
VecGeom surface modelling
andrei.gheata@cern.ch

VecGeom

A
B

C D

Geant4

VecGeom: navigation back-end for Geant4
► Collaborative effort to develop most

efficient navigation algorithms on top
of Geant geometry description

● Independent of the transport simulation
toolkit

● Supporting GPU (CUDA) as back-end

► State of the art geometry navigation
backend for Geant4

● Hierarchic CSG (Boolean combinations)
solid modeling based on containment

● Actively maintained and developed
● Main bottleneck for GPU sim workflows

(see Ben’s talk)
2

G4SteppingManager

G4Processes

PhysicsProcesses

G4Transportation

Particle
stack

Navigation
interface

V(Un)placedVolume

CPU/GPU

state = A/B/D
(qualified node path)

A B

C
D

nodes

Bounded surface modeling - a different
approach for the GPU

► 3D bodies represented as Boolean
operation of half-spaces*

● First and second order, infinite
● Just intersections for convex primitives

▹ e.g. box = h0 & h1 & h2 & h3 & h4 & h5

► Storing in addition the solid imprint
(frame) on each surface: FramedSurface

● Frame information is redundant
▹ helps taking navigation decisions more

efficiently (hitting a framed surface
means hitting the real solid)

3

6x (planar half-space +
window frame)

h0

h1

h2 h3

h5

h4

CommonSurface - the navigation primitive

► In Geant volumes can share common surfaces
● Define “CommonSurface” as boundary between

volumes

► A common surface is made of two sides, each
having hierarchic FramedSurfaces

● Checking frame masking conditions for the track
crossing point on each side is equivalent to relocating to
the next volume

● Much cheaper than current volume relocation,
non-recursive algorithm

4

common surface

z

x

y

exiting
side

entering
side

left-side view right-side view

track

A/B →C/D

Why use frames ?

5

volumes/unbounded
surfaces, bbox optimized

bounded surfaces, normal-optimized,
no bounding box optimization

bounded surfaces,
bounding box optimized

3 solid / 18 unbounded
surface checks

3 framed surface checks

No virtual crossings: can greatly
reduce candidates to be checked

High potential for work reduction
compared to solid or unbounded
models

Implementing a GPU-friendly computation
pipeline

6

Surface
Navigator

Optimizer
(BVH/voxel)

Half-space
dispatcher

Planar

Second
order

Frame
dispatcher Reduction

state = /Lvl_0/Lvl_1/…

Fast mask-like
checks

using frame
bounding boxes

better balanced input per
particle due to flattening
and mixing surfaces from
different volumes

new state,
distance, safety

Sequence for typical navigation queries

volume
hierarchy

Window

Ring

CylPhi

Triangle

Fast solvers

compact
flattened
indexed data
structures

non-virtual,
non-recursive,
portable

non-virtual,
non-recursive,,
portable

faster divergent sections
with fewer branches

specific to the
bounded model

Conversion of solids to framed surfaces
► Any solid surface can be constructed

from predefined unplaced/frame
types

● Conversion done behind the hood,
implementation completely transparent

► Only box, tube, trapezoid for now
● The full supported set TBD

7

x

y
z

UnplacedSurface: (z = 0)
Frame: abs(x)<dx && abs(y)<dy

x

yz

n

nCreateLocalSurface(

 CreateUnplacedSurface(kPlanar),

 CreateFrame(kWindow, WindowMask_t{box.y(), box.z()}),

 CreateLocalTransformation({box.x(), 0, 0, 90, 90, 0}));
90o

2·box.y()

2·box.z()

1 2

translate box.x()

3

see full box implementation here
Making a box from framed surfaces

https://gitlab.cern.ch/VecGeom/VecGeom/-/blob/surface_model/VecGeom/surfaces/BrepHelper.h#L1006-L1033

The complex cases: Boolean solids
► Composite solids support intersection (&), union

(|) and subtraction (&!) of arbitrary number of
components

► Building logic expressions in terms of surface id’s,
using De Morgan’s rules

((6 & 7 & 8 & 9) & (10 & 11 & 12 & 13 & 14 & 15)) |
((16 & 17 & 18 & 19 & (20 | 21)) & (!22 | !23 | !24 | !25 | !26 | !27))

► Expression simplification using Boolean algebra
rules, keeping left operand the simplest to
evaluate for short-circuiting

(6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15) | (16 & 17 & 18 & 19 & (20 | 21) & (!22 | !23 | !24 |
!25 | !26 | !27))

8

(tube1 & box1) | (tube2 & ! box2)

tube1

box1

tube2

box2

More implementation details in the backup

Scaling for the Boolean implementation
► Current implementation validated

for correctness against the
VecGeom solid model

● Tested union of up to 150 layers of disks
subtracting a box, more exhausts CUDA
stack space for the solid approach

