
traccc & alpaka
Thoughts & First Look

Ryan Cross - GridPP and Swift-HEP
2023/03/30

Overview

This talk will cover:

1. A quick overview of traccc.

2. Cross-Platform Abstraction Libraries.

3. First Steps with alpaka.

4. What comes next?

1 / 14Ryan Cross - 2023/03/30

ACTS is a generic, experiment

independent framework/software toolkit,

written in C++. Through it, you can get

algorithms for track reconstruction that

can be used in any experiment, agnostic of

any technical details (detector tech, design

and event processing framework).

It has been designed in a thread-safe

manner, with support for parallel code

execution and optimised data structures

for speeding up the many linear algebra

operations used throughout the code base.

Wide set of use cases, with

integrations/progress for Belle II, CEPC,

sPHENIX, PANDA, FASER, ATLAS ID

(current + ITk).

A Common Tracking Software

2 / 14Ryan Cross - 2023/03/30

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

3 / 14Ryan Cross - 2023/03/30

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

Establish an event data model (EDM) that is interoperable

between both the CPU and GPU.

This utilises the vecmem project for memory

management, which supports a number of backends.

Allows the user to choose an architecture just by utilising

a specific memory resource.

The algorithms are setup in such a way to exploit

parallelisation architecture available on GPUs.

Avoid dynamic allocations and branching.

Fully distribute tasks against the GPU.

traccc

traccc, as mentioned, is being developed to find an optimal solution for utilising GPUs in ACTS. This

means:

4 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - Why?

As part of traccc, the use of abstraction tools are interesting. There are many different ways to write code that

can run on a GPU.

Writing CUDA directly can be a mixed experience. You are locked into a specific vendor for acceleration, but

you don't have to deal with the additional layer of complexity an abstraction library brings.

Because of this, there exists many different abstraction paradigms, software that allows a single source code

base that at compile time can target many architectures. Common targets include CUDA, AMD / Intel

GPUs, and CPU parallelism via thread, OpenMP, TBB and more.

5 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

6 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

6 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

6 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::tread.

alpaka is a header-only C++ 17 abstraction library for accelerator development. It aims to provide

performance portability acorss a range of accelerators through the abstraction of the underlying levels of

parallelism. Support CUDA, OpenMP, std::thread, TBB, HIP and OpenAcc.

6 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

7 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

7 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

7 / 14Ryan Cross - 2023/03/30

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

Run the jobs in parallel:

queue.submit(job, configuration, items);

queue.wait();

7 / 14Ryan Cross - 2023/03/30

Why alpaka?

I've just outlined three projects that support the "write once, support many" paradigm, and both SYCL and

Kokkos are already implemented in traccc, with differing levels of functionality. So why a third?

alpaka was chosen as a possible candidate for a few reasons:

Simplicity: alpaka is a lightweight, header-only library, which makes integration into traccc very easy, as

well as it being written in the same modern C++17 as traccc/acts.

Familiarity: The alpaka abstraction model is very similar to the CUDA grid-blocks-thread model, making

writing code for alpaka simple, and familiar for those with CUDA experience, whilst also providing a CPU

and non-CUDA based implementation.

Community Support: alpaka has been used extensively at CMS, including in cms-sw and their HLT

achieving performance close to that of the native CUDA codebase, from a single source code that can be

utilised on many devices.

8 / 14Ryan Cross - 2023/03/30

https://github.com/cms-sw/cmssw/pull/40465
https://indico.cern.ch/event/1184802/contributions/5096742/subcontributions/400890/attachments/2539901/4372182/swifthep_cmsgpu.pdf

First Steps

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

That implemented all the basic building blocks for alpaka inside of traccc:

Building of alpaka (or using a system install) for integration.

A basic test of alpaka to setup an accelerator and then perform a dummy calculation on it, inside the test

infrastructure of traccc.

That gives a solid base on which to iterate, now that the more abstract bits are finished and alpaka is available

to utilise in modules.

struct VectorOpKernel {

template <typename Acc>

ALPAKA_FN_ACC void operator()(Acc const& acc, float* result, uint32_t n) const {

auto const threadIdx = getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u];

if (threadIdx < n)

 result[threadIdx] = alpaka::math::sin(acc, threadIdx);

 }

};

9 / 14Ryan Cross - 2023/03/30

https://github.com/acts-project/traccc/pull/300

Implementation of First Algorithm - Process

Prior to alpaka, Kokkos is the most recently added backend to traccc, so the first step was to work on the

module that kokkos had implemented first, which is the spacepoint binning step, which forms part of the

seeding example.

Initially, I started by using the Kokkos code as a basic reference to understand the code layout and approach,

but it quickly became clear that alpaka is much closer to a native CUDA implementation, rather than the

approach Kokkos takes.

Broadly, the CUDA implementation can be converted to an alpaka one by wrapping the kernels used into

alpaka ALPAKA_FN_ACC kernels, and utilising the helper wrappers to access the thread/block/grid index,

rather than the CUDA-supplied interface.

10 / 14Ryan Cross - 2023/03/30

Implementation of First Algorithm - Example

To show some examples, here is some comparisons between the CUDA and alpaka implementation for the

this first spacepoint binning step.

