

1

Superconducting Technology for Accelerators Frontier

-- High-Field Magnet, SRF, and Cryogenics/Cryogen --

Akira Yamamoto

(KEK and CERN)

with special thanks to E. Todesco, G. Apollinari, G. Ambrosio, A. Zlobin, Q. Xu, M. Ross, Y. Zhai, and S. Belomestnykh for their kind cooperation

> To be presented at HKUST IAS HEP Conference, Hongkong, Feb.15 2023

Outline

- Introduction:
- Superconducting High-Field Magnet (HFM)
- Superconducting RF (SRF)
- Cryogenics / Cryogen
- Summary

Future Colliders based on SC Technology

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 \rightarrow 45 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV \rightarrow 3 TeV) :

• NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 - Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

FCC-pp (100 TeV):

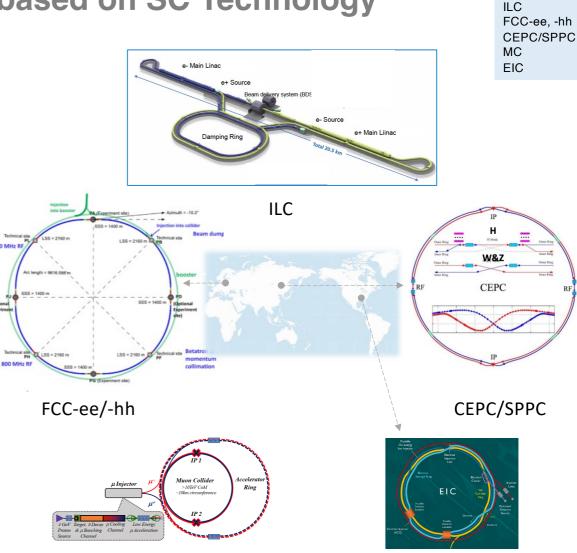
- High-field SC magnets (SCM: 16 T) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (240 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 - 125 TeV):

- High-field SCM (12 -20 T) for energy frontier
- SRF: beam acceleration


EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

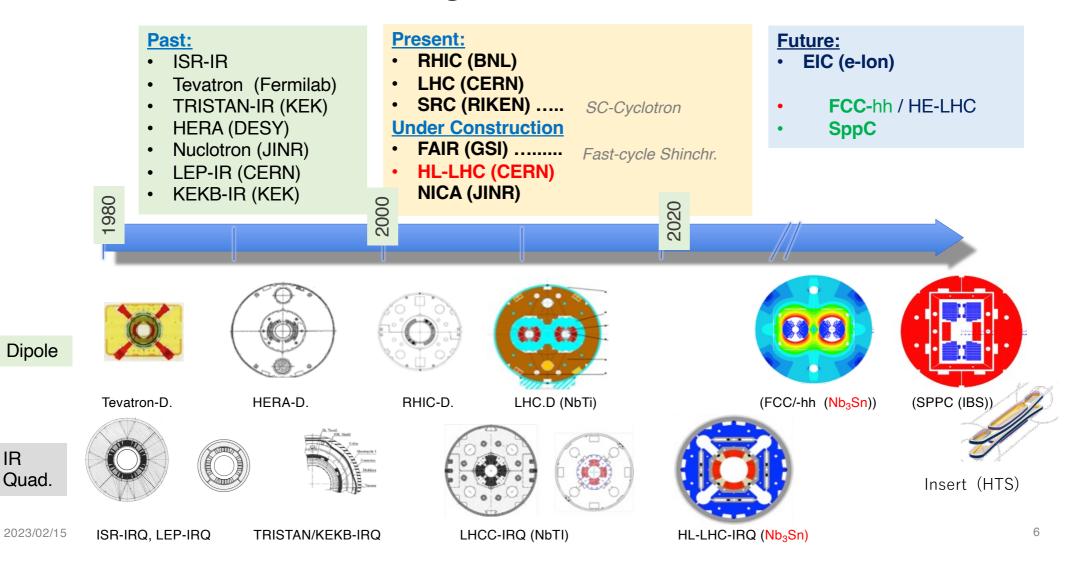
• SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

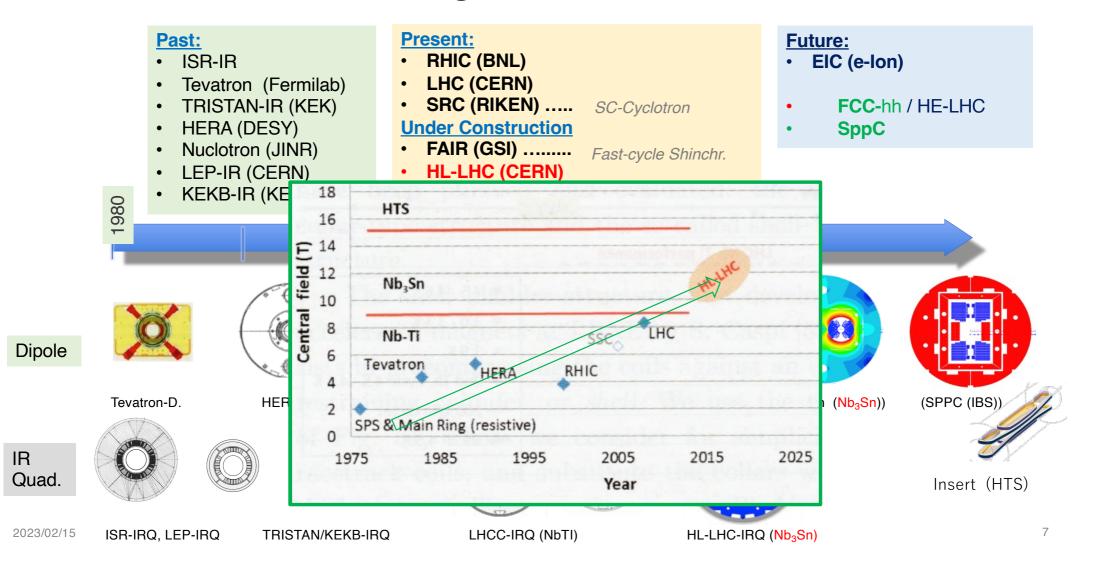
- SRF and NRF with very high-field SCM
- Higher efficiency at > 3 TeV, although short life-time.

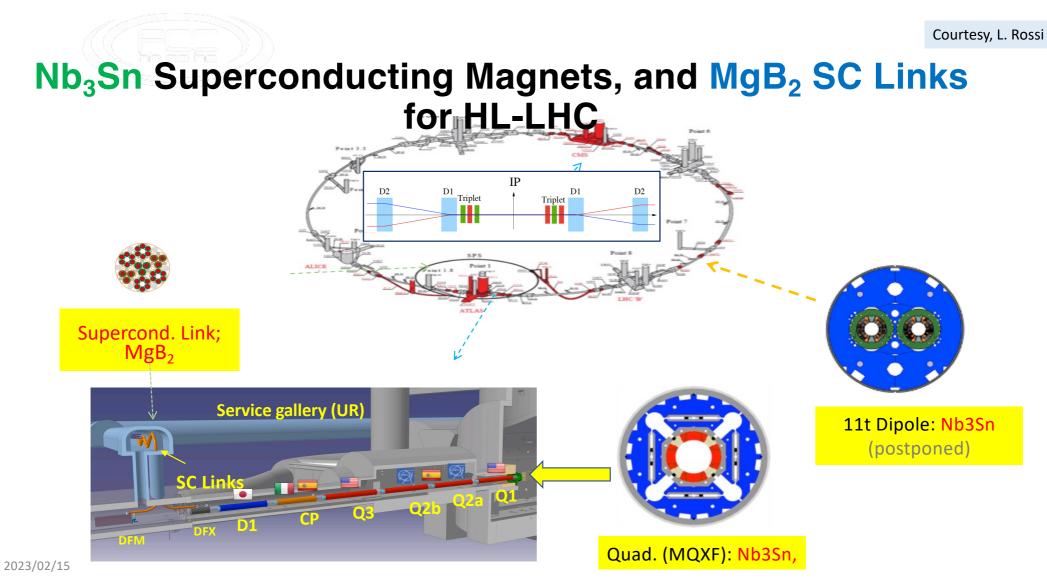
2023/02/15

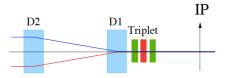
Courtesy:


Superconductor Applications for Accelerator Magnet and RF

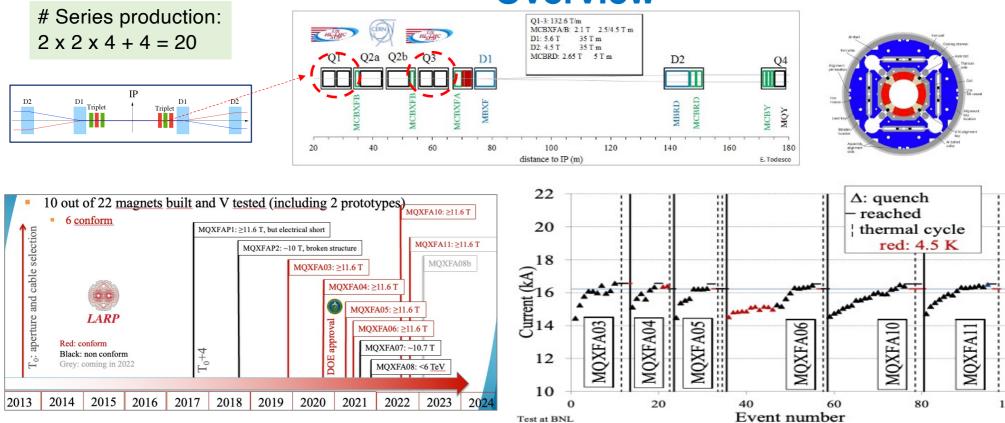
						Bra Mixed state for SC Magnet
Material	T _c [K]	B _c (0) [T]	B _{c1} (0) [T]	B _{sh} (0) [T]	B _{c2} (0) [T]	B _{c2} Normal conducting
Nb	9.2	(0.25)	0.18	0.21	0.28	B_{sh} $Wortex$ $W Wortex$ $W Wortex$ $W Wortex$
NbTi	~ 9.3		0.067		11.5 ~ 14	B _{sh}
Nb₃Sn	~ 18.3	(0.54)	(0.05)	0.43	28 ~30	B _{c1}
Application				RF	Magnet	• T _c T
						Meissner state For SRF


Outline


- Introduction:
- Superconducting High-Field Magnet (HFM)
- Superconducting RF (SRF)
- Cryogenics / Cryogen
- Summary


Advances in SC Magnets for Accelerators

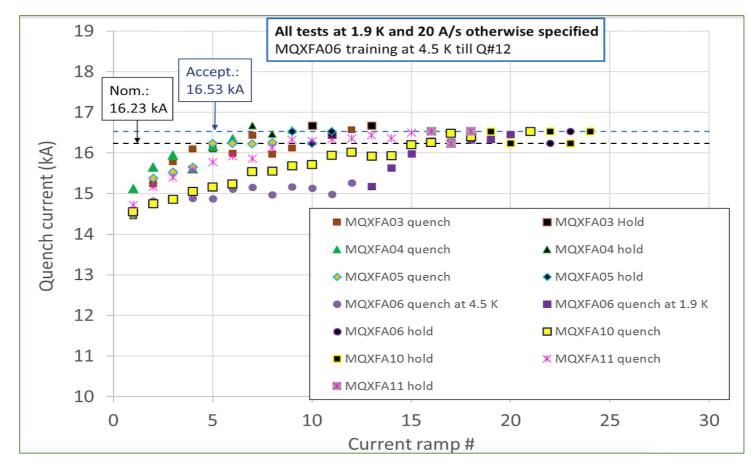
Advances in SC Magnets for Accelerators



HL-LHC IR Triplet (Q1~3) Parameters

<u>Name:</u> Length	(m)	<u>Q1/Q3</u> 4.2	Q2 7.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Coil design				• • • • • • • • • • • • • • • • • • •
N. layers		2		
N. turns/pole		50		0.5 MCBRD 0.4 MQSXF
Cable length/pole	(m)	431	721	0.3 MCDXF MCTXF MCOXF
Operational paramet	ers			$0.2 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Peak field ^f	(T)	11.4		Peak field in the coil (T)
Temperature	(K)	1.9		120 MOVE
Current	(kA)	16.230		MQAF
<i>j</i> overall ^g	$(A mm^{-1b})$	462		
Loadline fraction ^h	(adim)	0.77		NB D2 MCBXF MQXB
Temperature margin	(K)	5.0		H 40 MCBXF MQXB
Stored energy/m	$(MJ m^{-1})$	1.17		.E 40 MCBXF MQXB
Inductance/m	$(mH m^{-1})$	8.21		
Stored energy ⁱ	MJ	4.91	8.37	× 0 0 100 200 300 400 500 600

MQXFA (4.2 m) Series Production in Progress Overview

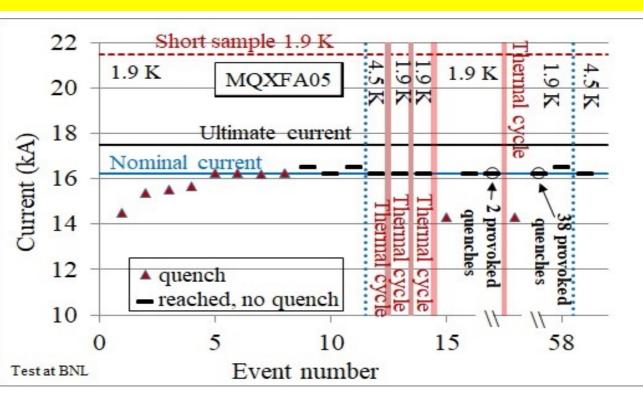

2023/02/15

6 (out of 20) series-production magnets have been successfully completed.

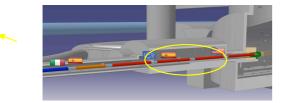
MQXFA (4.2 m) Series Production in Progress

6 MQXFA magnets **reached the ultimate currents** and records of training quenches.

11

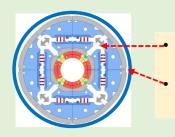

• MQXFA (w/ no LHe vessel) successfully performed the endurance tests,

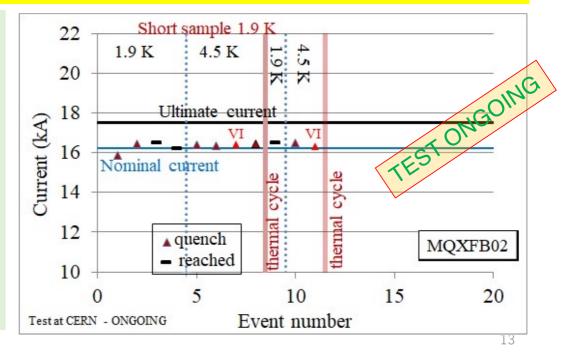
The MQXFA05 magnet enters the vertical cryostat at the Brookhaven National Laboratory for its endurance test (Image: BNL)

