VecGeom surface modelling

andrei.gheata@cern.ch

VecGeom: navigation back-end for Geant4

» Collaborative effort to develop most

efficient navigation algorithms on top Particle G4Processes
of Geant geometry description — PhysicsProcesses
e Independent of the transport simulation]
toolkit GASteppingManager @ GA4Transportation
e Supporting GPU (CUDA) as back-end

» State of the art geometry navigation Geant4

backend for Geant4

e Hierarchic CSG (Boolean combinations)

= ' 'f B
=l c D Navigation
\ \ interface

"~ npodes
N
N

solid modeling based on containment

e Actively maintained and developed
e Main bottleneck for GPU sim workflows state = A/B/D
(qualified node path)
(see Ben's talk)

[V(Un)placedVolume

CPU/GPU
VecGeom

Bounded surface modeling - a different

approach for the GPU

6x (planar half-space +
window frame)

» 3D bodies represented as Boolean /

operation of half-spaces’
e First and second order, infinite
e Justintersections for convex primitives

> eg.box=h,&h &h,&h,&h,&h,

» Storing in addition the solid imprint 2
(frame) on each surface: FramedSurface

e Frame information is redundant
> helps taking navigation decisions more

plane eq. + mask(r < R)

X2

efficiently (hitting a framed surface
means hitting the real solid)

cylinder eq. + mask(abs(z) < dZ)
R

<z

CommonSurface - the navigation primitive

common surface
» In Geant volumes can share common surfaces |

e Define “CommonSurface” as boundary between
volumes

» A common surface is made of two sides, each

having hierarchic FramedSurfaces

e Checking frame masking conditions for the track | y A/E—=C/D
crossing point on each side is equivalent to relocating to
the next volume . o

e Much cheaper than current volume relocation, . side X
non-recursive algorithm . L

left-side view right-side view

Why use frames ?

volumes/unbounded

3 solid /18 unbounded
surface checks

High potential for work reduction
compared to solid or unbounded
models

bounded surfaces, normal-optimized,
no bounding box optimization

—————

- Novirtual crossings: can greatly
reduce candidates to be checked poynded surfaces,

bounding be

N

3 framed surface checks Q
5

Implementing a GPU-friendly computation

pipeline

volume .
hierarchy ¢t°e &

state = /LvI_O/LvI_1/...

Sequence for typical navigation queries

Surface Optimizer
Navigator (BVH/voxel)
compact using frame

flattened 7N
indexed data
structures

bounding boxes

Half-space

dispatcher

Planar

specific to the
bounded model

Window

non-virtual,

non-recursive,

portable

better balanced input per

particle due to flattening
and mixing surfaces from

.)\gm“

different volumes

Second
order

Frame
dispatcher

Ring

‘}Jq«

Fast solvers

non-virtuat;

non-recursive,,

portable

CylPhi

Reduction }

Triangle

Fast mask-like
checks

\/

faster divergent sections

with fewer branches

new state,
distance, safety

Conversion of solids to framed surfaces

» Any solid surface can be constructed z
. UnplacedSurface: (z = 0) y
from predefined unplaced/frame Frame: abs()<dx 8&abs(y)<y | /
types yd / X
e Conversion done behind the hood, L / X

implementation completely transparent

» Only box, tube, trapezoid for now

e The full supported set TBD Nz y /
! E 2-box.z()
CreatelLocalSurface(i [‘onslate bbx x n
CreateUnplacedSurface(kPlanar), | | |::>‘ P XI
' 3

CreateFrame(kWindow, WindowMask_t{box.y(), box.z()}), | ! 90°
CreatelLocalTransformation({box.x(), 0, 0, 90, 90, 0})); | //L"ﬁgﬂ_ 2 _“/

[2-box.y()

see full box implementation here

Making a box from framed surfaces 7

https://gitlab.cern.ch/VecGeom/VecGeom/-/blob/surface_model/VecGeom/surfaces/BrepHelper.h#L1006-L1033

The complex cases: Boolean solids

» Composite solids support intersection (&), union
(1) and subtraction (&!) of arbitrary number of

tube2

components box
» Building logic expressions in terms of surface id’s,

box2

using De Morgan’s rules

((6&7&8&9) & (10&N&12&13&14&15)) |
((16&17&18&19&(20]21)) & (122]123]124|125|126|127))

» Expression simplification using Boolean algebra
rules, keeping left operand the simplest to

evaluate for short-circuiting
(6&7&8&9&I0&TN&TI2&13&14&15) | (16 & 17 &18 & 19 & (20 |21) & (122|123 | 124 |

12511261127)) (tubel& box1) | (tube2 & ! box2)
More implementation details in the backup

Scaling for the Boolean implementation

» Current implementation validated

for correctness against the

VecGeom solid model
e Tested union of up to 150 layers of disks
subtracting a box, more exhausts CUDA
stack space for the solid approach

