interface for defining, executing,
and managing complex HEP workflows on
distributed computing resources. Other
components include tools for data
management, workflow monitoring, and
resource allocation, as well as interfaces to
popular HEP software frameworks such as
ROOT, Geant4, and Pythia.

25

SWIFT-HEP is designed to be scalable and

adaptable to different computing platforms,

allowing HEP researchers to take

advantage of the latest computing

technologies and architectures. The project

is also focused on developing best practices

and standards for distributed HEP

computing, with the goal of making it easier

for researchers to collaborate and share

data and resources across different

institutions and projects.

Overall, SWIFT-HEP is an important

initiative in the HEP community, helping to

improve the efficiency and effectiveness of

data processing and analysis for

cutting-edge experiments such as the Large

Hadron Collider (LHC) at CERN.

Analysis key points

Physics
Last mile of long chain of data recording and processing.
Goals: gain insight and create new knowledge

Computing
Analysis workflow (data + software) depends on experiment, analysis group,
subset of data (signal + relevant backgrounds), analysis iteration.

Flexibility is paramount.

26

Data Formats

Anatomy of an analysis workflow

27

data

Task Task Task

data

Task Task

data

Task

data

ROOT files: standard for input/output
Internally: Experiment/analysis specific

HDF5 npz

pandas datacard

parquet other?

Processing

Anatomy of an analysis workflow

28

data

Task Task Task

data

Task Task

data

Task

data

Event loop vs vectorized processing

Monoliths vs compute graphs

GPU/FPGA capable vs strictly CPU

Parallelizable vs strictly sequential

Time sensitive vs “sometime next week”

Failure tolerance vs all or nothing

Varied resource requirements/efficiency

WP1 ↔ WP5
(in practical terms)

29

Scheduling
with
coffea-casa

30

From coffea-casa docs

Uses Dask and dask-jobqueue

IRIS-HEP has been looking into similar topics

https://coffea-casa.readthedocs.io/en/latest/?badge=latest#
https://github.com/dask/dask-jobqueue

Scheduling
with DIRAC

31

Slide stolen from Janusz’s presentation at the SWIFT-HEP May meeting

In a nutshell: scheduling
across job management
systems

Data management system
for access to data lake
(here caching)

SWIFT-HEP / GridPP

https://indico.cern.ch/event/1033023/contributions/4351120/attachments/2244732/3806562/ImperialSwiftHep1.pdf

Concrete [starting] work items (1)

DiracJob and DiracJobQueueCluster in dask-jobqueue*
● Can use DIRAC command-line tools or python library
● In collaboration with DIRAC experts

○ Sensible defaults
○ Best way to communicate extra requirements (e.g. GPU, cached data)

Work here can then easily be migrated to Parsl and/or tested via joblib by
volunteers

32*we can start as an independent package and merge later

https://github.com/dask/dask-jobqueue/
https://parsl.readthedocs.io/en/stable/
https://ml.dask.org/joblib.html

Concrete [starting] work items (2)

Storing (temporary) analysis cache on data lake

● Expiration dates: what is maximally reasonable? What makes sense on
average?

● Permissions: users work in (dynamic) groups - What is the best approach for
ACLs?

● Xrootd cache: Does it make sense to pre-fill input data based on scheduled
DIRAC job?

33

Analysis Grand Challenges

34

Analysis Grand Challenges (SWIFT-HEP)
In SWIFT-HEP we can copy the main test with little extra effort*

But: can we involve analysis groups in the UK?

● Would need to provide documentation on the use of DiracJobQueue
● Need to allocate resources per group
● Need to make sure job wrappers and Analysis Facility monitoring capture all

metrics (i.e. no additional work for users here)

35*by swapping the dask-jobqueue configuration: HTCondor → DIRAC

Analysis workflow example in Dask

36

Analysis pipeline example reality might differ

37

Filtering Custom
variables

Custom
projections

Statistical
analysisFiltering

Experiment data Custom data? Histograms, tables, etc

Iterative improvements - run
over the same data with
(small) changes

● Custom variables might include Machine Learning → training and inference on GPU
● Depending on underlying tools, statistical analysis can benefit from GPUs as well
● Depending on expertise, analysis code might be modular or one big block
● Depending on expertise each iteration will use resources efficiently, or not