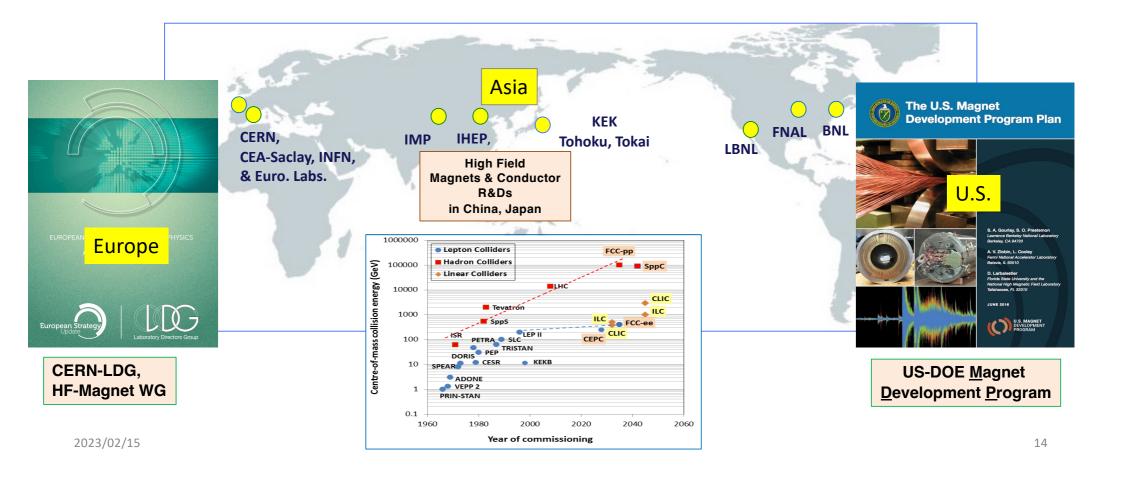

2023/02/15

12

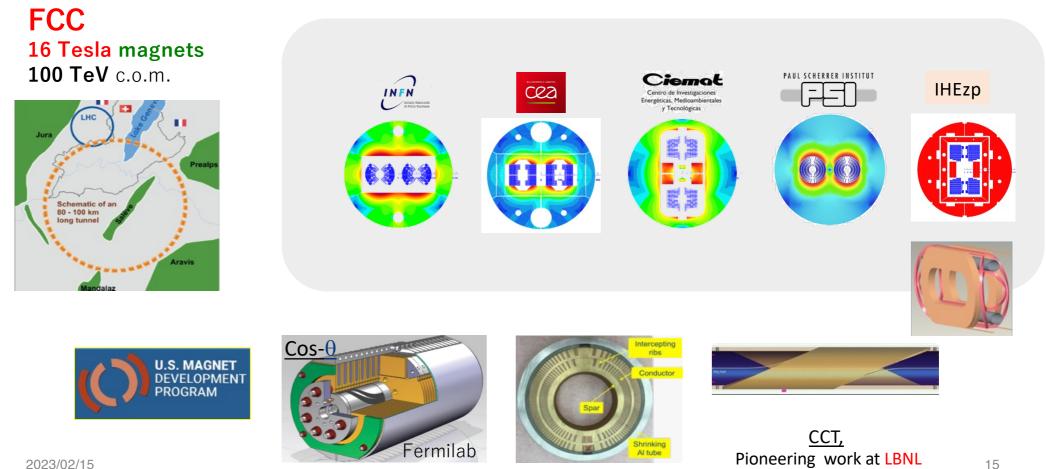
MQXFB02 (7.2-m) reached the Success


Courtesy: CERN HL-LHC-WP3 E. Todesco, S. Izquierdo Bermudes et al.

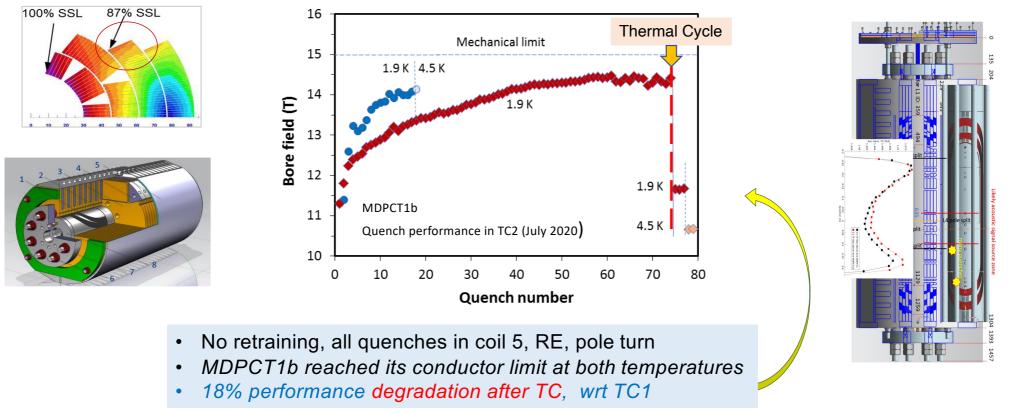


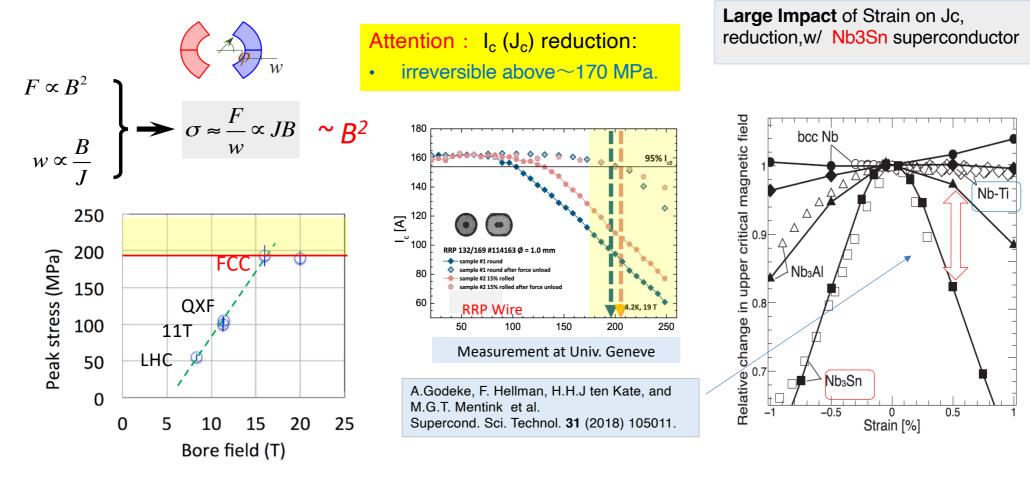

- MQXFB02 (QC improved) reached the nominal plus 300 A in the 1st powering cycle after 2 training quenches.
- A new procedure was implemented to reduce the peak stress down to < 100 MPa, during the magnet assembly
 - Note: succesful short models were asselbmed with peak stresses up to 140 MPa.
- LHe vessel welding procedure to minimize longitudinal friction/stress during thermal cycle.

New **bladders** implemented for magnet assembly, **SS-shell** with less friction to Al-shall


Global Efforts for High-Field SC Magnets for Future Energy Frontier Programs

Courtesy, M. Benedikt, A. Siemko, D. Tommasini, S. Prestemon, A, Zrobin


Approaches for High Field Dipole Magnets


MDPCT1b: Quench performance in TC1 and TC2 (July 2020)

TC2 test target: achieve ~14.5 T in magnet aperture @1.9 K

01102 ENERGY Science

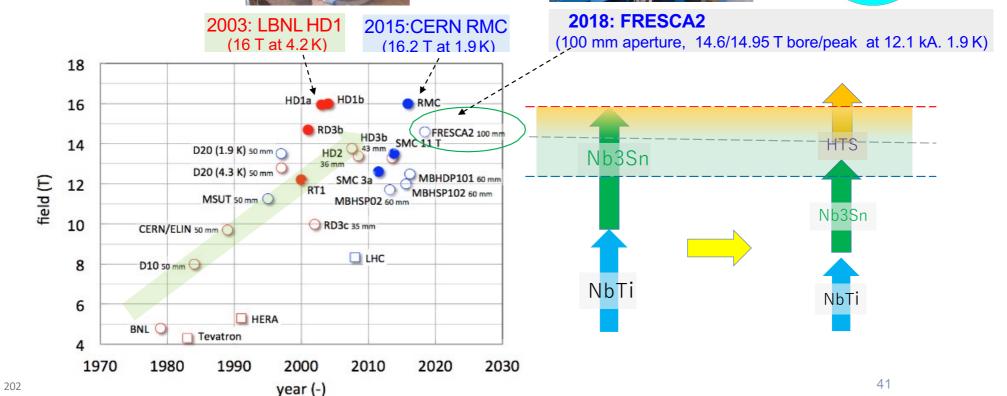
Major Issue: Mechanical Constraints affecting Operating Margin