► Un-optimized version so far, but
scaling looks good

● 2x slower for 5 components, 2x faster for
50 components on GPU

● Finding & tagging the real surfaces of a
Boolean composite can help a lot

9

Ray-tracing example traversing all
volume boundaries until exiting the
setup

Preliminary performance

► Unit tests available for correctness checking against VecGeom solid model
● Tube, trapezoid
● TestEm3 - a simple layered calorimeter made of box slabs

► Ray-tracing benchmark, working with generic GDML input (supported solids
only), validated/benchmarked against non-optimized solid navigator

● Sampling points and directions in the bounding box of the setup
● Computing location path and safe distance for each point
● Propagation + relocation between boundaries until exiting the setup

► Results (compared to volume looping navigation) for trackML setup
● Safety computation: ~2x slower on CPU, ~2x faster on GPU
● Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
● Memory: ~1 kByte per “touchable” volume

10

trackML

TestEm3 integration in AdePT
► Navigation interfaces of AdePT

integrated in the SurfNavigator
namespace

► Sampling calorimeter block of Pb +
LAr box layers in constant Bz field (or
no field)

► 10 GeV electrons shot towards the
calorimeter along X axis

► Validated to 0.1 per mil level against
existing solid navigators
(BVH-optimized and simple looper)

11

BVH Loop surf

no field 152s 162s 156s

Bz=1T 194s - 184s

Next priority items

► Geant 3D solid coverage
● Currently only few solids supported, we need to write converters for an extended set

► Support for logical scenes of surfaces
● Pay the price of extra frame transformations for releasing the memory pressure

► Navigation optimization
● Adapting existing BVH support to framed surfaces

12

Outlook

► VecGeom went for a surface model approach enriched by solid frame
information to be GPU-efficient

● Even if redundant, the hope is that this allows better work balancing on GPU, avoiding
reductions per volume

● Allows addressing natively isotropic safe distance computation, essential for performance

► Currently implemented all the features required by particle transport, for a
subset of solids

● Integrated with AdePT, already usable with very simple setups

► Extensions and optimizations are essential to judge performance for realistic
setups

● We target the bottlenecks currently observed in AdePT advanced examples

13

Backup

14

Boolean evaluation for more complex solids

15

► Cut tube: tube & wedge
● tube = h0 & h1 & h2

● wedge = (𝝋 < 𝜋) ? h3 & h4 : h3 | h4

► Inside: Evaluation of the Boolean expression
(half-space information only)

● Inside(h0 & h1 & h2 & (h3 | h4))

► Distance/Safety: Ignore Boolean expression for
primitives (real surfaces)

● ToIn/ToOut inferred from the start state (surfaces
crossed from the wrong side ignored)

● Distance(hi) < dmin && frame.crossed
● Safety reduction takes into account convexity

► Boolean solids: complete evaluation of Boolean
expression needed

● The Boolean expression can generate virtual framed
surfaces

h0

h1

h2

h3
h4

𝝋

Logic expressions
► Composite solids support intersection (&), union

(|) and subtraction (&!) of arbitrary number of
components

► The logic expressions with solids are expanded in
terms of surface id’s, using De Morgan’s rules

((6 & 7 & 8 & 9) & (10 & 11 & 12 & 13 & 14 & 15)) |
((16 & 17 & 18 & 19 & (20 | 21)) & (!22 | !23 | !24 | !25 | !26 | !27))

► Expression simplification using Boolean algebra
rules, keeping left operand the simplest to
evaluate for short-circuiting

(6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15) | (16 & 17 & 18 & 19 & (20 | 21) & (!22 | !23 | !24 |
!25 | !26 | !27))

16

(tube1 & box1) | (tube2 & ! box2)

tube1

box1

tube2

box2

Logic evaluation for distance queries
► Common approach for Distance and Safety queries

● Mix in the search all surfaces visible from the current state
(Boolean and regular)

● Negated surfaces have flipped associated half-space
● Apply a std::min reduction on the distance to the surface

half-space, excluding “far-away” candidates

► Distance computation
● Validate crossing point against the frame information
● If this hits a Boolean surface, exclude virtual solutions by

checking the logic expression

► Safety computation
● Use frame information to correct the safe distance
● Use a stack-based infix logic evaluation using min/max as

reduction (correct only if surfaces are ‘real’)
17

min(safeA, safeB) max(safeA, safeB)

A | B A & B

Logic evaluation

► Boolean operations can be
short-circuited

● true | any = true, false & any = false

► Infix stackless parsing for Inside
evaluation

● Inserting jumps exiting the current scope

18

Randomly generated Boolean expression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a & b) | (c & ! d)

(a & 5 b) | 15 (c & 14 ! d)

