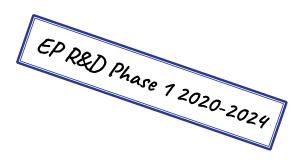


CERN EP R&D Programme Software Work Package

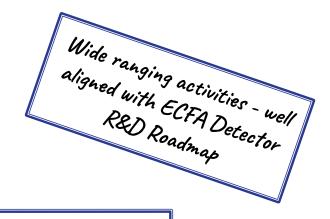
Graeme Stewart


SWIFT-HEP Meeting Cosener's House, 2023-03-24

#translivesmatter

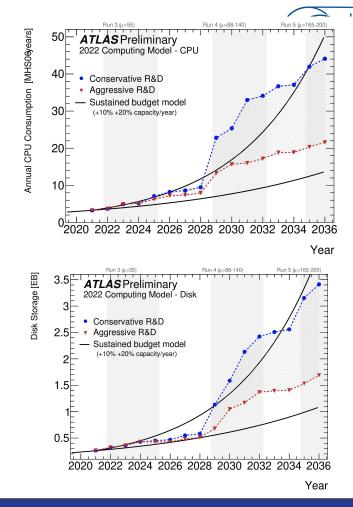
CERN EP R&D Programme

- Wide ranging programme of R&D into fundamental detector technology for LS3 and beyond
 - Thus, primarily after the start of HL-LHC in Run4
 - Also targeting experiments at future colliders (FCC, CEPC, ILC)
- Challenges to be faced at FCCee
 - \circ ~ Very high tracking precision (few $\mu m)$ and low material budgets
 - Highly granular calorimeters (particle flow reconstruction)
 - Timing at 1-20ns
- Challenges to be faced at FCChh
 - Pileup 1000 (30 x 10³⁴ instantaneous luminosity)
 - 10-100 more radiation than HL-LHC
 - Track timing of 5-10ps
 - Improved magnet technology



Overview of Work

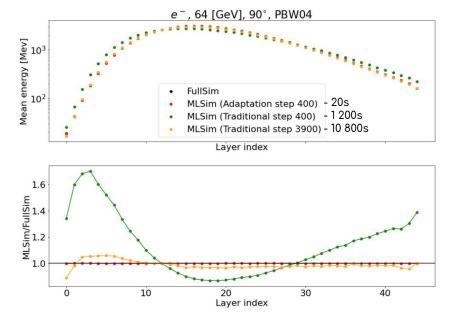
- WP1 Silicon Detectors
- WP2 Gas Based Detectors
- WP3 Calorimetry and Light-based Detectors
- WP4 Detector Mechanics
- WP5 Integrated Circuit Technology
- WP6 High-Speed Links
- WP7 Software
- WP8 Magnet Technologies


With strong cooperation with other groups and institutes

Software Work Package

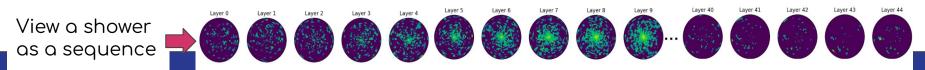
- Software R&D needed to tackle significant challenges for future experiments
 - Differs from hardware projects in timescale
 - Therefore Run4 HL-LHC upgrades for ATLAS and CMS are also in scope
- Want to improve physics performance
 - Especially at high pile-up
- Control of resources is also a major factor
 - Projections for optimistic R&D programmes still not in alignment with hardware cost evolution
 - Efficient software for physics is well aligned with energy efficiency
- However, for far future experiments we also need software solutions today for design and performance studies