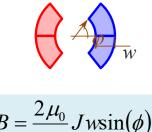
Stress Management Cos-Theta (SMCT) Dipole Magnet

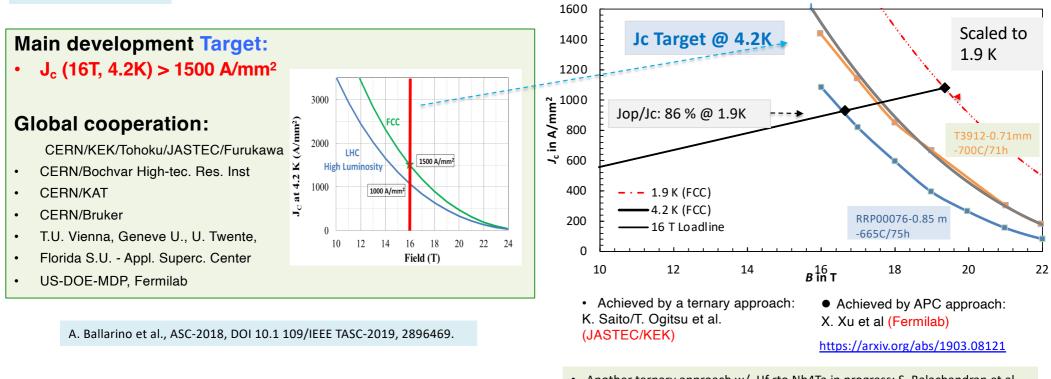

as a next step of the 14.5 T Dipole program at FNAL, in progress

- The <u>stress-management cos-theta</u> (SMCT) coil/magnet is a new concept proposed and being developed at Fermilab in the framework of US-MDP program. The SMCT coil is wound into stainless-steel coil-winding structure providing grooves.
- The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, thus, the excessively large strains and stresses in the coil.

A. Zlobin et al., Presented at ASC20222, and to be published in ASC-TAS.

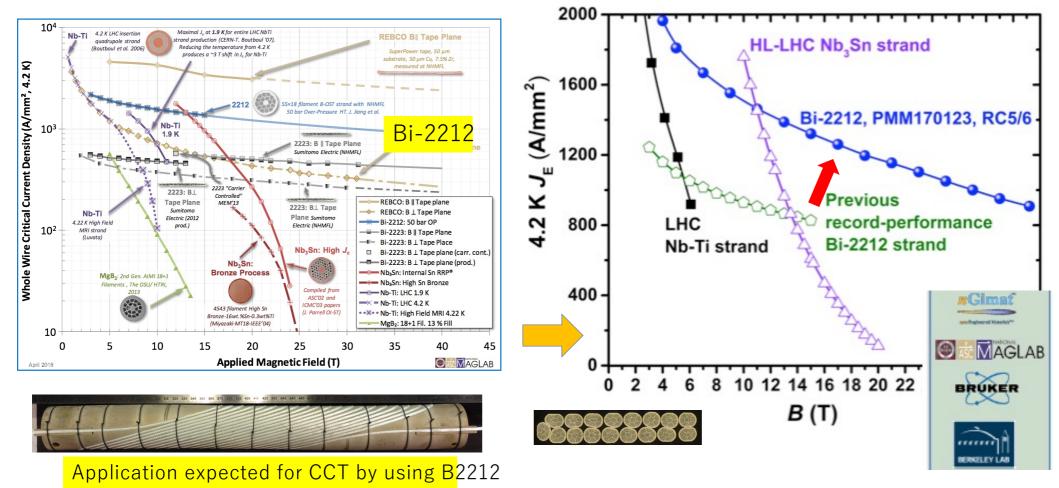

CERN

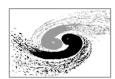

Advances in Nb₃Sn Magnet Development


19

Nb₃Sn Conductor Progress

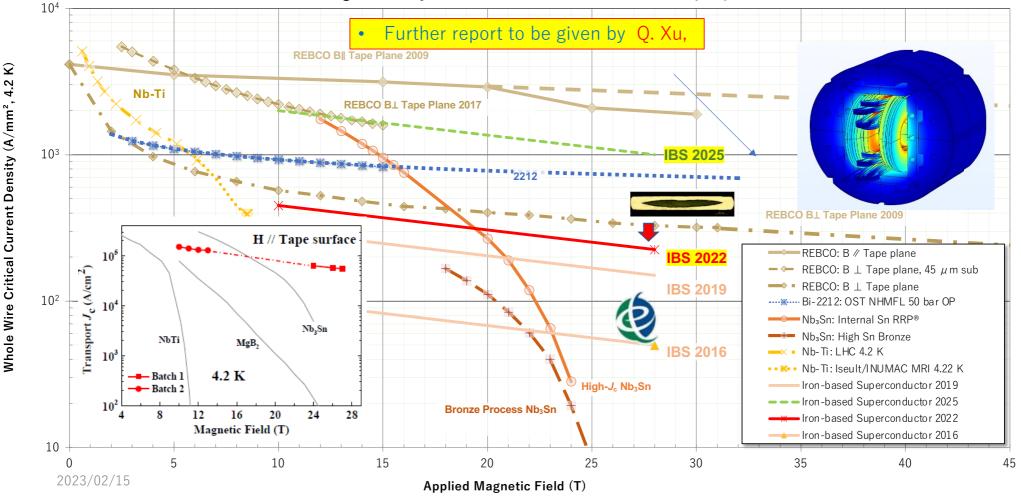
Artificial Pinning Center (APC) approach reached: J_c (16T, 4.2K) ~ 1500 A/mm²


Mas-Production and cost-reduction is yet to come !!

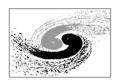

• Another ternary approach w/ Hf rto Nb4Ta in progress: S. Balachandran et al., <u>https://arxiv.org/pdf/1811.08867.pdf</u>