Analysis Workflow: compute

38

Researcher

Shell/Jupyter/etc

Local computer Local cluster Computing grid

e
x
p
e
r
t
i
s
e

As analysis needs increase, new expertise is needed to use more
resources

e
x
p
e
r
t
i
s
e

Analysis
Challenge

Large user-driven component →

hard to optimize for every case

Inconsistent data use: new data sets,
reprocessing of targeted data sets

Ideally, each iteration is as short as
possible → “time to insight” low

iterative model == waste of
computing resources?

Emerging trend: interactive analysis

39

Jupyter
notebooks
Analysis “simplified”

These kinds of workflows seem
really desirable by the current
generation of PhD students

Shifts a lot of “How to do distributed
computing” to “What I want to get
done” → declarative approaches are
great for research

This disconnection allows experts to
improve computing infrastructure
“behind the scenes”

40

CERN’s analytix
cluster

Spark + Hadoop (link)

● Initially for log processing on
Hadoop

● Can run ROOT analysis on
Spark

● Accessible via CERN’s SWAN
service (Jupyter)

● Access to external storage via

plugin

41

https://canali.web.cern.ch/docs/Big_Data_HEP_Analysis_and_ML_with_Spark_20190924.pdf
https://canali.web.cern.ch/docs/Big_Data_HEP_Analysis_and_ML_with_Spark_20190924.pdf

IRIS-HEP
Coffea-casa

Analysis facility on top of an
HTCondor cluster (link)

● Dask as a key component

● Uses TLS proxy (Traefik) to

route requests from outside to

the Dask cluster

● Dask-jobqueue for submitting

to batch system (e.g HTCondor)

● More details in next talk

42

https://iris-hep.org/projects/coffea-casa.html
https://dask.org/
https://traefik.io/
https://jobqueue.dask.org/en/latest/
https://arxiv.org/pdf/2103.01871.pdf

funcX
Federated function as a service

(link)

● “Serverless” approach to

compute (similar to FnProject)

● Reduces barriers to access

distributed resources

● Low-latency, on-demand

● Can be used to build a catalogue

of functions

● Functions can be deployed on

special resources → ”binding

algorithms to hardware”

43

https://funcx.org/
https://fnproject.io/
https://indico.cern.ch/event/781661/contributions/3253622/attachments/1786430/2908700/2019-01-28-FuncX.pdf

Hyper
(Lux-Zeplin)

non-LHC analysis via Dask on
HPC and HTC (see talk)

44

● Dask as a key component

● Dask-jobqueue for submitting

to batch system

● Uses boost_histogram, uproot,

numexpr & more

● Tested on a UK cluster and at

NERSC

● Example for interactive

distributed analysis without a

dedicated analysis facility

“Hyper is an uproot wrapper that
lets you execute any Python code
easily in parallel”

https://indico.cern.ch/event/1046405/#6-analysis-with-hyper-a-fast-p
https://dask.org/
https://jobqueue.dask.org/en/latest/
https://github.com/scikit-hep/uproot4

IRIS-HEP
Analysis Grand Challenges

[AGCs]
(incl. ATLAS, CMS and WLCG)

Multiple challenges in the years
2022, 2023, 2025, 2027

Analysis: Demonstrate analysis
system can cope with increased data
volume while delivering enhanced
functionality**

Data volume: realistically sized
HL-LHC end-user analysis dataset (~
200 TB)

Reproducibility and
Reinterpretation

Interested in getting more
experiments involved to broaden
usability 45

Related IRIS-HEP workshop

https://iris-hep.org/grand-challenges.html
https://indico.cern.ch/event/1076231/timetable/?view=standard

Virtual Analysis Facility

Analysis step
output

SWIFT-HEP WP 5 in a nutshell

WP1

46

Analysis workflow

Data lake

Heterogeneous hardware

Specialised hardware
(GPU, FPGA, etc)

DIRAC

WP5

portability

caching

GPU
capable

CPU-only

 data

Task Task Task

 data

Task Task

 data

Task

 data