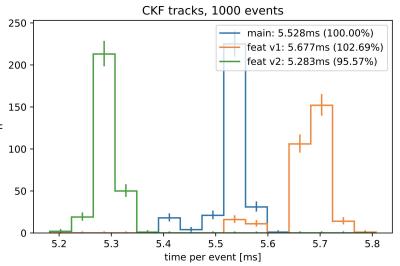
Work Package Overview


- Faster Simulation
 - Machine Learning models for fast simulation
 - Starting work now on GPU particle transport in AdePT
- Reconstruction
 - Tracking in high pileup, working with the Acts project
 - High granularity calorimetry at high pileup
- Analysis
 - New ROOT I/O format, RNTuple
 - Scale-out for analysis via Distributed RDataFrame
- Turnkey Software
 - Flexible software stack for future experiments at new facilities (FCC, ILC, CLIC, CEPC, EIC)
 - Data model generation for modern hardware, PODIO
 - Starting work now in heterogeneous framework support

<u>EP R&D Website</u> has contact information for various tasks

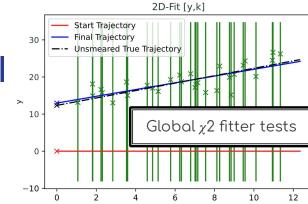
Faster Simulation Highlights I

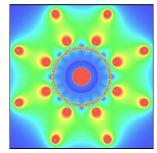

- Improved integration of machine learning simulation into Geant4
 - Par04 example, showing how to use ONNX/PyTorch model integration
 - This reduced memory consumption for ATLAS FastCaloSim models by 66x (!) over LWTNN
- Development of meta-learning models for calorimeters
 - Greatly improve training times for new calorimeter layouts by starting with an already trained model
 - This is a very useful approach for the design phase of new calorimeters


Faster Simulation Highlights II

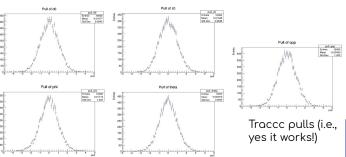
- Publication of datasets as part of the <u>CaloChallenge</u> (cf. TrackML)
 - 3 Datasets of increasing complexity/granularity
 - Workshop in Rome to assess the results in May
 - Some promising results shown at the <u>ML4jets workshop</u> last year
 - E.g., normalising flow models
- Starting investigation into Foundational and Transformer Models now
 - Foundation models are large and adaptable to many tasks
 - Transformer models work on sequences and handle long range dependencies (attention mechanism)
 - They are a hot topic now (ask ChatGPT!)
 - See shower development as a sequence
 - Models investigated that use a classifier, VQ-VAE to generate "tokens"
 - These are automatically learned features
 - Then apply a transformer to the initial set of tokens to generate new ones, the next step in the sequence

Reconstruction Highlights - Tracking I

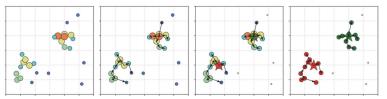

- Track reconstruction work in EP R&D takes place in the context of Acts
 - Experiment independent track reconstruction toolkit, derived from ATLAS tracking
 - Now in production for ATLAS and sPHENIX
- Improvements in the core of the project
 - Python testing framework, reducing build time memory consumption, DD4hep integration, etc.
- Latest updates have been on reworking the Acts Track EDM to allow direct use of experiment code
 - Achieved this without loss of performance with ATLAS xAOD



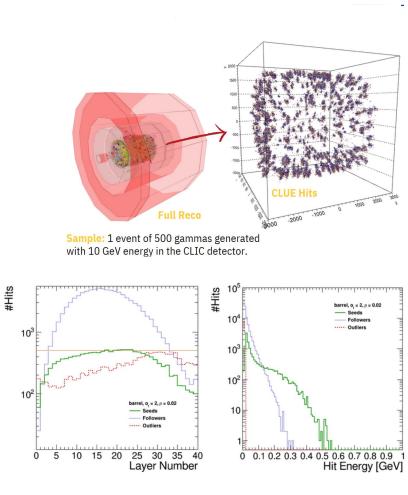
CER


Reconstruction Highlights - Tracking II

- New robust fitters:
 - Kalman filter, Gaussian sum filter, Global χ^2 fitter
- GPU tracking chain
 - A lot of R&D on fundamental tools to support an application as complex as tracking on GPUs
 - vecmem low level uniform ergonomic data representation for CPUs and GPUs
 - detray detector geometry on GPU, avoiding polymorphism and virtual calls
 - algebra-plugins generalised linear algebra library (wrap low level Eigen, Vc, SMatrix, Fastor (new!), etc)
 - cofvie vector field interpolation library for GPUs
 - Traccc put all of the components together into a tracking demonstrator