Un-optimized version so far, but

scaling looks good
e 2xslower for 5 components, 2x faster for
50 components on GPU
e Finding & tagging the real surfaces of a
Boolean composite can help a lot

Traversal time for box tower

== traversal_GPU_solid == traversal_GPU_surf

10

0.1

0.01
25 50 75 100 125 150

components

Ray-tracing example traversing all
volume boundaries until exiting the
setup

Preliminary performance

O trackmL
» Unit tests available for correctness checking against VecGeom solid model

e Tube, trapezoid

e TestEm3 - asimple layered calorimeter made of box slabs

» Ray-tracing benchmark, working with generic GDML input (supported solids
only), validated/benchmarked against non-optimized solid navigator

e Sampling points and directions in the bounding box of the setup
e Computing location path and safe distance for each point
e Propagation + relocation between boundaries until exiting the setup
» Results (compared to volume looping navigation) for trackML setup

e Safety computation: ~2x slower on CPU, ~2x faster on GPU

e Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
e Memory: ~1kByte per “touchable” volume

10

TestEma3 integration in AdePT

>

>

>

>

Navigation interfaces of AdePT
integrated in the SurfNavigator
namespace

Sampling calorimeter block of Pb +
LAr box layers in constant Bz field (or
no field)

10 GeV electrons shot towards the
calorimeter along X axis

Validated to O.1 per mil level against
existing solid navigators
(BVH-optimized and simple looper)

EDEP relative difference TestEm3 100K electrons surface model vs. BVH (Bz = 1 Tesla)

AA /\A/\/\ /\/\/\ /\/\/

1.50E-04

1.00E-04

5.00E-05

relative difference

0.00E+00 \/\/‘\ NV

BVH Loop surf
no field 152s 162s 156s
Bz=1T 194s - 184s

1

Next priority items

» Geant 3D solid coverage

e Currently only few solids supported, we need to write converters for an extended set
» Support for logical scenes of surfaces

e Pay the price of extra frame transformations for releasing the memory pressure

» Navigation optimization
e Adapting existing BVH support to framed surfaces

12

Outlook

» VecGeom went for a surface model approach enriched by solid frame

information to be GPU-efficient
e Evenif redundant, the hope is that this allows better work balancing on GPU, avoiding

reductions per volume
e Allows addressing natively isotropic safe distance computation, essential for performance

» Currently implemented all the features required by particle transport, for a

subset of solids
e Integrated with AdePT, already usable with very simple setups

» Extensions and optimizations are essential to judge performance for realistic

setups
e We target the bottlenecks currently observed in AdePT advanced examples

13

Backup

Boolean evaluation for more complex solids

» Cuttube: tube & wedge
e tube=h &h &h,
e wedge=(¢p<m)?h;&h,:h,|h,
» Inside: Evaluation of the Boolean expression
(half-space information only)
e Inside(h,&h,&h,&(h,|h,))
» Distance/Safety: Ignore Boolean expression for
primitives (real surfaces)
e Toln/ToOut inferred from the start state (surfaces
crossed from the wrong side ignored)
e Distance(h) < dmin && frame.crossed
e Safety reduction takes into account convexity

» Boolean solids: complete evaluation of Boolean
expression needed

e The Boolean expression can generate virtual framed
surfaces

S

Logic expressions

» Composite solids support intersection (&), union
(]) and subtraction (&!) of arbitrary number of
components

» Thelogic expressions with solids are expanded in

terms of surface id’s, using De Morgan's rules

((6&7&8&9) & (10&N&12&13&14&15)) |
((16&17&18&19&(20]21)) & (122]123]124|125|126|127))

» Expression simplification using Boolean algebra
rules, keeping left operand the simplest to

evaluate for short-circuiting
(6&7&8&9&10&N&12&13&14&15) | (16 &17 & 18 & 19& (20| 21) & (122|123 | 124 |
12511261127)) (tubel & box1) | (tube2 & ! box2)

16

tube2

box2

Logic evaluation for distance queries

» Common approach for Distance and Safety queries
e Mixin the search all surfaces visible from the current state
(Boolean and regular) A|B A&B
e Negated surfaces have flipped associated half-space
e Apply astd::minreduction on the distance to the surface

half-space, excluding “far-away” candidates

» Distance computation

e Validate crossing point against the frame information
e If this hits a Boolean surface, exclude virtual solutions by min(safeA, safeB) max(safeA, safeB)
checking the logic expression

» Safety computation
e Use frame information to correct the safe distance
e Use astack-based infix logic evaluation using min/max as
reduction (correct only if surfaces are ‘real’)

Logic evaluation

» Boolean operations can be
short-circuited

e true|any = true, false & any = false
» Infix stackless parsing for Inside

evaluation
e Inserting jumps exiting the current scope

Average surface check counts needed for "Inside" evaluation
w= == 0 Short-circuiting == standard == simplified

1000 LS
500 =

100 -

5 10 50 100 500 1000

number of components

Randomly generated Boolean expression

9 10 1 12 13 14 15