Initialising the kernel running parameters

const unsigned int num_threads = WARP_SIZE * 8;

const unsigned int num_blocks = (sp_size + num_threads - 1) / num_threads;

auto const deviceProperties = alpaka::getAccDevProps<Acc>(devAcc);

auto const maxThreadsPerBlock = deviceProperties.m_blockThreadExtentMax[0];

auto const threadsPerBlock = maxThreadsPerBlock;

auto const blocksPerGrid = (sp_size + threadsPerBlock - 1) / threadsPerBlock;

auto const elementsPerThread = 1u;

11 / 14Ryan Cross - 2023/03/30

Implementation of First Algorithm - Example

To show some examples, here is some comparisons between the CUDA and alpaka implementation for the

this first spacepoint binning step.

Defining a spacepoint-based kernel

__global__ void populate_grid(seedfinder_config config,

 spacepoint_collection_types::const_view spacepoints, sp_grid_view grid) {

 device::populate_grid(threadIdx.x + blockIdx.x * blockDim.x, config,

 spacepoints, grid);

}

ALPAKA_FN_ACC void operator()(Acc const& acc,

const seedfinder_config& config, sp_grid_view& grid_view,

const spacepoint_collection_types::const_view& spacepoints_view) const {

auto globalThreadIdx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u];

 device::populate_grid(globalThreadIdx, config, spacepoints, grid);

}

11 / 14Ryan Cross - 2023/03/30

Implementation of First Algorithm - Example

To show some examples, here is some comparisons between the CUDA and alpaka implementation for the

this first spacepoint binning step.

Launching the setup kernel

kernels::populate_grid<<<num_blocks, num_threads>>>(

 m_config, spacepoints_view, grid_view);

CUDA_ERROR_CHECK(cudaGetLastError());

CUDA_ERROR_CHECK(cudaDeviceSynchronize());

alpaka::exec<Acc>(

queue, workDiv,

 PopulateGridKernel{},

 m_config, spacepoints_view, grid_view

);

alpaka::wait(queue);

11 / 14Ryan Cross - 2023/03/30

Implementation of First Algorithm - Results

This first pass basic test works! And wasn't that much work or overly complicated to setup. Here is a very

early look at what it looks like when compared to two of the existing implementations. This table shows the

average run time to run the spacepoint binning algorithm for one event, across a range of event types.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 20 145 224

ttbar_mu20 878 158 241

ttbar_mu40 1171 166 260

ttbar_mu60 1606 189 369

ttbar_mu80 2218 282 371

ttbar_mu100 2630 295 373

ttbar_mu140 3431 293 378

ttbar_mu200 4649 303 525

ttbar_mu300 7400 487 588

Performed on a i9-10980XE and RTX A5000, average over 5 runs with 3 warm up runs.

12 / 14Ryan Cross - 2023/03/30

Implementation of First Algorithm - Results

This first pass basic test works! And wasn't that much work or overly complicated to setup. Here is a very

early look at what it looks like when compared to two of the existing implementations. This table shows the

average run time to run the spacepoint binning algorithm for one event, across a range of event types.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 20 145 224

ttbar_mu20 878 158 241

ttbar_mu40 1171 166 260

ttbar_mu60 1606 189 369

ttbar_mu80 2218 282 371

ttbar_mu100 2630 295 373

ttbar_mu140 3431 293 378

ttbar_mu200 4649 303 525

ttbar_mu300 7400 487 588

Performed on a i9-10980XE and RTX A5000, average over 5 runs with 3 warm up runs.

12 / 14Ryan Cross - 2023/03/30

Future Work

I've started work on getting the full seeding algorithm copied over to alpaka, which hopefully will give a more

compelling demonstration of alpaka, and its performance characteristics, as well as the layout of the code in

alpaka.

Along side that, there is a few remaining bugs and things to look at with this small test:

I haven't tested across a wide-range of devices yet. I've done a quick CPU test, but not thoroughly checked

yet. I think some parts may require slight re-organising to run seamlessly on both the CPU and the GPU1.

There is a race condition when running over multiple events: likely accessing part of the memory isn't fully

setup/synchronised. Further debugging needed.

There is still a performance delta between the CUDA and alpaka implementation, which is to be expected,

but it would be interesting to look into it a bit more.

1alpaka tags alpaka kernels as __device__ or __host__ or both depending on the device. This currently doesn't play nice with part of I believe vecmem.

13 / 14Ryan Cross - 2023/03/30

Conclusion

In Conclusion:

traccc is a R&D effort as part of the ACTS project, working on exploiting GPUs and other accelerators to

speed up tracking across a range of experiments.

As part of that, many different acceleration abstraction libraries have been implemented, with alpaka being

the newest.

alpaka has good support already in HEP, and its parallelisation model make it a strong candidate for being

the general purpose abstraction library.

To that end, this talk outlines a first early test porting part of an algorithm to alpaka.

Decent performance has been achieved, even without extensive tuning or testing of the different

parallelisation parameters or threading model.

Finally, there is a clear path forward to how to more extensively test alpaka, to understand how it performs

and how easy it is to implement the sort of operations we need in it.

14 / 14Ryan Cross - 2023/03/30

traccc & alpaka
Thoughts & First Look

Ryan Cross - GridPP49 and Swift-HEP
2023/03/30

Backup Slides

14 / 14Ryan Cross - 2023/03/30

CUDA vs alpaka only

14 / 14Ryan Cross - 2023/03/30

