

Future eter Higgs Facilities

To a Higgs Factory and beyond

February 2023

Outline

- Introduction: Setting the scope EPPSU-2020 - LDG roadmap Snowmass'21
- EW / Higgs factories

Linear

Circular

 $\gamma\gamma$

Summary and Perspectives

Context: EPPSU 2020 process update

20 strategy statements have been unanimously adopted by the European Strategy Group (ESG) in January 2020:

Context: The LDG process

CERN and the national laboratories in Europe (LDG) are charged by Council to define a Roadmap for Accelerator R&D

Topics:

- High-field magnets
- High-gradient accelerations (plasma, SCRF)
- Muon beams
- Energy recovery linacs
- · Education and training

Panel chairs:

	High Field Magnets Low Temp & HTS	High Gradient Acceleration (plasma)	Muon Collider	ERL	High Gradient Accelerating Structures (sc & nc)
chair	Pierre Vedrine, IRFU	Ralph Assmann, DESY & INFN	Daniel Schulte, CERN	Max Klein, Liverpool	Sebastien Bousson, IJCLab
co-chair	Luis Garcia-Tabares Rodriguez, CIEMAT	Edda Gschwendtner, CERN	Nadia Pastrone, INFN	Andrew Hutton, JLAB	Hans Weise, DESY

LDG Report (2022)

Context: Snowmass'21 process

W/Z coupling

Higgs coupling

Nature

of Higgs

Top

Physics

Top spin

Higgs mass

Higgs CP

Rare decay

Top mas

Moving Forward to P5

Hitoshi Murayama

Energy Frontier (Message)

Institut national de

physique nucléaire et

de physique des particules

- Compared to Snowmass 2013 the physics landscape has significantly changed
 - o The program of measuring the Higgs boson properties is well underway at the LHC with growing precision
 - o A broad range of searches have explored multiple BSM scenarios without convincing evidence of new physics
 - o The HL-LHC is an approved project
- Without a robust support for the HL-LHC and a clearly defined path towards a Higgs factory we leave critically important physics unchecked and crucial guestions unanswered
- The EF community should be prepared to explore a broad range of BSM phenomena at the 10 TeV mass scale

The Energy Frontier community voices a strong support for

- 1. HL-LHC operations and 3 ab⁻¹ physics program, including auxiliary experiments
- 2. The fastest path towards an e⁺e Higgs factory (linear or circular) in a global partnership
- A vigorous R&D program for a multi-TeV collider (hadron or muon collider)

The Energy Frontier is >50% of the US HEP community, therefore the potential impact on CEF (governmental advocacy, workforce training, diversity and inclusion) are critical to the progress of HEP

The most surprising thing that emerged from Snowmass was an overwhelming sentiment to engage in hosting a future collider in the US

...and the public praising of EF by Michael Peskin for enabling a vigorous discussion on future multi-TeV colliders

Highlights and Messages from the Snowmass Summer Study. Prisca Cushman

Community Summer Study SN 🕸 WMASS July 17-26 2022, Seattle 023

Neutrino Frontier

* We need to finish DUNE, and its broad physics program. Both Phase I and Phase II are required to complete the original DUNE design. * We are excited about long-term, broader possibilities that make use of our investment

in the facility and could expand the DUNE scope beyond that originally envisioned.

EW-Higgs factories:

The **fastest** path towards an **e⁺e⁻ Higgs** factory (linear or circular) in a global partnership

Accelerator Frontier

Message

- The accelerator community has technology and expertise to address the next generation accelerator.
- By the time of next Snowmass/P5 a National Future Colliders R&D program (new initiative!) should consider international and US based options and carry out technical and design studies sufficient to make informed decision on future directions toward
 - Higgs/EW factories
 - 10 TeV/parton colliders.

Intersections: Progress in accelerators will critically impact all future particle physics endeavors (neutrinos, colliders, DM) and therefore R&D should be prioritized by P5 inclusively

accelerators need to be part of the P5 charge.

Full utilization of the unique proton power capability of the upcoming PIP-II accelerator should be developed by the HEP community (use remaining 98% of full beam power).

Surprising Thing this week at Snowmass:

We seem to be clever enough to be seriously taken by the Theory Frontier (they even did argue with us)...

