
1

Keith Evans1, Antonin Rat1, Sacha Barre1, Yangyang Cui2,

Zahra Montazeri2, Adam Davis1, Marco Gersabeck1,

1University of Manchester – Department of Physics and

Astronomy
2University of Manchester – Department of Computer

Science

Keith.evans@manchester.ac.uk

Photon Propagation Using Open Source
Rendering Software : A Study

2

Outline
● Motivation
● Propagation vs Rendering
● Mitsuba

– What
– How
– Why

● Initial Questions and Results
● Outline of Pipeline
● Current Progress and results
● Conclusion

3

Motivation
• Computational requirements for LHCb

increasing year on year
• RICH contribution signification due to cost of

photon propagation
• Photon propagation is a cause of computation

expense across HEP, Physics more broadly and
in Engineering simulations

4

Propagation and Rendering

● Previously investigated
Opticks to propagate
photons

● Attended NVIDIA
Hackathon Feb 2022

● Learned photon
propagation = ray
traced rendering

5

What is Mitsuba? Industrially recognised “Physically
Based Renderer”

 Capable of “Forward”, “Backward” and
“Inverse” rendering.

 Uses Monte Carlo sampling to
probabilistically determine pixel
value/intensity/colour

 Takes scene description in XML of
Python format

 Uses “Just In Time” (JIT) compiler to
generate optimised and vectorised
kernels for CPU/GPU

6

Mitsuba – How does it work?

C
am

era
Object

Light Source

C
am

era

Object

Light Source

Forward Rendering Backward Rendering

7

Mitsuba – Why?
 Industrially recognised
● Uses ray traced rendering

● Ray tracing more accurately represents how light propagates
 Open source

● Under active development
 Accelerated with LLVM, CUDA and OptiX 7.x

 Uses Intel Embree for CPU ray tracing

 Uses NVIDIA OptiX 7.x for CUDA

8

Links

 https://www.mitsuba-renderer.org/
● https://github.com/mitsuba-renderer/mitsuba3
 https://github.com/mitsuba-renderer/drjit

https://github.com/mitsuba-renderer/mitsuba3

9

Can we use Mitsuba to
propagate photons?

10

Mitsuba – Can we?
 Can we construct a detector in Mitsuba?
 Can we represent photons in Mitsuba?
 Can we get results out of Mitsuba?

11

Mitsuba Pipeline

Geant4

.csv

.py

+ .xml

.py

+ Mitsuba .exr

+

.py Results!

OpenCV

+

12

Can we construct a geometry?
 Answer : YES!
 Mitsuba can take either XML or Python

geometry input
● “Variants” are used to specify spectra,
integration and parallelisation method

 We built a generic RICH detector
● Shapes are used to define mirrors and
detector planes

● Bidirectional Scattering Distribution
Functions (BSDFs) are used to handle
surface scattering

● Light sources can be defined using
“Emitters”

Detector Plane

Mirror 1

Mirror 2

Spot Light Source

13

 Can we represent photons in Mitsuba?

 Answer : Kind of
 Mitsuba provides a series of “Emitter” types
 “Spot” is the closest match to actual photon

behaviour
● Single position and target direction
● Cut off angle defining ray acceptance

 1 emitter / photon
● Custom emitter (in progress) possible
thanks to open source code

(x̂ , ŷ , ẑ)

(x , y , z)

θ

14

 Can we get results out of Mitsuba?

 Answer : YES!

