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Future Colliders based on SC Technology
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ILC

FCC-ee/-hh CEPC/SPPC

MC EIC

Linear Colliders: 
ILC e+e- ( 250  GeV à 1 TeV) ：
• SRF:  for High-Q (1010) and high-G (31.5 à 45 MV/m)
• Highest efficiency and AC-power balance

CLIC e+e- ( 380 GeV à 3 TeV) ：
• NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders : 
FCC-e+e- ( 90 à 350 GeV): 
• SRF: with staging for efficient energy extension

• Synchrotron radiation (SR) to determine the energy
• Highest luminosity at Z and H,
FCC-pp ( 100 TeV): 
• High-field SC magnets (SCM: 16 T) for energy frontier
• SRF: for acceleration for good energy balance w/ SR

CEPC e+e- ( 240 GeV): 
• SRF: for acceleration,

• Synchrotron radiation to determine the energy
SPPC- pp ( 75 - 125 TeV): 
• High-field SCM (12 -20 T) for energy frontier
• SRF: beam acceleration

EIC  Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.) 
• SCM and  SRF

MC µ+µ- (3 – 14 TeV)
• SRF and NRF with very high-field SCM
• Higher efficiency at > 3 TeV, although short life-time.
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Courtesy: 
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Superconductor Applications for 
Accelerator Magnet and RF
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T

BC1

BC2

TC

B

Bsh

Mixed state 
for SC Magnet

Meissner state 
For SRF
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Material Tc
[K]

Bc(0)
[T]

Bc1(0)
[T]

Bsh(0)
[T]

Bc2(0)
[T]

Nb 9.2 (0.25) 0.18 0.21 0.28

NbTi ~ 9.3 -- 0.067 -- 11.5 ~ 
14

Nb3Sn ~ 18.3 (0.54) (0.05) 0.43 28 ~30

Application RF Magnet
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Present:
• RHIC (BNL)
• LHC (CERN)
• SRC (RIKEN) …..
Under Construction
• FAIR (GSI) …......
• HL-LHC (CERN)
• NICA (JINR)

Advances in SC Magnets for Accelerators
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Past:
• ISR-IR
• Tevatron (Fermilab)
• TRISTAN-IR (KEK)
• HERA (DESY)
• Nuclotron (JINR)
• LEP-IR (CERN)
• KEKB-IR (KEK)

Future:
• EIC (e-Ion)

• FCC-hh / HE-LHC
• SppC
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Dipole 

IR 
Quad. 

Tevatron-D.   HERA-D. RHIC-D. LHC.D (NbTi) (FCC/-hh (Nb3Sn))         (SPPC (IBS))

ISR-IRQ, LEP-IRQ    TRISTAN/KEKB-IRQ LHCC-IRQ (NbTI)                HL-LHC-IRQ (Nb3Sn)

SC-Cyclotron

Fast-cycle Shinchr.
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Courtesy, L. Rossi

Quad. (MQXF): Nb3Sn,

8

SC Links

D1 CP Q3 Q2b Q2a Q1

Service gallery (UR)

DFM
DFX

2023/02/15

Nb3Sn Superconducting Magnets, and MgB2 SC Links 
for HL-LHC

Supercond. Link;
MgB2

11t Dipole: Nb3Sn
(postponed)  



HL-LHC IR Triplet (Q1~3) Parameters
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Name: Q1/Q3 Q2
Length (m) 4.2 7.2

E. Todesco etl., SUST 34 (2021) 053001



MQXFA (4.2 m) Series Production in Progress
Overview

2023/02/15 106 (out of 20) series-production magnets have been successfully completed.

# Series production:
2 x 2 x 4 + 4 = 20

Courtesy: E. Todesco, G. Apollinari, G. Ambrosio



MQXFA (4.2 m) Series Production in Progress
6 MQXFA magnets reached the ultimate currents and records of training quenches. 

2023/02/15 11

Courtesy: G. Ambrosio et al., 



MQXFA05 (4.2 m) Endurance Tests

2023/02/15 12

Courtesy: US HL-LHC AUP
G. Apollinari, G. Ambrosio et al., 

l MQXFA (w/ no LHe vessel) successfully performed the  endurance tests,
l No degradation observed after 5 thermal ycles and 50 quenches.