IAS-HEP 2023

Context: HEP Future Coliiders new Timelines

- Timelines technologically limited
- Uncertainties to be sorted out
 - Find a contact lab(s)
 - Successful R&D and feasibility demonstration for CCC and Muon Collider
 - Evaluate CCC progress in the international context, and consider proposing an ILC/CCC [ie CCC used as an upgrade of ILC] or a CCC only option in the US.
 - International Cost Sharing
- Consider proposing hosting ILC in the US.

EW Higgs colliders projects

ILC Accelerator Design and Challenges

Institut national de

physique nucléaire et de physique des particules PCLab

Laboratoire de Physique

ILC Key technologies

ILC Baseline, extension and upgrades

Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	U	pgrades	
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	30(20)
Repetition frequency	f_{rep}	Hz	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	9.450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Average beam power	P_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	mm	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	$\mathbf{n}\mathbf{m}$	35	35	35	35	35	30
RMS hor. beam size at IP	σ_x^*	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	nm	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99 %	58.3%	73~%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6%	2.6%	0.16%	4.5%	2.6~%	10.5%
Site AC power	P_{site}	MW	111	128	94/115	173/215	198	300
Site length	Lsite	km	20.5	20.5	20.5	31	31	40

320ktonCO2/yea

>Luminosity upgrades:

- 2 x bunches, 2 x RF (1.35 -> 2.7x10³⁴)
- Run = 500GeV machine at 250GeV, 10Hz: factor 2 (2.7x10³⁴ -> 5.4x10³⁴)
- Improve power efficiency

Energy upgrades: 500GeV (31.5 MV/m Q₀=1 x 10¹⁰), 1TeV (45 MV/m Q₀=2 x 10¹⁰, 300 MW) more SCRF, tunnel extension
 Kitakami site: 50km long, sufficient for 1TeV

Green-ILC AAA-2014 Report

Green ILC Studies in Tohoku Area

More details in F. Zimmermann's talk

ILC proposal state and R&D (4 years)

IAS-HEP 2023

Institut national de

physique nucléaire et

de physique des particules

CLab

Laboratoire de Physiqu

February 2023

11

CLIC Accelerator Design and Challenges More details in A. Latina's talk

Four main challenges

- 1. **High-current drive beam** bunched at 12 GHz (CTF3 addressed all drive-beam production issues)
- 2. Power transfer and main-beam acceleration, efficient RF power
- 3. Towards 100 MV/m gradient in main-beam X-band cavities
- 4. Alignment and stability ("nano-beams")

Lab

Laboratoire de Physiqu

- Drive beam accelerated to ~2 GeV using conventional klystrons
- 2. **Intensity increased** using a series of delay loops and combiner rings
- 3. Drive beam decelerated and produces high-RF
- 4. Feed high-RF to the less intense main beam using waveguides

10000.

Target and achieved emittance in existing and planned machines

Institut national de

physique nucléaire et de physique des particules

12

CLIC Key technologies

The **CLIC accelerator** studies are mature:

- Optimised design for cost and power

- Many tests in CTF3, FELs, light sources and test-stands

- Technical developments of "all" key elements

CLIC Baseline, extension and upgrades

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \! 60/1.5$	$\sim \! 40/1$
Final RMS energy spread	%	0.35	0.35	$0.35^{'}$
Crossing angle (at IP)	mrad	16.5	20	20

Further work on **luminosity performance**, possible improvements and margins, operation at the Z-pole and gamma-gamma are ongoing

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	110	25	9
1500	364	38	13
3000	589	46	17

Energy studies:

- Running when energy is cheap
- Renewable energy (carbon footprint)
- Recovering energy

- Very **large reductions** since **CDR (2018)**, better estimates of nominal settings, much more optimised drive-beam complex and more efficient klystrons, injectors more optimisation, etc
- Further savings possible, main target damping ring RF and improved L-band klystrons for drive-beam

Parameter scans to find optimal parameter set, change acc. structure designs and gradients to find an optimum*

More details in F. Zimmermann's talk

CLIC proposal state and R&D

Project Readiness Report as a step toward a TDR – for next ESPP. Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

X-band studies: For CLIC and applications in smaller linacs

RF efficiency and sustainability studies

Goals for **R&D** studies by ~2025, key improvements:

- Luminosity numbers, covering beam-dynamics, nanobeam, and positrons at all energies. Performance risk reduction, system level studies
- Energy/power: 380 GeV well underway, 3 TeV to be done, L-band klystron efficiency
- Sustainability issues, more work on running/energy models and carbon footprint
- **X-band progress** for CLIC, smaller machines, industry availability, including RF network
- R&D for higher energies, gradient, power, prospects beyond 3 TeV
- **Cost update**, only discuss changes wrt Project Implementation Plan in 2018
- Low cost klystron version reoptimize for power, cost and fewer klystrons