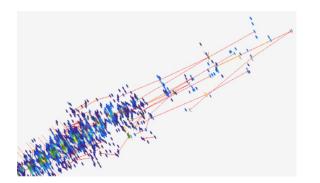


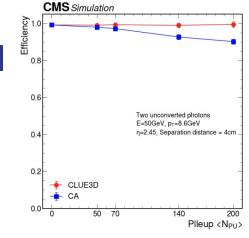
ATLAS magnetic field on GPU

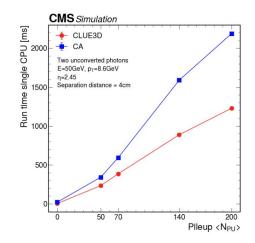


Reconstruction Highlights -Calorimetry I

- Reconstruction using a novel density based algorithm, CLUstering of Energy (CLUE)
 - Close collaboration with CMS on HGCAL reconstruction

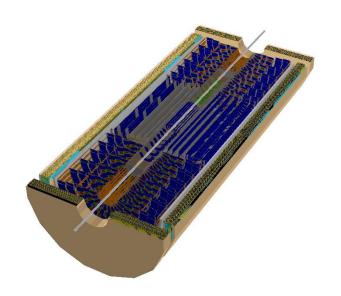



- Develop k4CLUE as a standalone package that can be integrated for other experiments
 - In particular the Key4hep stack (part of the Turnkey software)
 - Used to reconstruct events using the CLIC detector concept, which has high granularity calorimeter

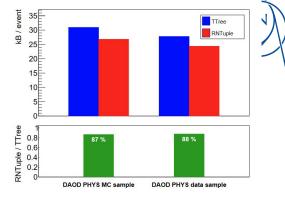


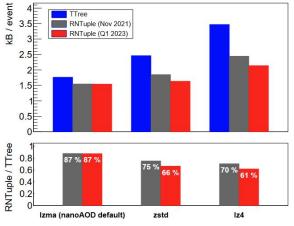
Reconstruction Highlights - Calorimetry II

- CLUE3D algorithm takes the output of layer-by-layer clustering and assembles 3D clusters in (z, η , ϕ)
 - Performance tuned significantly in 2022
 - Now outperforming cellular automata clustering for CMS
 - Adopted as the baseline for HGCAL reconstruction
 - CLUE3D is a parallelisable and GPU friendly algorithm



Open Data Detector

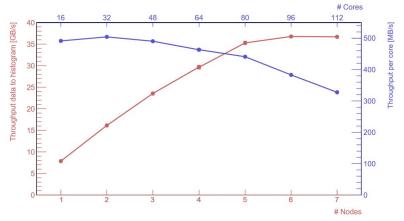

- Open Data Detector is a development of the TrackML detector
 - Pseudo HL-LHC detector
 - Much more realistic passive material map
- Began with tracker
 - Now added an EM calorimeter
- Will be very useful to provide benchmark datasets that are realistic, but experiment neutral
 - ML simulation developments
 - Tracking algorithm development and comparisons
- HCAL and muon system would be great to add



Faster Analysis - Highlights I

- Core building block of HEP data taking is ROOT I/O, but current TTree I/O is ageing
- New **RNTuple** I/O aims to offer state-of-the-art I/O performance and hardware support
 - Key features needed in HEP, e.g., flexible event structures, deeply nested data models, automatic streamers, schema evolution
- Recent work with the experiments
- Ensuring RNTuple supports the full set of needed features, e.g., late model extension in ATLAS xAOD
 - Optimisation of data compressibility via pre-processing fundamental types
 - Particularly good results for faster compression algorithms like zstd