MQXFB02 (7.2-m) reached the Success

13

§ A new procedure was implemented to reduce
the peak stress  down to < 100 MPa, during
the magnet assembly
§ Note: succesful short models were asselbmed with 

peak stresses up to 140 MPa.

§ LHe vessel welding procedure to minimize
longitudinal friction/stress during thermal cycle. 

Courtesy: CERN HL-LHC-WP3 
E. Todesco, S. Izquierdo Bermudes et al. 

TEST ONGOING

2023/02/15

• MQXFB02 (QC improved) reached the nominal plus 300 A in the 1st powering cycle after
2 training quenches. 

• New bladders implemented 
for magnet assembly,

• SS-shell with less friction to 
Al-shall



Global Efforts for High-Field SC Magnets for 
Future Energy Frontier Programs 
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FNAL BNLKEK
Tohoku, Tokai LBNL

CERN,
CEA-Saclay, INFN, 
& Euro. Labs.  

IHEP, IMP

CERN-LDG, 
HF-Magnet WG

High Field
Magnets & Conductor

R&Ds
in China, Japan

US-DOE Magnet 
Development Program

Europe

Asia

U.S.



Approaches for High Field Dipole Magnets
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Cos-q

CCT,
Pioneering  work at LBNL

Courtesy, M. Benedikt, A. Siemko, D. Tommasini, S.  Prestemon, A, Zrobin

2023/02/15

FCC
16 Tesla magnets
100 TeV c.o.m.

IHEzp

Fermilab



TC2 test target: achieve ~14.5 T in magnet aperture @1.9 K
MDPCT1b: Quench performance in TC1 and TC2 (July 2020)

2023/02/15 16

MDPCT1b

Quench performance in TC2 (July 2020)

MDP-TAC Review
Courtesy: A. Zlobin

• No retraining, all quenches in coil 5, RE, pole turn
• MDPCT1b reached its conductor limit at both temperatures
• 18% performance degradation after TC,  wrt TC1

Thermal Cycle



Major Issue: 
Mechanical Constraints affecting Operating Margin 

2023/02/15 36

Attention： Ic (Jc) reduction:
• irreversible above〜170 MPa.

Courtesy: L. Bottura, A. Devred

w∝ B
J

F∝B2

σ ≈
F
w
∝ JB

LHC
11T

QXF

FCC

~ B2

Measurement at Univ. Geneve

RRP Wire

j w

A.Godeke, F. Hellman, H.H.J ten Kate, and 
M.G.T. Mentink et al.
Supercond. Sci. Technol. 31 (2018) 105011.

Large Impact of Strain on Jc, 
reduction,w/  Nb3Sn superconductor



Stress Management Cos-Theta (SMCT) Dipole Magnet 
as a next step of the 14.5 T Dipole program at FNAL, in progress

• The stress-management cos-theta (SMCT) coil/magnet is a new concept proposed and being 
developed at Fermilab in the framework of US-MDP program. The SMCT coil is wound into 
stainless-steel coil-winding structure providing grooves. 

• The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, 
thus, the excessively large strains and stresses in the coil.

2023/02/15 18

Courtesy: A.V. Zlobin

A. Zlobin et al., Presented at ASC20222, and to be published in ASC-TAS.



Advances in Nb3Sn Magnet Development 

2003: LBNL HD1
(16 T at 4.2 K)

2015:CERN RMC
(16.2 T at 1.9 K)

2018: FRESCA2
(100 mm aperture,  14.6/14.95 T bore/peak  at 12.1 kA. 1.9 K)

2023/02/15 19

Courtesy: G. De Rijk, A. Devred

41

NbTi

Nb3Sn

NbTi

Nb3Sn

HTS
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RRP00076-0.85 m
-665C/75h

T3912-0.71mm
-700C/71h

Main development Target:
• Jc (16T, 4.2K) > 1500 A/mm2

Global cooperation: 
CERN/KEK/Tohoku/JASTEC/Furukawa

• CERN/Bochvar High-tec. Res. Inst
• CERN/KAT 
• CERN/Bruker
• T.U. Vienna, Geneve U., U. Twente, 
• Florida S.U. - Appl. Superc. Center
• US-DOE-MDP, Fermilab

Nb3Sn Conductor Progress
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Courtesy, A. Ballarino, X. Xu, T. Ogitsu, D. Schoerling

