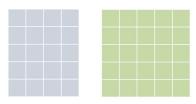


Detector Simulation in SWIFT-HEP

Ben Morgan

WARWICK THE UNIVERSITY OF WARWICK

Detector Simulation R&D @ March 2023

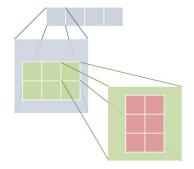

- AdePT Project (CERN-SFT)
 - <u>https://github.com/apt-sim</u>
- Celeritas Project (ECP: ORNL, FNAL, Argonne, LBL)
 - <u>https://github.com/celeritas-project</u>
- Vecgeom/ORANGE Surface Based Geometry (CERN, Celeritas/ORNL)
 - <u>https://gitlab.cern.ch/VecGeom/VecGeom</u> (See <u>surface_model</u> branch)
 - <u>https://github.com/celeritas-project/celeritas/tree/develop/src/orange</u>
 - ExaTEPP grant from UKRI ExCALIBUR enabling contribution here
- Regular working and strategy meetings between projects,
- Can only give a shorter overview today, follow links for full details, together with the credits linked in the slides.
 - See also later presentations from Davide and Andrei/Seth!

Objectives of AdePT and Celeritas

- Understand usability of GPUs for general particle transport simulation
 - Prototype e+/e-/γ EM shower simulation on GPU, evolve to realistic use-cases
 - Focus on EM physics given computational cost in HEP workflows, prior knowledge of applicability of physics models on GPU
- Implement GPU-targeted components for physics, geometry, field, with data models and workflow
 - Integrate components in a hybrid CPU-GPU Geant4 workflow ("Fast Sim" approach)
 - Offload tracks to GPU/CPU when preconditions like particle type or geometric region met
 - Most realistic short-term objective to allow testing/use in existing experiment code
- Ensure correctness and reproducibility
 - Validate GPU-only, CPU+GPU off/onload against pure CPU Geant4
- Understand bottlenecks and blockers limiting performance
 - Feasibility and future effort required for efficient simulation workflows on GPU
- Celeritas also have a longer term objective to include full hadronic physics

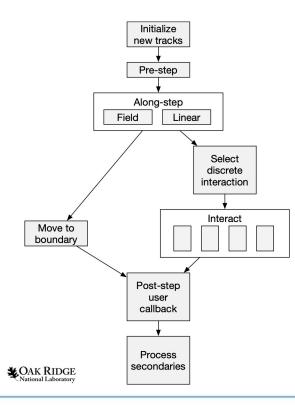
Challenges for Monte Carlo on GPUs

- **Execution**: divergence and load balancing
 - GPUs want every thread doing the same thing
 - MC: every particle is doing something (somewhat) different



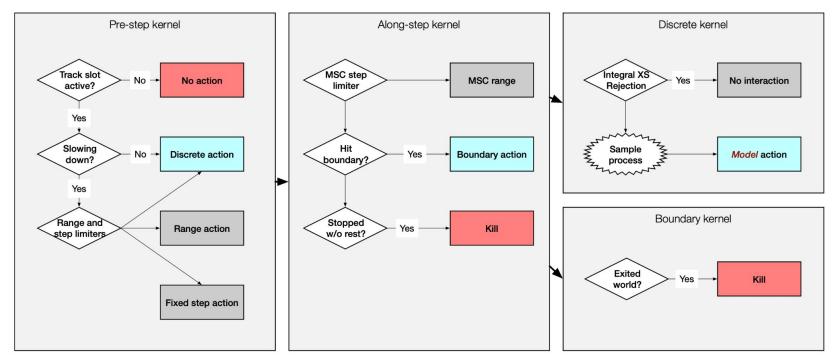
Structured grid data

• Memory: data structures and access patterns


- GPUs want direct, uniform, contiguous access
- *MC: hierarchy and indirection; random access*
- Memory allocation is a particular problem

Credit: Seth Johnson (ORNL)

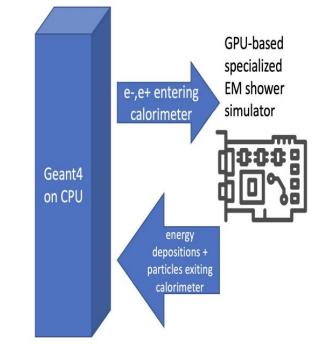
Monte Carlo data


Track-parallel Stepping Workflow

extend_from_primaries		Copy primaries to device, create track initializers	
w	hile Tracks are alive do		
	initialize_tracks	Create new tracks in empty slots	
-[pre_step	Sample mean free path, calculate step limits	
	along_step	Propagation, slowing down	
1	boundary	Cross a geometry boundary	
	discrete_select	Discrete model selection	
	launch_models	Launch interaction kernels for applicable models	
1	extend_from_secondaries	Create track initializers from secondaries	
end while			