A. Yamamoto, 2021/3/23b

HTS, focusing on Bi2212 in the US

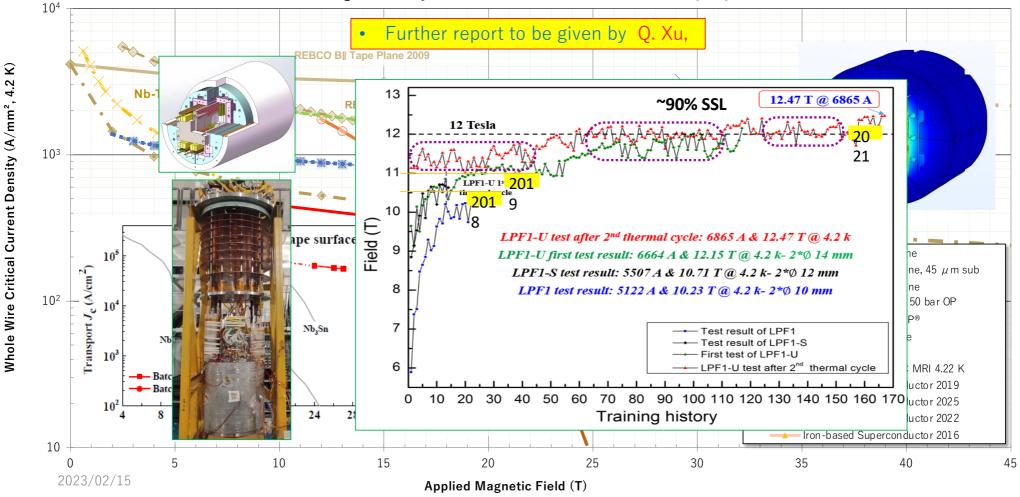


A. Yamamoto, 2021/3/23b

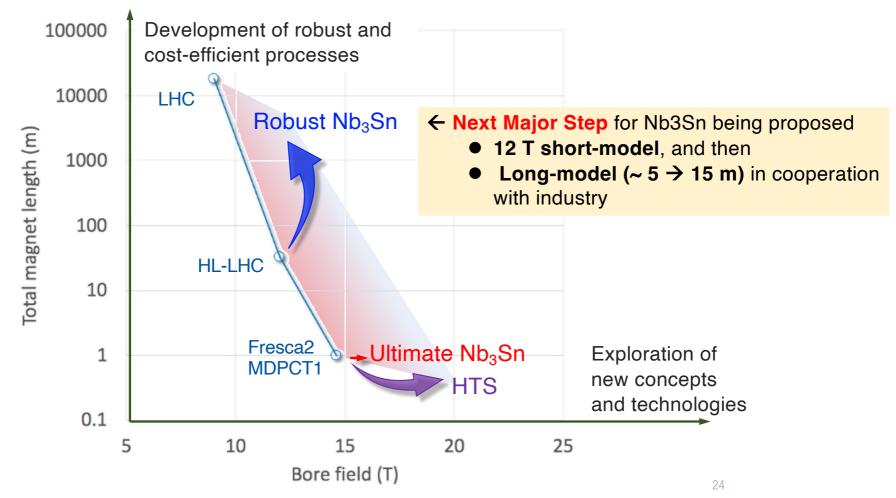


IBS Technology: Status and Outlook in China Courtesy: Q. Xu

- Stainless-steel stabilized IBS tape achieved the highest J_e in 2022!
- The cost significantly reduced, and the mechanical properties raised .



22



IBS Technology: Status and Outlook in China Courtesy: Q. Xu

- Stainless-steel stabilized IBS tape achieved the highest Je in 2022!
- The cost significantly reduced, and the mechanical properties raised .

High Field Magnet Development scoped by LDG

Prospect for HFM Development

Progress:

 We congratulate Nb₃Sn magnet technology is reaching to be applicable at 11~12 T in peak field, for a practical application: HL-LHC accelerator system/

Prospect:

- High Field magnet technology beyond 12 T requires continuous and patient R&D efforts to realize higher field and energy frontier accelerators:
 - Nb₃Sn, 12~14 T: >~ 5 years for short-model R&D, the following >~ 5 years for prototype/pre-series. and further > ~ 10 yrs for the construction start,
 - Nb₃Sn (+HTS), 14~16 T: >~ 10 years for short-model R&D, the following >~ 10 years for protype/preseries, and further >~ 20 yrs for the construction start,

8T

26

Personal Prospect for the HF Magnet Development Timeline

Originally reported at ESPPU2020, CERN Open Symposium in Granada, 2019

Timeline	~ 5	~	10	~ 15	~ 20	~ 25	~ 30	~ 35	
14~16T Nb ₃ Sn (+HTS)	Short	-model R	R&D Prototype/Pre-series			e-se <mark>ries</mark>	Construction		
12∼14T <mark>Nb₃Sn</mark>	Short-model R&D		Proto/Pre-series		es Cons	Construction		Operation	
∼12T Nb ₃ Sn	Model/Proto /Pre-series		Construction			Operatio	n	Upgrade	
Note:		198	80	19	90	2000	2010		
LHC experience:	LHC MR, 8.3 T Dipoles (NbTi, 1.9 K, 15 m long, N = 1232)								
	Short-Models		D start in early (>10 T realized (20 yea			
	Prototype			Ba	8.3T realized (~'95)				

Prototype ~ Pre-Series (3 x 10)	B _c 8.3T realized (~'95) (LL ratio: 86%)		
Production	Started (~'98)	Completed (~'06)	
LHC Operation at $\rm B_{c}$		4T('09)	

Outline

- Introduction:
- Superconducting High-Field Magnet (HFM)
- Superconducting RF (SRF)
- Cryogenics / Cryogen
- Summary

Superconductor applicable for **SRF** Cavities

					Bea Mixed state
Material	Т _с [К]	B _{c1} (0) [T]	B _{sh} (0) [T]	В _{c2} (0) [T]	B _{C2} SC Magnet
Nb	9.2	0.18	0.21	0.28	
NbTi	9.2 ~9.5	0.067		11.5 ~ 14	B _{sh} B _{c1}
Nb₃Sn	18.3	(0.05)	0.43	28 ~30	
MgB ₂	39	(0.03)	0.31	39	k _a k _a B
Important for:			RF	Magnet	
					Meissner state for SRF

Courtesy: S. Michizono

~ 1.3 GHz SRF Accelerators, worldwide

European XFEL (in operation, 2017~)

800 cavities 100 CMs 17.5 GeV (Pulsed)

ESS (0.8 GHz) (under construction)

(under construction)

SHINE

75 CMs

~600 cavities

8 GeV (CW)

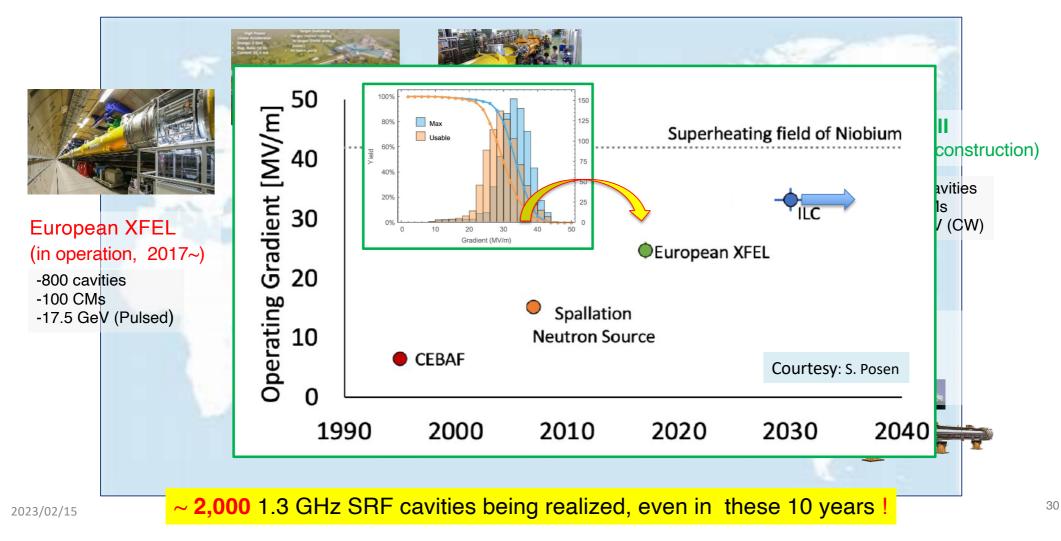
S1 Global: DESY, Fermilab, KEK 8-cavity string Test, 2010

ILC (planned)

8,000 9-cell cavities 900 CMs 2 x 125 GeV (Pulsed)

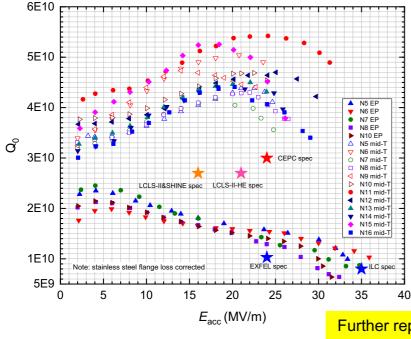
LCLS-II -HE (under construction)

-280+200 cavities -35+25 CMs - 4 +4 GeV (CW)


JLab-CEBAF(1.5 GHz)

(in operation) 40 CMs 6~12 GeV(CW)

~ 2,000 1.3 GHz SRF cavities being realized, even in these 10 years !