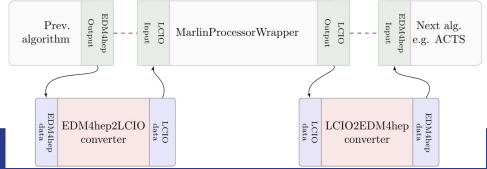
ATLAS xAOD in RNTuple



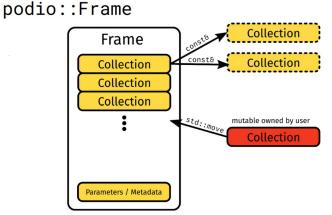
Compression tests for CMS nanoAOD

Faster Analysis - Highlights II

- Object stores increasingly used in HPCs and other data centres
 - Better scaling than file systems
- RNTuple object store performance has been improved
 - Target of 500MB/s/core and 10GB/s/node looks achievable
 - N.B. POSIX files still supported!
- Now planning to test RNTuple at large scale as part of preparations for HL-LHC
 - Strategy endorsed by the LHCC



First scaling results on a 7 node DAOS cluster with 100GBit interconnects, using a 1TB data set of LHCb final-stage ntuples. Throughput is measured in uncompressed bytes and includes histogramming.


Turnkey Software - Highlights I

- Key4hep software stack encapsulates all software needed for building an experiment's offline software
 - cf. LCG releases from SFT, or CMS externals
- Key4hep is now adopted by CLIC, FCC, CEPC, ILD and (partly) by EIC
 - Used in the ECFA study on physics and experiments at e+e- Higgs/EW/Top Factories
- Adapting iLCsoft algorithms can be done with a special wrapper that converts from EDM4hep (Key4hep) to/from LCIO (iLCsoft)
 - This turns out to be very efficient, although we also have the first examples of algorithm rewrites from iLCsoft to Gaudi
 - Updated wrapper in WIP

Turnkey Software - Highlights II

- Modern hardware places demands on data layout
 - \circ ~ Need to support CPUs and GPUs at minimum
- Plain Old Data IO (PODIO) solves this problem by being a data model generator
 - YAML description of data objects and relations
 - \circ C++ and Python code then generated automatically, along with ROOT and LCIO bindings
- Recently the concept of Frames was added to PODIO
 - Container for Run, LumiBlock, Readout Frame, etc.
 - Helps to define and implement thread safety
- Essential component of schema evolution, which is developed and now being finalised
- RNTuple support is now also very close

EP R&D Phase I and Phase II

- Original funding from 2020 to 2024
 - \circ \quad However, this was always intended to be an ongoing programme
 - Especially important now that we have significant alignment with the ECFA Detector R&D Roadmap
- Now making the case for EP R&D II, from 2024 to 2028
 - Evolve the programme, learning from the current results and bringing in new lines of R&D
 - Proposal made to the CERN directorate

Software Phase II Plans

- We continue and evolve many lines of development
 - Generative ML Simulation Continuing to develop new models and strengthening connection to the experiments
 - Reconstruction tasks (tracking and calorimetry) Refocus on *timing* as being a first class measurement in new detectors
 - Analysis Testing of RNTuple at scale (analysis facilities!) and refining and finalising the format
- Propose additional lines
 - Simulation particle tracking on GPUs (AdePT prototype and demonstrator)
 - Frameworks rethinking frameworks and developing multi-node and heterogeneous computing support in Gaudi
 - Green computing potential contribution of alternative languages (Rust, Julia) to software efficiency
 - HEP Core Libraries:
 - Re-engineered PyHEP interface, with modern cppyy and clang-repl
 - Heterogeneous computing support for 4-vectors, linear algebra (small/medium sizes) and histograms

Outlook...

- <u>EP R&D for software</u> has provided valuable support to many *high impact* projects in HEP computing and software
- Bearing fruits already, with early adoption of outputs by the experiments
- Almost all projects happen in *cooperation* with experiments and other institutes
 - Very important to coordinate efforts and broaden the base of R&D
 - Some very clear areas of common interest with Swift-HEP
- EP R&D II would give a great boost to long term prospects for software R&D

We are always very happy to have new lines of common interest