A. Yamamoto, 2021/3/23b

( )f
p
µ sin2 0 wJB =

j
w

Scaled to
1.9 K

• Achieved by a ternary approach:
K. Saito/T. Ogitsu et al. 
(JASTEC/KEK)

l Achieved by APC approach: 
X. Xu et al (Fermilab)

Jop/Jc: 86 % @ 1.9K

Jc Target @ 4.2K

• Artificial Pinning Center (APC) approach reached: Jc (16T, 4.2K)  ~ 1500 A/mm2

• Mas-Production and cost-reduction is yet to come !!

https://arxiv.org/abs/1903.08121
A. Ballarino et al., ASC-2018, DOI 10.1 109/IEEE TASC-2019, 2896469. 

• Another ternary approach w/  Hf rto Nb4Ta in progress: S. Balachandran et al., 
https://arxiv.org/pdf/1811.08867.pdf

https://arxiv.org/abs/1903.08121
https://arxiv.org/pdf/1811.08867.pdf


HTS, focusing on Bi2212 in the US

21

Courtesy, P. Lee, S. Prestemon

A. Yamamoto, 2021/3/23b

Application expected for CCT by using B2212

Bi-2212



IBS Technology: Status and Outlook in China 
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Applied Magnetic Field (T)

REBCO: B ∥ Tape plane
REBCO: B ⊥ Tape plane, 45 μm sub
REBCO: B ⊥ Tape plane
Bi-2212: OST NHMFL 50 bar OP
Nb₃Sn: Internal Sn RRP®
Nb₃Sn: High Sn Bronze
Nb-Ti : LHC 4.2 K
Nb-Ti : Iseult/INUMAC MRI 4.22 K
Iron-based Superconductor 2019
Iron-based Superconductor 2025
Iron-based Superconductor 2022
Iron-based Superconductor 2016

REBCO B∥ Tape Plane 2009

REBCO B⊥ Tape Plane 2017

2212

High-Jc Nb3Sn

Bronze Process Nb3Sn

Nb-Ti

REBCO B⊥ Tape Plane 2009

• Further report to be given by Q. Xu, 

IBS 2016

IBS 2019

IBS 2022

IBS 2025

• Stainless-steel stabilized IBS tape achieved the highest Je in 2022!
• The cost significantly reduced, and the mechanical properties raised .

Courtesy: Q. Xu

2023/02/15



IBS Technology: Status and Outlook in China 
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IBS 2016
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• Stainless-steel stabilized IBS tape achieved the highest Je in 2022!
• The cost significantly reduced, and the mechanical properties raised .

Courtesy: Q. Xu

2023/02/15
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High Field Magnet Development scoped by  LDG 

24

Exploration of 
new concepts 
and technologies

Development of robust and 
cost-efficient processes

HL-LHC

Fresca2
MDPCT1

LHC

Ultimate Nb3Sn
HTS

Robust Nb3Sn

2023/02/15

Courtesy: L. Bottura and LDG 

ß Next Major Step for Nb3Sn being proposed 
l 12 T short-model, and then
l Long-model (~ 5 à 15 m) in cooperation 

with industry



Prospect for HFM Development
Progress: 
• We congratulate Nb3Sn magnet technology is reaching to be applicable at 11~12 T in peak field, 

for a practical application: HL-LHC accelerator system/ 

Prospect:
• High Field magnet technology beyond 12 T  requires continuous and patient R&D efforts to 

realize higher field and energy frontier accelerators:

• Nb3Sn, 12~14 T:  > ~ 5 years for short-model R&D, the following  > ~ 5 years for prototype/pre-series. and 
further > ~ 10 yrs for the construction start, 

• Nb3Sn (+HTS), 14~16 T: > ~ 10 years for short-model R&D, the following > ~ 10 years for protype/pre-
series, and  further > ~ 20  yrs for the construction start, 

2023/02/15
25



Personal Prospect for the HF Magnet Development Timeline
Originally reported at ESPPU2020, CERN Open Symposium in Granada, 2019