Cryogenic (80 K) high-gradient distributed coupling accelerator concept

Accelerator Design

- Engineering and design of prototype cryomodule underway **Focused on challenges**:
- Gradient Scaling up to meter scale cryogenic tests
- Vibrations Measurements with full thermal load
- Alignment Working towards raft prototype
- Cryogenics Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation
- Beam Loading and Stability Thermionic beam test
- Scalability Cryomodules and integration

- 8 km footprint for 250/550 GeV ⇒ 70/120 MV/m (7 km footprint at 155 MeV/m for 550 GeV present Fermilab site)
- Large portions of accelerator complex are compatible between LC technologies:
 - BDS and IP modified from ILC (1.5 km for 550 GeV)
 - DR and injectors to be optimized with CLIC as baseline

IAS-HEP 2023

Institut national de physique nucléaire et

de physique des particules

C3 Key technologies

Present Focus is the Main Linac, in Future Expand to Rest of Complex

High Accelerating Gradients Cryogenic Operation

Modern Manufacturing Prototype One Meter Structure

Integrated Damping Slot Damping with NiChrome Coating

C3 Baseline, extension and upgrades

Collider	C^3	C^3
CM Energy [GeV]	250	550
Luminosity [x10 ³⁴]	1.3	2.4
Gradient $[MeV/m]$	70	120
Effective Gradient [MeV/m]	63	108
Length [km]	8	8
Num. Bunches per Train	133	75
Train Rep. Rate [Hz]	120	120
Bunch Spacing [ns]	5.26	3.5
Bunch Charge [nC]	1	1
Crossing Angle [rad]	0.014	0.014
Site Power [MW]	$\sim \! 150$	$\sim \! 175$
Design Maturity	pre-CDR	pre-CDR

More details in F. Zimmermann's talk

Energy

- Scalability studied to 3 TeV
- Requires RF pulse compression for reasonable site power
- Higher gradient option (155 MeV/m) in consideration

Luminosity

•

- Beam power can be increased for additional luminosity
- C³ has a relatively low current for 250 GeV CoM (0.19 A) -Could we push to match CLIC at 1.66 A? (8.5X increase?)
- Pulse length and rep. rate are also options

Parameter	Units	Baseline	High-Lumi
Energy CoM	GeV	250	250
Gradient	MeV/m	70	70
Beam Current	А	0.2	1.6
Beam Power	MW	2	16
Luminosity	x10 ³⁴	1.3	10.4
Beam Loading		45%	87%
RF Power	MW/m	30	125
Site Power	MW	~150	~180

C3 proposal state and R&D (5 years)

Next Steps: C³ Demonstration R&D Plan

Institut national de

physique nucléaire et de physique des particules

> Demonstrate fully engineered cryomodule. ~50 m scale facility

Clab

Laboratoire de Physique des 2 Infinis

• 3 GeV energy reach

Injector

Liquid Nitrogen Insertion

and Nitrogen Gas

Extraction

 Answer technical questions needed for CDR

February 2023

IAS-HEP 2023

C3 based on SC Nb₃Sn

Key Technologies (2)

Parallel-feed RF accelerator structures

- C³ is NCRF accelerator technology to operate at high gradient with high RF-to-beam efficiency.
- Use highly-optimized reentrant cells with distributed coupling to power the linac without cell-to-cell RF coupling and operate at 77 K
- · Structure is machined in two halves by low-cost numerically-controlled milling machines. This machining process produces ultra-high vacuum quality surfaces that need no further machining before a standard Cu surface etch.
- This manufacturing technique provides an ideal Cu surface to be coated with superconducting films, as it allows complete access to the inner cavity surface for the coating process.
- · The system is then assembled simply by joining the two blocks.

Key Technologies (1)

Coating Cu/bronze inner surface with thin layer of Nb₃Sn White paper at https://arxiv.org/ftp/arxiv/papers/2203/2203.09718.pdf

- Electroplating FNAL, KEK, Akita Kagaku Co. Ltd., Tohoku University, Akita Industrial Technology Center.
- Magnetron sputtering in co-sputtering mode from two targets with direct deposition on substrate of stoichiometric Nb₃Sn - Technische Universität Darmstadt.
- Magnetron sputtering from a single stoichiometric target – CERN, Old Dominion University
- Multilayer sequential magnetron sputtering Old **Dominion University, LANL**
- The Bronze Route, which builds upon Nb₃Sn superconducting wire technology and also exploits the heat treatment temperature reduction effect of the Cu as ternary element of the Nb-Sn-Cu phase diagram -NIMS.