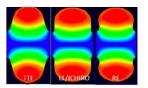

Courtesy: S. Michizono

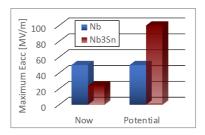
~ 1.3 GHz, SRF Accelerators, worldwide

IHEP 1.3 GHz High-G & High-Q Cavity and Cryomodule

- Key technology R&D for FEL, CEPC booster and ILC
- 12 mid-T 9-cell cavities vertical test average Q 4.5E10@16-21 MV/m
- World's best high Q 1.3 GHz 9-cell cavity (N11): 5.4E10@21 MV/m, 4.9E10@31 MV/m
- 8 mid-T high Q 9-cell cavities integrated into cryomodule last year. 2 K module test ongoing.

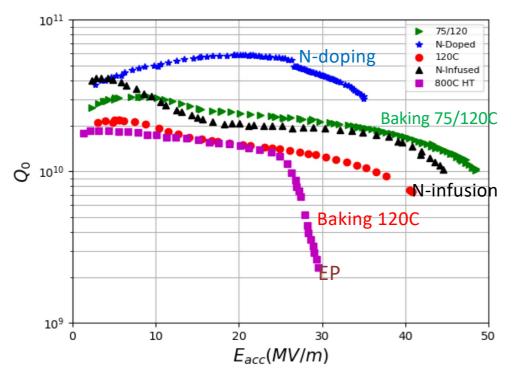
Further report to be given by J. Zhai


Courtesy: H. Padamsee

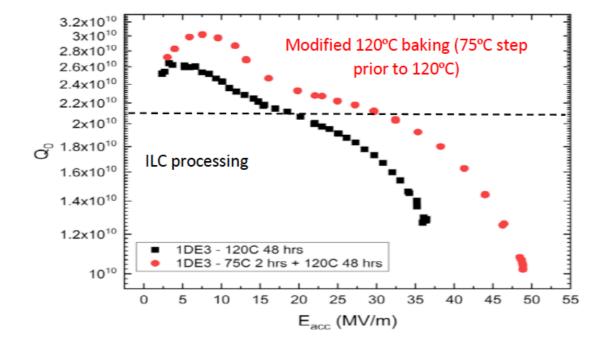

Future Prospects

- Nb-based Standing Wave (SW) TESLA type structure is
 - limited to a gradient of ~ 50 MV/m by B_{sh} ~ 200 210 mT.
- Advanced shape cavities will be limited by ~ 60 MV/m
 - Re-entrant, Low-Loss, Ichiro, Low Surface Field
 - Aiming at lower Hpk/Eacc (10-20%), but raise Epk/Eacc (15-20%)
- Advances material such as Nb₃Sn-based
 - Nb₃Sn, expecting Gradient limit up to ~ 80 MV/m, at Bsh ~ 430 mT
- Explore the option of Nb-based Traveling Wave (TW) structures
 - Expecting Effective Gradient to be ~ 70 MV/m or higher

"**ILC:** The International Linear Collider -- Report to Snowmass 2021", Aryshev *et al.*, arXiv:2203.07622 (15 March, 2022)



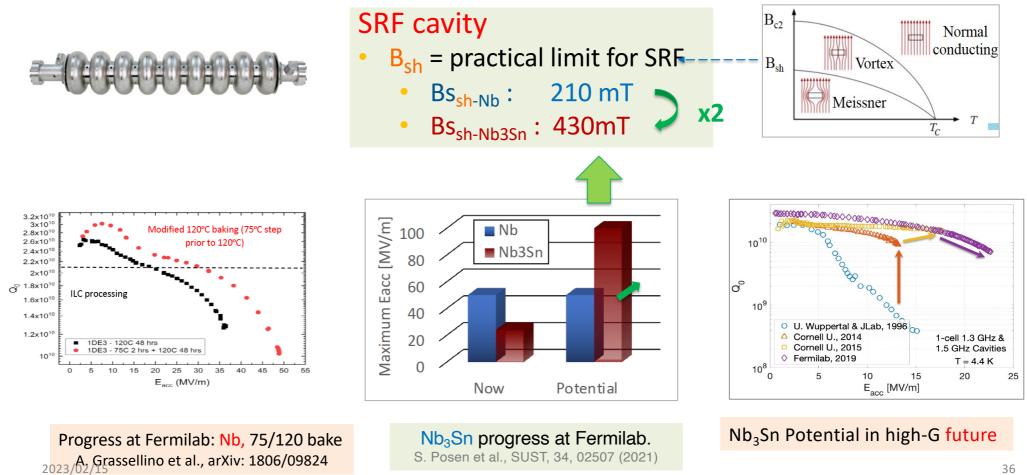
State of the Art in High-Q and High-G (1.3 GHz, 2K)


Courtesy: Anna Grassellino - TTC Meeting, TRIUMF, Feb., 2019

- N-doping (@ 800C for ~a few min.)
 Q >3E10, G = 35 MV/m
- 2-step Baking w/o N (@ 75/120C)
 - Q >1E10, G =49 MV/m (Bpk-210 mT)
- N-infusion (@ 120C for 48h)
 Q >1E10, G = 45 MV/m
- Baking w/o N (@ 120C for xx h)
 Q >7E9, G = 42 MV/m
- EP (only)
 - Q >1.3E10, G = 25 MV/m

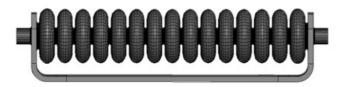
- High-Q by N-Doping well established, and
- High-G by N-infusion and Low-T baking still to be understood and reproduced, worldwide.

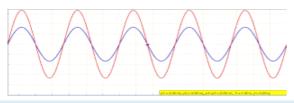
State of the Art in High-Q and High-G (1.3 GHz, 2K)


Courtesy: Anna Grassellino - TTC Meeting, TRIUMF, Feb., 2019

- N-doping (@ 800C for ~a few min.)
 Q >3E10, G = 35 MV/m
- 2-step Baking w/o N (@ 75/120C)
 - Q >1E10, G =49 MV/m (Bpk-210 mT)
- N-infusion (@ 120C for 48h)
 Q >1E10, G = 45 MV/m
- Baking w/o N (@ 120C for xx h)
 Q >7E9, G = 42 MV/m
- **EP** (only)
 - Q >1.3E10, G = 25 MV/m

 2-Step Baking is a promising surface process for High E and High G, and to be further optimized.


Recent Progress in SRF Technology



Traveling Wave Cavity Technology proposed for HELEN SRF Accelerator

HELEN: A LINEAR COLLIDER BASED ON ADVANCED SRF TECHNOLOGY*

S. Belomestnykh^{†,1}, P. C. Bhat, M. Checchin[‡], A. Grassellino, M. Martinello[‡], S. Nagaitsev², H. Padamsee³, S. Posen, A. Romanenko, V. Shiltsev, A. Valishev, V. Yakovlev Fermi National Accelerator Laboratory, Batavia, IL, USA ¹also at Stony Brook University, Stony Brook, NY, USA ²also at University of Chicago, Chicago, IL, USA ³also at Cornell University, Ithaca, NY, USA

- Red standing wave High Peak Fields
- Green (acceleration) and Blue (Return) Waves are Travelling Waves Lower peak fields
- Guide blue wave in a return wave-guide to avoid SW peak fields – attached to both ends

Та	Table 1: Tentative Baseline Parameters of HELEN					
	Parameter	Value				
	Center of mass energy	250 GeV				
	Collider length	7.5 km				
	Peak luminosity	$1.35 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$				
	Repetition rate	5 Hz				
	Bunch spacing	554 ns				
	Particles per bunch	2×10 ¹⁰				
	Bunches per pulse	1312				
	Pulse duration	727 µs				
2	Pulse beam current	5.8 mA				
	Bunch length, rms	0.3 mm				
	Crossing angle	14 mrad				
	Crossing scheme	crab crossing				
(RF frequency	1300 MHz				
	Accelerating gradient	70 MV/m				
	Real estate gradient	55.6 MV/m				
	Total site power	110 MW				