Timeline ~ 5 ~ 10 ~ 15 ~ 20 ~ 25 ~ 30 ~ 35
14~16T

Nb3Sn (+HTS) Short-model R&D Prototype/Pre-series Construction

12~14T
Nb3Sn

Short-model R&D Proto/Pre-series Construction Operation

~12T 
Nb3Sn

Model/Proto
/Pre-series Construction Operation Upgrade

2023/02/15

Note: 
LHC experience:

26

ESPPU-2020, Physics Briefing Book, CERN-ESU-004, 30 Sept. 2019

1980 1990 2000 2010
LHC MR, 8.3 T Dipoles (NbTi, 1.9 K, 15 m long, N = 1232)

Short-Models R&D start in early (‘80)
Bc >10 T realized (‘88)

Prototype 
~ Pre-Series (3 x 10)

Bc 8.3T realized (~‘95)
(LL ratio: 86%)

Production Started (~’98)
Completed (~’06)

LHC Operation at Bc 4T(‘09) 8T 

20 years
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Superconductor applicable for SRF Cavities

28

T

BC1

BC2

TC

Bsh

Mixed state for 
SC Magnet

Meissner state for
SRF

2023/02/15

Material Tc
[K]

Bc1(0)
[T]

Bsh(0)
[T]

Bc2(0)
[T]

Nb 9.2 0.18 0.21 0.28

NbTi 9.2 ~9.5 0.067 -- 11.5 ~ 14

Nb3Sn 18.3 (0.05) 0.43 28 ~30

MgB2 39 (0.03) 0.31 39

Important 
for: RF Magnet

E

B

Pursued by T. Tajima
See: Appendix
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~ 1.3 GHz SRF Accelerators, worldwide

SHINE
(under construction)
~600 cavities
75 CMs
8 GeV (CW)

ILC  (planned)

8,000 9-cell cavities
900 CMs
2 x 125 GeV (Pulsed)

800 cavities
100 CMs
17.5 GeV (Pulsed)

-280+200 cavities
-35+25 CMs
- 4 +4 GeV (CW)European XFEL

(in operation,  2017~)

LCLS-II -HE
(under construction)

2023/02/15

ESS (0.8 GHz)
(under construction)

~ 2,000 1.3 GHz SRF cavities being realized, even in  these 10 years !

S1 Global: 
DESY, Fermilab, KEK
8-cavity string Test,
2010

Courtesy: S. Michizono

JLab-CEBAF(1.5 GHz)
(in operation)
40 CMs
6~12 GeV(CW)
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~ 1.3 GHz, SRF Accelerators, worldwide

SHINE
(under construction)
- ~600 cavities
- 75 CMs
- 8 GeV (CW)

ILC  (planned)

- 8,000 9-cell cavities
- 900 CMs
- 2 x 125 GeV (Pulsed)

-800 cavities
-100 CMs
-17.5 GeV (Pulsed)

-280 cavities
-35 CMs
- 4 GeV (CW)European XFEL

(in operation,  2017~)

LCLS-II
(under construction)

2023/02/15

ESS
(under construction)

~ 2,000 1.3 GHz SRF cavities being realized, even in  these 10 years !

S1 Global: 
DESY, Fermilab, KEK
8-cavity string Test,
2010

Courtesy: S. Michizono

JLab-CEBAF
(in operation)
40 CMs
6~12 GeV(CW)

Courtesy: S. Posen



IHEP 1.3 GHz High-G & High-Q Cavity and Cryomodule
• Key technology R&D for FEL, CEPC booster and ILC
• 12 mid-T 9-cell cavities vertical test average Q 4.5E10@16-21 MV/m
• World’s best high Q 1.3 GHz 9-cell cavity (N11): 5.4E10@21 MV/m, 4.9E10@31 MV/m
• 8 mid-T high Q 9-cell cavities integrated into cryomodule last year. 2 K module test ongoing. 

Courtesy: J. Zhai 

Further report to be given by J. Zhai

ILC spec

0 5 10 15 20 25 30 35 40
5E9

1E10

2E10

3E10

4E10

5E10

6E10

Note: stainless steel flange loss corrected

 N5 EP
 N6 EP
 N7 EP
 N8 EP
 N10 EP
 N5 mid-T
 N6 mid-T
 N7 mid-T
 N8 mid-T
 N9 mid-T
 N10 mid-T
 N11 mid-T
 N12 mid-T
 N13 mid-T
 N14 mid-T
 N15 mid-T
 N16 mid-T

Eacc (MV/m)

Q
0

LCLS-II&SHINE spec LCLS-II-HE spec

CEPC spec

EXFEL spec



Future Prospects
• Nb-based Standing Wave (SW) TESLA type structure is 

– limited to a gradient of ~ 50 MV/m by Bsh ~ 200 – 210 mT.

