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VecGeom: navigation back-end for Geant4
► Collaborative effort to develop most 

efficient navigation algorithms on top 
of Geant geometry description

● Independent of the transport simulation 
toolkit

● Supporting GPU (CUDA) as back-end

► State of the art geometry navigation 
backend for Geant4

● Hierarchic CSG (Boolean combinations) 
solid modeling based on containment

● Actively maintained and developed
● Main bottleneck for GPU sim workflows 

(see Ben’s talk)
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Bounded surface modeling - a different 
approach for the GPU

► 3D bodies represented as Boolean 
operation of half-spaces*

● First and second order, infinite 
● Just intersections for convex primitives

▹ e.g. box = h0 & h1 & h2 & h3 & h4 & h5

► Storing in addition the solid imprint 
(frame) on each surface: FramedSurface

● Frame information is redundant
▹ helps taking navigation decisions more 

efficiently (hitting a framed surface 
means hitting the real solid)
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CommonSurface - the navigation primitive 

► In Geant volumes can share common surfaces
● Define “CommonSurface” as boundary between 

volumes 

► A common surface is made of two sides, each 
having hierarchic FramedSurfaces

● Checking frame masking conditions for the track 
crossing point on each side is equivalent to relocating to 
the next volume

● Much cheaper than current volume relocation, 
non-recursive algorithm
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Why use frames ?
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volumes/unbounded 
surfaces, bbox optimized

bounded surfaces, normal-optimized, 
no bounding box optimization

bounded surfaces, 
bounding box optimized

3 solid  / 18 unbounded 
surface checks

3 framed surface checks

No virtual crossings: can greatly 
reduce candidates to be checked

High potential for work reduction 
compared to solid or unbounded 
models 



Implementing a GPU-friendly computation 
pipeline
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Sequence for typical navigation queries 
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specific to the 
bounded model



Conversion of solids to framed surfaces
► Any solid surface can be constructed 

from predefined unplaced/frame 
types

● Conversion done behind the hood, 
implementation completely transparent 

► Only box, tube, trapezoid for now
● The full supported set TBD
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UnplacedSurface: (z = 0)
Frame: abs(x)<dx && abs(y)<dy
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nCreateLocalSurface(

  CreateUnplacedSurface(kPlanar),

  CreateFrame(kWindow, WindowMask_t{box.y(), box.z()}),

  CreateLocalTransformation({box.x(), 0, 0, 90, 90, 0}));
90o

2·box.y()

2·box.z()

1 2

translate box.x()
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see full box implementation here
Making a box from framed surfaces

https://gitlab.cern.ch/VecGeom/VecGeom/-/blob/surface_model/VecGeom/surfaces/BrepHelper.h#L1006-L1033


The complex cases: Boolean solids
► Composite solids support intersection (&), union 

(|) and subtraction (&!) of arbitrary number of 
components

► Building logic expressions in terms of surface id’s, 
using De Morgan’s rules

( ( 6 & 7 & 8 & 9 )  &  ( 10 & 11 & 12 & 13 & 14 & 15 ) )  |  
( ( 16 & 17 & 18 & 19 & ( 20 | 21 ) )  &  ( !22 | !23 | !24 | !25 | !26 | !27 ) )

► Expression simplification using Boolean algebra 
rules, keeping left operand the simplest to 
evaluate for short-circuiting

( 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 ) | ( 16 & 17 & 18 & 19 & ( 20 | 21 ) & ( !22 | !23 | !24 | 
!25 | !26 | !27 ) )
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(tube1 & box1) | (tube2 & ! box2)
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More implementation details in the backup



Scaling for the Boolean implementation
► Current implementation validated 

for correctness against the 
VecGeom solid model

● Tested union of up to 150 layers of disks 
subtracting a box, more exhausts CUDA 
stack space for the solid approach

► Un-optimized version so far, but 
scaling looks good

● 2x slower for 5 components, 2x faster for 
50 components on GPU

● Finding & tagging the real surfaces of a 
Boolean composite can help a lot
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Ray-tracing example traversing all 
volume boundaries until exiting the 
setup



Preliminary performance

► Unit tests available for correctness checking against VecGeom solid model
● Tube, trapezoid
● TestEm3 - a simple layered calorimeter made of box slabs