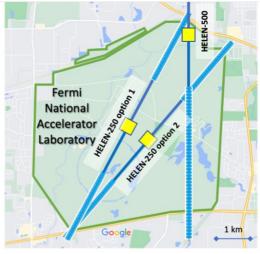
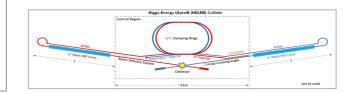
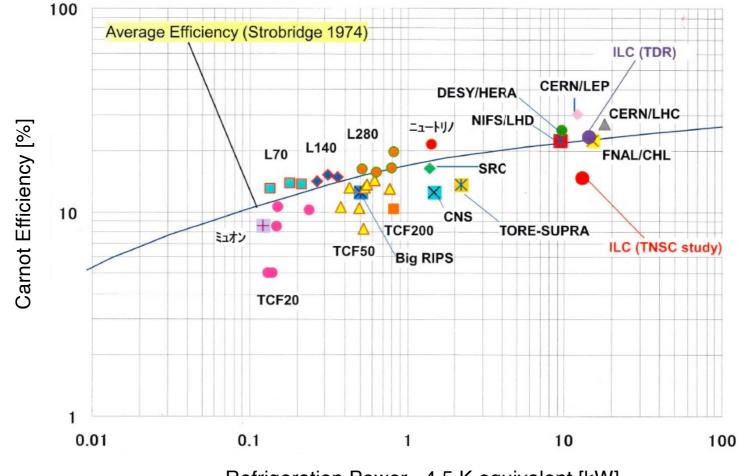



Figure 3: Options for HELEN collider at Fermilab.

https://doi.org/10.48550/arXiv.2209.01074

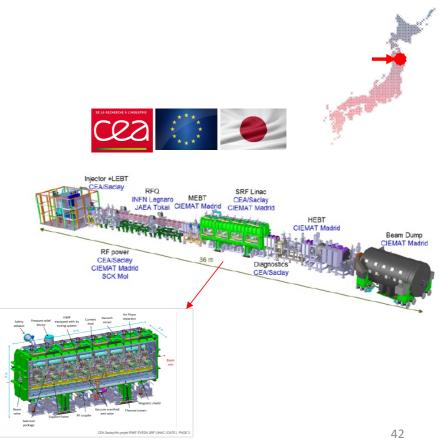

Prospects for Technologies for Future Lepton Colliders

- SRF technology has been well advanced, in cooperation with industry, based on Euro-XFEL successfully constructed and in stable operation since 2017, and further successful progress in LCLS-II SRF cavity production.
- SRF high-G and High-Q R&D effort needs to be extended for the future.
 - Nb-bulk, E = 40 50 MV/m (SW), $Q = 2 \times 10^{10}$
 - Nb_3Sn , > 50 MV/m, and
 - Nb-bulk, 70 MV/m (TW) in long term effort.

Outline

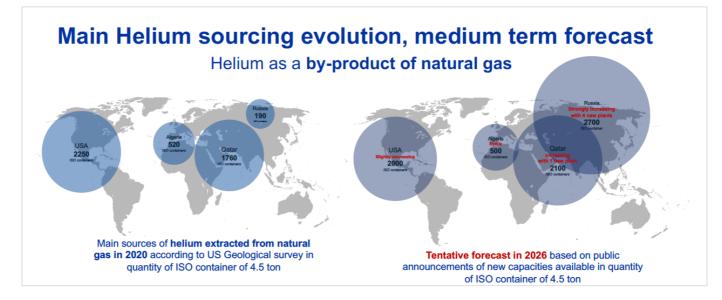
- Introduction:
- Superconducting High-Field Magnet (HFM)
- Superconducting RF (SRF)
- Cryogenics / Cryogen
- Summary

Worldwide He Cryogenic System and Carnot Efficiency



Refrigeration Power, 4.5 K equivalent [kW]

HPG System for Magnet and SRF


We are searching for a consistent HPGS Regulation Guideline

	QST-IFMIF: RIPac SRF-C	SLAC/FNAL: LCLS-II SRF-C		
Mag—Vessel SRF-Cavity	ASME, BPVC Sect. VIII, Div.1	ASME BPC 31.1		
Cryo-Piping	ASME BPC 31.1	ASME BPC 31.1		
Refrigerator	Ref. Regulation	tbc		

Courtesy: D. Delikaris

He Resource: Global Distribution

Global resource and prospect:

- Unbalanced production/demand (US BLM strategy, Technical and Geopolitical issues) affecting industrial and scientific customers, allocated to 60-70% of their demand
- Strong activities restart post Covid-19 pandemic
- Uncertainty on the effective world-wide production capacity and market access (countries restrictions)
- New helium production capacity (Qatar IV-V, Canada, Tanzania, South Africa) but for after 2025-2026

MMCM 百万m3 MMCM: 2015 2016 2017 2018 2019 2020 2021 2022 2023 BLM/U.S. Others/U.S. 📟 Qatar I · II / Qatar Arzew,Skikda/Algeria Others/Poland,Australia U.S.New source/Doe Canyon Tanzania Eastern Siberia/Russia Qatar III / Qatar Demand

Supply and Demand Outlook as of 2019

Courtesy: R. Sagiyama

Million cubic Meter

Real demand(I added from the latest data)

Outline

- Introduction:
- Superconducting High-Field Magnet (HFM)
- Superconducting RF (SRF)
- Cryogenics/Cryogen
- Summary

Challenges in Future Energy-Frontier Colliders

		Ref.	E(CM) [TeV]	Luminosity [1E34]	AC- Power [MW]	SRF E [MV/m] [GHz]	SCM B [T]	Major Challenges in Technology
LC	ILC	TDR update	0.25 -1	1.35, 2.7 (~ 4.9)	110, 138 (~ 300)	31.5 - 45 [1.3]		SRF cavity: High-G and high-Q Higher-G for future upgrade including new material, Nano-beam stability
88	CLIC	CDR	0.38 - 3	1.5 (~ 6)	100 (~ 580)	72 – 100 [12]		Acc. Structure: High-precision, Large-scale production, Two-beam acceleration in a prototype scale, Precise alignment and stabilization.
СС	FCC-ee	CDR	0.09 ~ 0.38	460 ~ 31	260 ~ 350	10 - 20 [0.4 - 0.8]		SRF cavity: High-Q at < GHz, Nb thin-film Coating, Synchrotron Radiation absorption, Energy efficiency (RF efficiency).
88	CEPC	CDR	0.046 - 0.24	32 ~ 5	150 ~ 270	20 – 40 [0.65]		SRF cavity: High-Q at < GHz, LG Nb-bulk/thin-film, Synchrotron Radiation constraint, Low-field magnet with high-precision.
CC	FCC-hh	CDR	~ 100	5 ~ 30	580	tbd	16	SC magnet : High-field - <u>Nb3Sn (+HTS)</u> : high Jc, mechanical stress sustainability Energy management
hh	SPPC	CDR	75 - 125	10		tbd	12 - 24	<mark>SC magnet : High-field</mark> - <u>IBS</u> : High Jc, stress sustainability, energy management
CC mm	MC 2023/02,	/15	0.12 ~ 14	0.008~33	200 ~290	≥ 30 0.8 ~1.3	10 -16 (> 40)	Short lifetime, cooling, SC magnet: High-field, RF in strong magnetic field, 46

Summary

- Superconducting technology will be inevitably required for future particle accelerators.
- Encouraging progress on Nb3Sn magnet technology reaching 11-12 T, applicable for the HL-LHC accelerator system, and we may expect the higher field level of 14 T (+). We may need, however, further breakthrough, such as Nb3Sn+HTS to realize 16 T and beyond, with satisfying the accelerator quality.
- SRF technology has much advanced, based on Euro-XFEL, LCLS-II, ESS, Shine, and other projects. It will provide promising scope for future energy frontier colliders.
- Further technical advances may be expected by using Nb3Sn technology and Traveling Wave technology.