• Advanced shape cavities will be limited by ~ 60 MV/m
– Re-entrant, Low-Loss, Ichiro, Low Surface Field
– Aiming at lower Hpk/Eacc (10-20%), but raise Epk/Eacc (15-20%)

• Advances material such as Nb3Sn-based
– Nb3Sn, expecting Gradient limit up to ~ 80 MV/m, at Bsh ~ 430 

mT

• Explore the option of Nb-based Traveling Wave (TW) 
structures
– Expecting Effective Gradient to be ~ 70 MV/m or higher

“ILC: The International Linear Collider -- Report to Snowmass 2021”,  
Aryshev et al., arXiv:2203.07622 (15 March, 2022) 2023/02/15 33

Courtesy: H. Padamsee



• High-Q by N-Doping well established, and 
• High-G by N-infusion and Low-T baking  still to be understood and reproduced, worldwide. 

• N-doping (@ 800C for ~a few min.) 
– Q >3E10, G = 35 MV/m

• 2-step Baking w/o N (@ 75/120C) 
– Q >1E10, G =49 MV/m (Bpk-210 mT)

• N-infusion (@ 120C for 48h)
– Q >1E10, G = 45 MV/m

• Baking w/o N  (@ 120C for xx h ) 
– Q >7E9, G = 42 MV/m

• EP (only)
– Q >1.3E10, G = 25 MV/m

EP

N-doping

Baking 75/120C

Baking 120C
N-infusion

Courtesy: Anna Grassellino
- TTC Meeting, TRIUMF, Feb., 2019

342023/02/15

State of the Art in 
High-Q and High-G (1.3 GHz, 2K)



State of the Art in 
High-Q and High-G (1.3 GHz, 2K)

• 2-Step Baking is a promising surface process for High E and High G, 
and to be further optimized.   

• N-doping (@ 800C for ~a few min.) 
– Q >3E10, G = 35 MV/m

• 2-step Baking w/o N (@ 75/120C) 
– Q >1E10, G =49 MV/m (Bpk-210 mT)

• N-infusion (@ 120C for 48h)
– Q >1E10, G = 45 MV/m

• Baking w/o N  (@ 120C for xx h ) 
– Q >7E9, G = 42 MV/m

• EP (only)
– Q >1.3E10, G = 25 MV/m

Courtesy: Anna Grassellino
- TTC Meeting, TRIUMF, Feb., 2019

352023/02/15



Recent Progress in SRF Technology
SRF cavity
• Bsh = practical limit for SRF

• Bssh-Nb :      210 mT
• Bssh-Nb3Sn :  430mT

Courtesy, S. Posen

36

Nb3Sn Potential in high-G future Nb3Sn progress at Fermilab.
S. Posen et al., SUST, 34, 02507 (2021)

Progress at Fermilab: Nb, 75/120 bake
A. Grassellino et al., arXiv: 1806/09824

x2

2023/02/15



Traveling Wave Cavity Technology
proposed for HELEN SRF Accelerator 

2023/2/15 37
https://doi.org/10.48550/arXiv.2209.01074

Courtesy: S. Belomestnykh

• Red standing wave – High Peak Fields
• Green (acceleration) and Blue (Return) Waves 

are Travelling Waves  - Lower peak fields
• Guide blue wave in a return wave-guide to avoid 

SW peak fields – attached to both ends 

https://doi.org/10.48550/arXiv.2209.01074


Prospects for Technologies for 
Future Lepton Colliders

• SRF technology has been well advanced, in cooperation with industry, 
based on Euro-XFEL successfully constructed and in stable operation since 
2017, and further successful progress in LCLS-II SRF cavity production.  

• SRF high-G and High-Q R&D effort needs to be extended  for the future. 
– Nb-bulk, E = 40 – 50 MV/m (SW), Q  = 2 x 1010

– Nb3Sn,         > 50 MV/m, and 
– Nb-bulk,     70 MV/m (TW) in long term effort.