Schematic of magnetron sputtering setup with two targets at Technische Universität Darmstadt.

- A devoted global effort in developing Cu cavity structures coated with Nb₃Sn would make the ILC or Higgs/EW factories more affordable and more likely to be built.
- Using the next decade for R&D on producing Nb₃Sn on inexpensive and thermally efficient metals such as Cu or bronze, while pursuing in parallel the novel U.S. concept of parallel-feed RF accelerator structures, would compound the best of both worlds. Not only do parallel-feed RF structures enable both higher accelerating gradients and higher efficiencies, but they would be applicable to both Cu and Nb₃Sn coated Cu cells.
- Increased effort on these two techniques would synergize expenditures towards 10-year progress, which will naturally converge to a clear decision by the community on which path to take for the RF of an ILC or other leptonic future accelerator. If for any reason, the C³ structures were not ready in ten years, the current methods of Nb₂Sn coatings on Cu or bronze are geared towards standard cavity cells. Were one of these methods to succeed, it could still be implemented on conventional Cu RFs.
- In conclusion, the use of distributed coupling structure topology within improved performance parameters together with Nb₃Sn coating technology can lead to a paradigm shift for superconducting linacs, with higher gradient, higher temperature of operation, and reduced overall costs for any future collider.

Higgs-Energy LEptoN collider (HELEN)

An ILC with advanced SRF and reduced length, suitable for the Fermilab campus.

- Accelerating gradients of **50 MV/m** have been **shown**, much beyond the ILC design with 31.5 MV/m.
- Traveling wave SRF structures with innovations in cavity surface treatments and processing should allow 70 MV/m.
- Nb₃Sn may enable 90 MV/m standing wave cavities, and even more with traveling waves.
- A conceptual LC design with advanced cavities leads to reduced length for a 250 GeV e^+e^- collider.
 - 55MV/m, 71% fill factor → 9.4km
 - 70MV/m, 84% fill factor → 7.5km
 - 90MV/m, 71% fill factor → 6.9km

Institut national de physique nucléaire et de physique des particules et Baseline Design and LC comparisons

 The HELEN baseline uses traveling waves (TW) SRF operating at 70 MV/m is selected as the baseline option.

- Circularly TW cavities don't waste energy on non-accelerating backward waves!
- Most of the HELEN parameters (except for SRF) are identical to those of the ILC.

Parameter	HELEN	C^3	ILC	CLIC
CM energy $2 \times E_b$ (GeV)	250	250, 550	250, 500	380, 3000
Length (km)	7.5	8, 8	20.5, 31	11.4, 50
Interaction points	1	1	1	1
Integrated luminosity (ab ⁻¹ /yr)	0.2	0.2, 0.4	0.2, 0.3	0.1, 0.6
Peak lumi. \mathcal{L} (10 ³⁴ cm ⁻² s ⁻¹)	1.35	1.3, 2.4	1.35, 1.8	1.5, 6
CM energy spread ~ $0.4\delta_{BS}$ (rms, %)	1	1.6, 7.6	1, 1.7	1.7, 5
Polarization (%)	$80/30~(e^-/e^+)$	tbd	$80/30~(e^-/e^+)$	$80/0~(e^-/e^+)$
Rep.rate $f_{\rm rep}$ (Hz)	5	120	5	50
Bunch spacing (ns)	554	5.26, 3.5	554	0.5
Particles per bunch N (10 ¹⁰)	2	0.63	2	0.52, 0.37
Bunches per pulse $n_{\rm b}$	1312	133, 75	1312	352, 312
Pulse duration (μs)	727	0.7, 0.26	727	0.176, 0.156
Pulsed beam current $I_{\rm b}$ (mA)	5.8	190, 286	5.8	1670, 1190
Bunch length σ_z (rms, mm)	0.3	0.1	0.3	0.07, 0.044
IP beem size σ^* (mms. μ)	H: 0.52	H: 0.23, 0.16	H: 0.52, 0.47	H: 0.15, 0.04
IF beam size σ (mis, μ m)	V: 0.0077	V: 0.004, 0.0026	V: 0.0077, 0.0059	V: 0.003, 0.001
Emittance c (rms um)	H: 5	H: 0.9	H: 5, 10	H: 0.95, 0.66
Emittance, e_n (rms, μ m)	V: 0.035	V: 0.02	V: 0.035, 0.035	V: 0.03, 0.02
β^* at interaction point (mm)	H: 13	H: 12	H: 13, 11	H: 8, 6.9
β at interaction point (init)	V: 0.41	V: 0.12	V: 0.41, 0.48	V: 0.1, 0.068
Full crossing angle $\theta_{\rm c}$ (mrad)	14	14	14	20
Crossing scheme	crab crossing	crab crossing	crab crossing	crab crossing
Disruption parameter D_y	35	12	35, 25	13, 8
RF frequency $f_{\rm RF}$ (MHz)	1300	5712	1300	11994
Accelerating gradient E_{acc} (MV/m)	70	70, 120	31.5	72,100
Effective gradient E_{eff} (MV/m)	55.6	63, 108	21	57, 79
Total beam power (MW)	5.3	4, 4.9	5.3, 10.5	5.6, 28
Site power (MW)	110	$\sim 150, \sim 175$	111, 173	168, 590
Key technology	TW SRF	cold NC RF	SW SRF	two-beam accel.