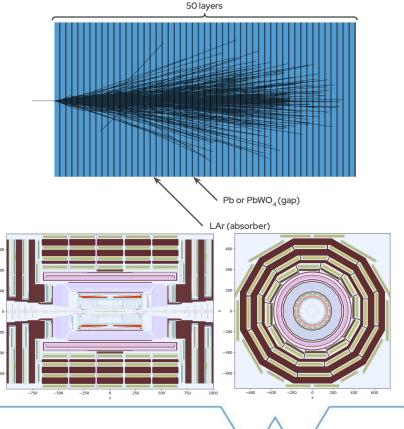
- Action based control flow
- Kernels determine next **Action**, or perform an **Interaction**
- Example from Celeritas, AdePT's is similar though with larger kernels

Celeritas: Inside Kernels

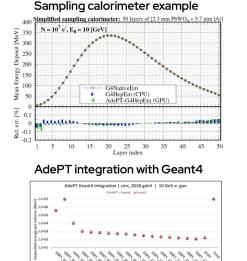


Stational Laboratory

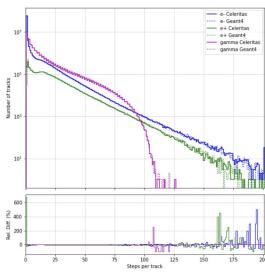
6 Credit: <u>Seth Johnson (ORNL)</u>


Strategies for integration with Geant4 applications

- AdePT and Celeritas only model e-/e+/g physics at present, so cannot be used standalone for simulating a full EM+hadronic experiment
- Instead, use them as a "service" to offload tracks to the GPU according to preconditions such as particle type, or geometric region.
 - Basically the same as "Fast Simulation" methods
- Use of Geant4 Fast Simulation and/or Tasking hooks, both with same basic challenges:
 - Minimizing number/size of on/offload actions
 - Allow user-defined actions on GPU, such as scoring/hits
 - Handing back particles (e.g. exiting particles, hadrons from photonuclear processes) from GPU to CPU


Progression Problems for Benchmarking/Validation

- Both AdePT and Celeritas have adopted two primary test cases for benchmarking and validation
 - Run on CPU, GPU, CPU+GPU hybrid modes
- "TestEM3" taken from Geant4 examples as a core test case
 - 50 layer Pb (or PbWO4) / LAr sampling calorimeter
 - 1-10GeV e- primaries in beam
 - Validation, basic scoring and performance measurements
- CMS 2018 GDML geometry
 - Same primaries, also HepMC3 input
 - Use of more complex workflows, scoring



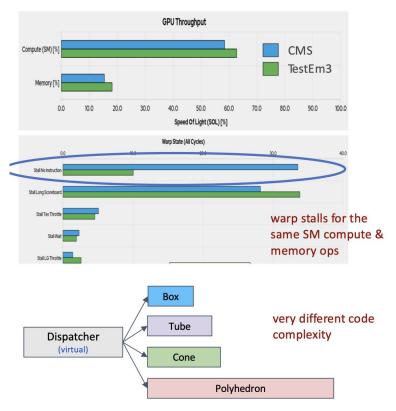
Physics Validation

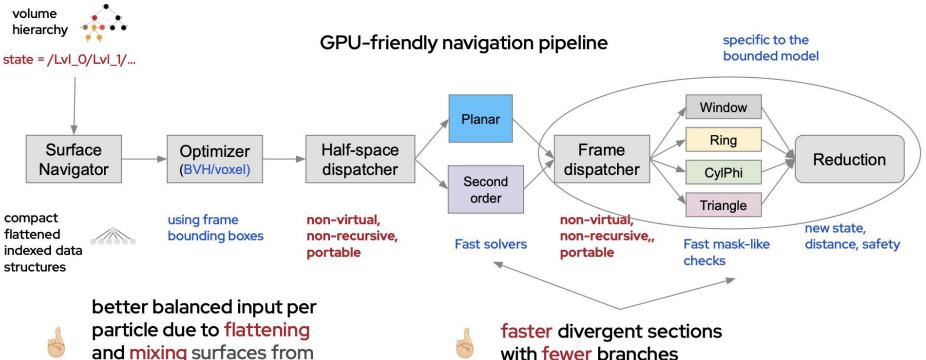
• <u>G4HepEM</u> in AdePT, CPU/GPU implementation/use of Geant4 models/cross-sections in Celeritas.

0.0

TestEM3 MSC step count verification (Amanda Lund)

Particle	Process	Model
	photon conversion	Bethe-Heitler
	Compton scattering	Klein-Nishina
γ	photoelectric effect	Livermore
	Rayleigh scattering	Livermore
	ionization	Møller/Bhabha
0+	hromostrohlung.	Seltzer-Berger
€±	bremsstrahlung	relativistic
	Coulomb scattering	Urban MSC
e+	annihilation	→(γ, γ)
μ	bremsstrahlung	µ brems


Overall excellent agreement with Geant4, but ongoing validation studies across problem space


9 Credits: Witek Pokorski (CERN), Seth Johnson (ORNL), Amanda Lund (Argonne)

Performance: Geometry on GPUs

- Several problems in CSG based approach of VecGeom on device:
 - Virtual dispatch
 - Recursion in relocation algorithms
 - Divergence from differences in algorithmic complexity for solids
- Consequences on GPU:
 - Large stacks & register-hungry code limits number of concurrent warps
 - Divergence limits concurrency per warp
- Moving from simple to complex geometry => longer stalls within a warp for same SM compute