392023/02/15
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Worldwide He Cryogenic System and Carnot Efficiency 
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Courtesy: T. Okamura, *. Kaneda 



HPG System for Magnet and SRF 
We are searching for a consistent HPGS Regulation Guideline

QST-IFMIF: 
RIPac
SRF-C

SLAC/FNAL:
LCLS-II
SRF-C

MagーVessel
SRF-Cavity

ASME, BPVC 
Sect. VIII, Div.1

ASME BPC 31.1 

Cryo-Piping ASME BPC 31.1 ASME BPC 31.1 

Refrigerator Ref. Regulation tbc

422023/02/15



He Resource: Global Distribution

2023/02/15 43

Courtesy: D. Delikaris



Supply and Demand Outlook as of 2019

44

MMCM：
Million cubic Meter

Real demand(I added from the latest data)

MMCM

Courtesy: R. Sagiyama

2023/02/15
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Challenges in Future Energy-Frontier Colliders
Ref. E  (CM)

[TeV]
Luminosity

[1E34]
AC-

Power
[MW]

SRF
E [MV/m]

[GHz]

SCM
B  [T]

Major Challenges in Technology

LC
ee

ILC TDR 
update

0.25
-1

1.35, 2.7 
(~ 4.9)

110, 138
(~ 300)

31.5 ‒ 45 

[1.3]

SRF cavity: High-G and high-Q
Higher-G for future upgrade including new material, 
Nano-beam stability

CLIC CDR 0.38 
- 3

1.5 
(~ 6)

100
(~ 580)

72 ‒ 100 

[12]

Acc. Structure: High-precision, Large-scale production,
Two-beam acceleration in a prototype scale,
Precise alignment and stabilization.

CC
ee

FCC-ee CDR 0.09 
~ 0.38 

460 ~ 31 260 ~ 350 10 ‒ 20

[0.4 - 0.8]

SRF cavity: High-Q at < GHz, Nb thin-film Coating,
Synchrotron Radiation absorption,
Energy efficiency (RF efficiency).

CEPC CDR 0.046 -
0.24 

32 ~ 5 150 ~ 270 20 ‒ 40

[0.65]

SRF cavity: High-Q at < GHz, LG Nb-bulk/thin-film,
Synchrotron Radiation constraint,
Low-field magnet with high-precision.

CC
hh

FCC-hh CDR ~  100 5 ~ 30 580 tbd 16 SC magnet : High-field 
- Nb3Sn (+HTS): high Jc, mechanical stress sustainability

Energy management

SPPC CDR 75 - 125 10 --- tbd 12 - 24 SC magnet : High-field
- IBS: High Jc, stress sustainability, energy management

CC
mm

MC 0.12 ~ 
14

0.008~33 200 ~290 ≥ 30 
0.8 ~1.3

10 -16 
(> 40) 

Short lifetime, cooling,  
SC magnet: High-field, RF in strong magnetic field, …. 
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Summary
• Superconducting technology will be inevitably required for future particle accelerators.

• Encouraging progress on Nb3Sn magnet technology reaching 11-12 T, applicable for 
the HL-LHC accelerator system, and we may expect the higher field level of 14 T (+). We 
may need, however, further breakthrough, such as Nb3Sn+HTS to realize 16 T and beyond, 
with satisfying the accelerator  quality. 

• SRF  technology has much advanced, based on Euro-XFEL, LCLS-II, ESS, Shine, and 
other projects.  It will provide promising scope for future energy frontier colliders.  

• Further technical advances may be expected by using Nb3Sn technology and Traveling 
Wave technology. 
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FCC-ee SRF Systems

F. Peauger and O. Brunner
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Courtesy: Y. Zhai
HKUST IAS 2023



MC Magnets: Requirements and Challenges

51

b) Final Cooling: 
> 40 T

a) Muon Generation:
20 T

d) Collider Ring:
16 T 

2023/02/15

c) RCS Acceleration:
~ 10 T

Courtesy: L. Bottura



1.3 GHz, pulsed SRF Technology Applicable for the 
Muon Acceleration to Collision Energy
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Multiple RF station along Acc. RIng
with 1.3 GHz, pulsed SRF cavity  (30 MV/m) 
being studied by F. Batsch et al., 

2023/02/15

Courtesy: H. Damerau, F. Batsch