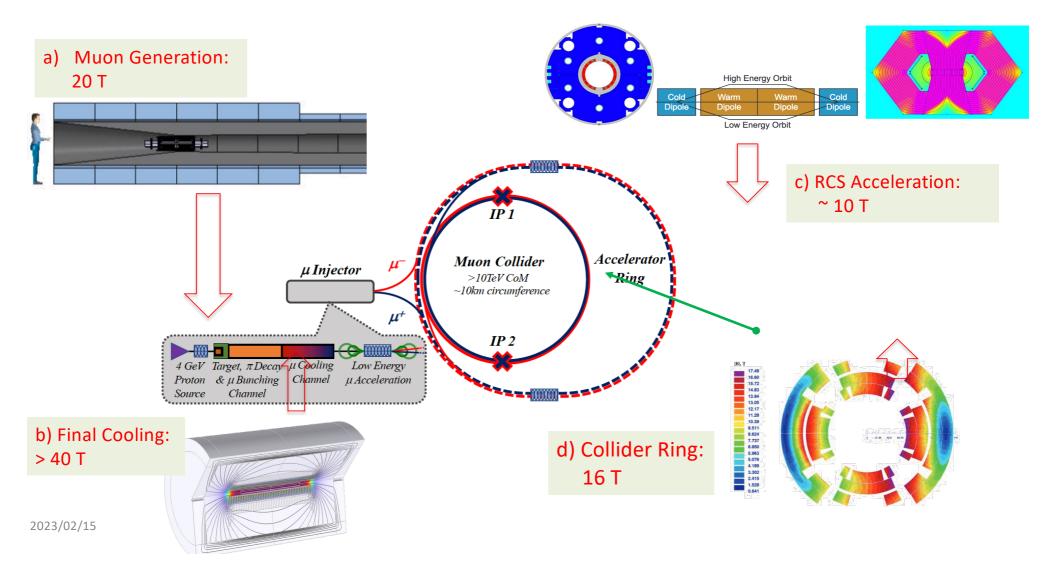
reserved

49

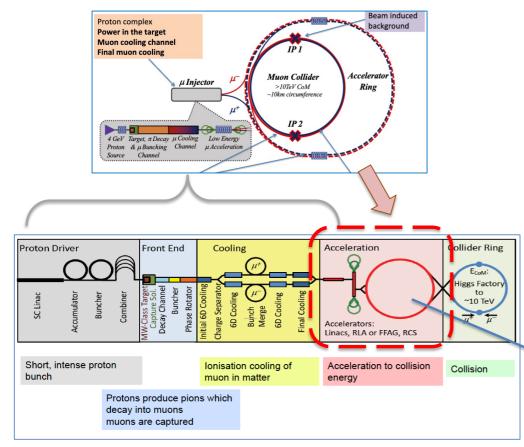
FCC-ee SRF Systems

24th May 2022	2 Z		W		H		ttbar2		
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1000	1000	2480	2480	2480	9190	11670
Eacc [MV/m]	5.72	6.23	11.91	24.26	11.82	25.45	11.82	24.52	25.11
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.83	8.93	22.73	8.86	23.85	8.86	22.98	23.53
#cells	56	120	224	220	560	520	560	2000	2480
# cavities	56	24	112	44	280	104	280	400	496
# CM	14	6	28	11	70	26	70	100	124
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav [W]	19	0.5	174	7	171	8	171	51	8
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
Qext	6.6E+04	3.2E+05	1.2E+06	8.9E+06	1.5E+06	1.2E+07	8.3E+06	4.9E+06	5.3E+07
Detuning [kHz]	8.939	4.393	0.430	0.115	0.123	0.031	0.025	0.040	0.005
Pcav [kW]	880	205	440	112	352	95	62	207	20
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	18	2.5	182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	987	5.14	9875.14
cos phi	0.32	0.27	0.36	0.36	0.74	0.74	0.70	0.90	0.85
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.005	0.010	0.010	0.001

○ FCC


CEPC TDR 650 MHz RF Parameters (Collider Ring)

30/50 MW SR power per beam for	ttbar 30/50 MW		Higgs	w	z	z	
each mode. Higgs/ttbar shared cavities for the two rings. W/Z separate cavities. HL-Z cavities bypass.	New cavities	Higgs cavities	Higgs 30/50 MW	30/50 MW	10 MW	2 30/50 MW	
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.5	/ 0.8	5 / 8.3	16 / 26.7	38	115 / 192	
RF voltage [GV]	10 (6.1	+ 3.9)	2.2	0.7	0.12	0.12 / 0.1	
Beam current / beam [mA]	3.4	/ 5.6	16.7 / 27.8	84 / 140	267	801 / 1345	
Bunch charge [nC]	3	2	21	21.6	22.4	22.4 / 34.2	
Bunch length [mm]	2	.9	4.1	4.9	8.7	8.7 / 10.6	
650 MHz cavity number	192	336	192/336	96 / 168 / ring	48 / ring	30 / 50 / ring	
Cell number / cavity	5	2	2	2	2	1	
Gradient [MV/m]	27.6	25.2	24.9 / 14.2	15.9 / 9.1	5.4	17.4 / 8.7	
Q0 @ 2 K at operating gradient	3E10	3E10	3E10	3E10	3E10	2E10	
HOM power / cavity [kW]	0.4 / 0.66	0.16 / 0.26	0.4 / 0.67	0.93 / 1.54	1.9	2.9 / 6.2	
Input power / cavity [kW]	188 / 315	71 / 118	313 / 298	313 / 298	206	1000	
Optimal Q _L	1E7 / 6E6	9E6 / 5.4E6	1.6E6 / 9.5E5	8E5 / 2.7E5	1.4E5	1.5E5 / 3.8E4	
Optimal detuning [kHz]	0.01 / 0.02	0.02 / 0.03	0.1/0.2	0.7 / 2	7	6.7 / 21.7	
Cavity number / klystron	4/2	2	2	2	2	1	
Klystron power [kW]	800	800	800	800	800	1200	
Klystron number	48 / 96	168	96 / 168	96 / 168	48	60 / 100	
Cavity number / cryomodule	4	6	6	6	6	1	
Cryomodule number	48	56	32 / 56	32 / 56	16	60 / 100	
Total cavity wall loss @ 2 K [kW]	12.1	7.1	3.9 / 2.3	1.6 / 0.9	0.1	0.45 / 0.2	


- ttbar and Higgs half filled with common cavities for two rings, W and Z with separate cavities for two rings.
- High luminosity Z upgrade use high current 1-cell cavity with RF bypass.
- Add more 2-cell cavities for Higgs 50 MW upgrade.
- Add 5-cell cavities for ttbar while using the original 2-cell Higgs cavities.
- Fundamental mode instability of Zmode due to large detuning will be suppressed by RF feedback.
- No beam feedback needed for HL-Z because of deep damping 1-cell cavities.

MC Magnets: Requirements and Challenges

Courtesy: L. Bottura

1.3 GHz, pulsed SRF Technology Applicable for the Muon Acceleration to Collision Energy

Parameter	Unit	3 TeV	10 TeV	14 TeV	
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	
N	10 ¹²	2.2	1.8	1.8	
f _r	Hz	5	5	5	
P _{beam}	MW	5.3	14.4	20	
С	km	4.5	10	14	
	т	7	10.5	10.5	
ε	MeV m	7.5	7.5	7.5	

Multiple RF station along Acc. RIng with 1.3 GHz, pulsed SRF cavity (30 MV/m) being studied by F. Batsch et al.,