► Ray-tracing benchmark, working with generic GDML input (supported solids 
only), validated/benchmarked against non-optimized solid navigator

● Sampling points and directions in the bounding box of the setup
● Computing location path and safe distance for each point
● Propagation + relocation between boundaries until exiting the setup

► Results (compared to volume looping navigation) for trackML setup
● Safety computation: ~2x slower on CPU, ~2x faster on GPU
● Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
● Memory: ~1 kByte per “touchable” volume
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TestEm3 integration in AdePT
► Navigation interfaces of AdePT 

integrated in the SurfNavigator 
namespace

► Sampling calorimeter block of Pb + 
LAr box layers in constant Bz field (or 
no field)

► 10 GeV electrons shot towards the 
calorimeter along X axis

► Validated to 0.1 per mil level against 
existing solid navigators 
(BVH-optimized and simple looper)
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BVH Loop surf
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Next priority items

► Geant 3D solid coverage
● Currently only few solids supported, we need to write converters for an extended set

► Support for logical scenes of surfaces
● Pay the price of extra frame transformations for releasing the memory pressure

► Navigation optimization
● Adapting existing BVH support to framed surfaces
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Outlook

► VecGeom went for a surface model approach enriched by solid frame 
information to be GPU-efficient

● Even if redundant, the hope is that this allows better work balancing on GPU, avoiding 
reductions per volume

● Allows addressing natively isotropic safe distance computation, essential for performance

► Currently implemented all the features required by particle transport, for a 
subset of solids

● Integrated with AdePT, already usable with very simple setups

► Extensions and optimizations are essential to judge performance for realistic 
setups

● We target the bottlenecks currently observed in AdePT advanced examples
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Backup
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Boolean evaluation for more complex solids

15

► Cut tube: tube & wedge
● tube = h0 & h1 & h2

● wedge = (𝝋 < 𝜋) ? h3 & h4 : h3 | h4  

► Inside: Evaluation of the Boolean expression 
(half-space information only)

● Inside(h0 & h1 & h2 & ( h3 | h4 ))

► Distance/Safety: Ignore Boolean expression for 
primitives (real surfaces)

● ToIn/ToOut inferred from the start state (surfaces 
crossed from the wrong side ignored)

● Distance(hi) < dmin && frame.crossed
● Safety reduction takes into account convexity

► Boolean solids: complete evaluation of Boolean 
expression needed

● The Boolean expression can generate virtual framed 
surfaces

h0

h1

h2

h3
h4

𝝋



Logic expressions
► Composite solids support intersection (&), union 

(|) and subtraction (&!) of arbitrary number of 
components

► The logic expressions with solids are expanded in 
terms of surface id’s, using De Morgan’s rules

( ( 6 & 7 & 8 & 9 )  &  ( 10 & 11 & 12 & 13 & 14 & 15 ) )  |  
( ( 16 & 17 & 18 & 19 & ( 20 | 21 ) )  &  ( !22 | !23 | !24 | !25 | !26 | !27 ) )

► Expression simplification using Boolean algebra 
rules, keeping left operand the simplest to 
evaluate for short-circuiting

( 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 ) | ( 16 & 17 & 18 & 19 & ( 20 | 21 ) & ( !22 | !23 | !24 | 
!25 | !26 | !27 ) )
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(tube1 & box1) | (tube2 & ! box2)
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Logic evaluation for distance queries
► Common approach for Distance and Safety queries

● Mix in the search all surfaces visible from the current state 
(Boolean and regular)

● Negated surfaces have flipped associated half-space
● Apply a std::min reduction on the distance to the surface 

half-space, excluding “far-away” candidates

► Distance computation
● Validate crossing point against the frame information
● If this hits a Boolean surface, exclude virtual solutions by 

checking the logic expression

► Safety computation
● Use frame information to correct the safe distance
● Use a stack-based infix logic evaluation using min/max as 

reduction (correct only if surfaces are ‘real’)
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min(safeA, safeB) max(safeA, safeB)

A | B A & B



Logic evaluation

► Boolean operations can be 
short-circuited

● true | any = true, false & any = false

► Infix stackless parsing for Inside 
evaluation

● Inserting jumps exiting the current scope 
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Randomly generated Boolean expression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

( a & b ) | ( c & ! d )

( a & 5 b ) | 15 ( c & 14 ! d )