 Mitsuba outputs EXR
format as standard

 EXR is a standard
HDR image format

 We can use OpenCV to
fit to the images and
return hits

100 G4 Photons – Scalar RGB – Detector Plane

15

Results
● G4 Photons propagated

through generic RICH

● Image contains UV photons

– Mitsuba cannot assign
RGB values to UV photons

– UV photons ARE
propagated but not
visualised

● Photon “spots” are different
sizes due to differing path
lengths

– Solved with custom emitter

100 G4 Photons – Scalar RGB – Detector Plane

16

Road to Custom Emitter

100 Photons - Scaler RGB - Cut-off Angle Adjusted

100 Photons - Scaler Mono - Cut-off Angle Adjusted

● Cut off now inversely proportional
to path length

● Detector quantum efficiency
applying prior propagation to
reduce computation expense

● Mono variants “ignore”
wavelength instead registering
binary hits

● Variants can be passed at
runtime avoiding expensive
recompilation

17

Proof of Concept : Lessons Learned

 Spot emitter needs modifying to remove cut off angle
 Also sampling needs to be turned off

 Vector input to custom emitter also essential

 RGB Spectrum not suitable due to UV photons

 Solved with mono variants
 Pass G4 data “directly” to Mitsuba

 Already demonstrated by Mitsuba binary

18

Prototype : Questions
 Can we create a “photon” emitter class?
 How does Mitsuba perform?
 Can we validate Mitsuba results against

G4?

19

 Can we create a
“photon” emitter?

 Answer : YES!

 Modified version of the spot
emitter

● The “photon_emitter” fires a
single ray with a fixed direction

● No cut off angle

● Still requires 1 instantiation /
photon

● Working towards vector input
emitter

20

How does Mitsuba perform?

CPU = Intel Xeon 4210R @ 2.40Ghz and 20 Cores
● G4

~ 4,000 Pps-1t-1

● Mitsuba (llvm_mono & 16 samples and suboptimal optimisation)
~ 2,000 Pps-1t-1

GPU(s) = 2 x Nvidia Tesla T4 @ 1.590Ghz, 2560 CUDA cores, 40
RT cores

● G4 + Opticks
~ 500,000 Pps-1g-1 (195 Pps-1t-1)

● Mitsuba (cuda_mono & 16 samples and suboptimal optimisation)
~ 500,000 Pps-1g-1 (195 Pps-1t-1)

*Photons Propagated / Second / Thread (Pps-1t-1)
*Photons Propagated / Second / GPU (Pps-1g-1)

21

Discussion on Performance
● Mitsuba performance data assumes

all rendering time is propagation
– This is false
– Rendering includes

● Integration
● Image Generation

● Tracing scales linearly with samples
– Spot emitter emits further rays

● Conclusion :
– Mitsuba is over-propagating
– Mitsuba includes necessary steps

● Developers have advised us to call
the ptracer directly

22

Can we validate Mitsuba against G4?

● Validation requires a G4 Simulation with
Mitsuba offloading
– This is under construction

● We’ve developed a pipeline to convert
between GDML to OBJ
– Enables experiment independency

● Hoping to complete this process within
the next weeks

23

Summary

● Photon propagation is a general [performance]
problem in physics
– Photon Propagation ≈ Ray Traced Rendering

● Built a working G4 + Mitsuba proof of concept
Pipeline

● Working towards an integrated prototype pipeline
● Geometry conversion pipeline in place
● Promising performance results
● Validation is in progress

24

Future Work

● G4 Integration needs completing
– G4 – Mitsuba interface needs to be developed
– Potentially include Mitsuba offloading as an

advanced example

● Mitsuba “render” function can be [mostly]
skipped
– Lots of unnecessary functionality
– Developers have suggested calling “ptracer”

functions directly

25

Thank you!

26

Scene Optimisations

● Mitsuba Workflow
– XML Parsed, C++ objects instantiated
– Rendering process is traced
– Kernel compiled

● Scenes map 1-2-1 emitters to photons
– Inefficient

● 106 Photons = 106 Emitters = 106 C++ Objects

– Solved by Vector input
● 106 Photons = 1 Emitter = 1 C++ Object

27

Ray Intersection Parallelisation

● Rays only exist for 1 intersection
– Load Balanced
– Warp Synchronisation

● Absorbed Rays are killed
● Reflected Rays are “re-emitted”

28

Track Based Parallelism Intersection Based Parallelism

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