TestEM3 = 100 simple layered boxes CMS = full CMS_2018 geometry

different volumes

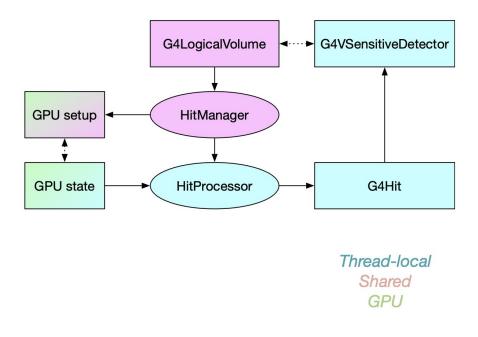
with fewer branches

From Solid to Surface **Based Geometry Models**

See presentations from Andrei and Seth later

Further Progression Problems, Testing with Experiments

- Ongoing design discussions on additional use cases/setups for validation and performance both on pure GPU and hybrid Geant4+GPU workflows:
 - Physics models and parameters
 - Detector geometries, regions for GPU offload
 - Inputs (primaries), Outputs (scoring, hits)
 - CPU/GPU hardware, workflow parameters (e.g. CPU threads, GPU tracks in flight, Host/Device memory) - **important to measure in realistic setups!**
 - Can GridPP provide guidance here, as well as good metrics to measure?
- Need to consider both simple (~"TestEM3" calo) and complex (e.g. "LHC experiment"), and to isolate different areas (e.g. geometry, offload)
- AdePT/Celeritas linked up with ATLAS/CMS simulation teams to investigate integration in their frameworks as a key use case.
 - Collaboration with other experiments and HPC/GPU experts very welcome!


AdePT/Celeritas in ATLAS and CMS

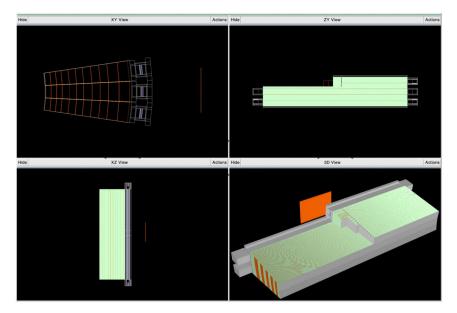
- Two main lines of work in collaboration with experiment's simulation teams
 - Test/benchmark "standalone" geometric regions, e.g. CMS HGCal, ATLAS TileCal (see Davide's talk later!)
 - Build/Integration of code in software stacks and applications, test full use in Athena/CMSSW
- Also identifies/motivates improvements to geometries for GPU compatibility (e.g. ATLAS EMEC).
- A key design and development topic is on hits and scoring
 - Can "SensitiveDetector" concept work on GPU?
 - Should user scoring/hit generation code be host or device?
 - Primarily an issue of host/device data transfers and complexity of "step-to-hit" implementation

Approaches to Scoring on Host/Device

• Celeritas: initial "fast simulation" model

- Searches through GDML/Geant4 geometry for attached sensitive detectors
- Data of interest sent to CPU after each "step iteration", reconstituted as G4Step instances
- Geometric "touchable" updated as required to allow location by SD
- AdePT: "fast simulation" model
 - User has to implement device side scoring, copy-to-host themselves
 - See Davide's talk for an example
- Both have costs/benefits, *need additional input from experiments* to balance specific/generic interface requirements

CMSSW integration effort


- Biweekly meeting with Fermilab CMS (Special thanks to Kevin Pedro for all the help!)
- Progress in integrating into CMSSW toolchain:
 - Linked Celeritas to CMSSW with Geant4, DD4HEP, and CUDA-enabled VecGeom
 - Added Celeritas offload interface RunManagerMT and TrackingAction in SimG4Core
- Theoretical maximum performance gain offloading EM tracks: ~3.3× (with 1000 tt events and CMS Run3 geometry)

14

ATLAS TileCal in Celeritas/AdePT

- Initial work between ORNL and LBL on use of Celeritas earlier this year.
- Davide Costanzo has also implemented an AdePT example for the same geometry
- Defer to Davide's talk for more detailed info here!
- ATLAS Full Simulation WG has UK input to assist with testing and integration, but more always welcome!

Tilecal visualization (Stefano Tognini)

Credit: <u>Seth Johnson, Stefano Tognini (ORNL),</u> <u>Lorenzo Pezzoti, Stephan Lachnit (CERN)</u>

Summary

- AdePT and Celeritas continuing to demonstrate feasibility of detector simulation on GPU
 - Near full EM physics validated
 - Initial workflow of Geant4 CPU offloading EM particles to GPU implemented/profiled
 - Working with ATLAS and CMS on integration, benchmarking, and scoring in their frameworks.
- GPU friendly geometry modeling/navigation, scoring, will be key tasks this year
- Contributions to projects on GitHub welcome, and especially on experiment integration and validation
 - Is there UK expertise that could contribute here?