More details in F. Zimmermann's talk

22

ReLiC collider recycles polarized electrons and positrons, and their energy

- Flat beams are emittance-cooled and polarized in damping rings with "top off" to replace burned-off particles (only nAs)
- Beams are accelerated **on-axis** in SRF linacs to avoid emittance growth and collide in one of the detectors
- After collision at the top energy, they are decelerated in the opposite linacs
- Decelerating bunch trains are separated from the axis to avoid collision with the accelerating one.
- After few damping times the trip repeats in the opposite direction and beams collide in a second detector

Institut national de physique nucléaire et de physique des particules

ReLiC would be capable of very high luminosity

Gain of 40 to 200 at HIGS energy

- Except for the energy recovery, most design aspects correspond to the ILC. More details in F. Zimmermann's talk
- The luminosity can be vastly larger, by two orders of magnitude.
- The power needs can be similar to the ILC numbers when progress in high-Q SRF and in cryogenic technology are made.
- A related ERL linear collider proposal (ERLC) uses two-axes SRF cavities and comes to similar vast luminosity increases.
- These ERL-based designs provide the most energy efficient luminosity values!

Institut national de

physique nucléaire et

de physique des particules

JCLab ne Joliot-Curie

Laboratoire de Physique

High luminosity precision study of Z, W, H, and $t\bar{t}$; unprecedented energy resolution at Z (<100 keV) and W ; **Low-risk technical solution** based on 60 years of e⁺e⁻ circular colliders and particle detectors; R&D on components for improved performance but no need for "demonstration"; Infrastructure could support a **century of physics** : FCC-ee \rightarrow FCC-hh \rightarrow FCC-eh and several other options ; **Strong support** from CERN, partners, and ESPP ; **Ongoing study focused on siting & "feasibility" for 2026 ESPP**

Institut national de

physique nucléaire et de physique des particules **UCLab**

Parameter [4 IPs, C=91.1 km]	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1400	135	26.7	5.0
number bunches/beam	8800	1120	336	42
bunch intensity [10 ¹¹]	2.76	2.29	1.51	2.26
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.48/0	4.0/7.67
long. damping time [turns]	1170	216	64.5	18.5
vertical beta* [mm]	0.8	1	1	1.6
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	10	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ _x / ξ _y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.32 / <mark>15.2</mark>	3.55 / <mark>7.02</mark>	2.5 / <mark>4.45</mark>	1.67 / <mark>2.54</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	181	17.3	7.2	1.25
tot. integr. luminosity / yr [ab ⁻¹ /yr]	86	8	Feggary 20	²³ 0.6

More details in M. Hofer's talk

Double ring e⁺e⁻; common footprint w/ future 100 TeV hadron collider (FCC-hh) Asymmetric IR layout & optics; Θ_c =30 mrad, "virtual" crab-waist collision, 2 or 4 IPs – dynamic aperture; SR power 50 MW/beam ; Top-up injection

key concepts (top-up, crab waist, ...) K. Oide demonstrated in routine operation at previous machines ; technology available

strong synergies with SuperKEKB & US El

FCC-ee Key Accelerator Technologies

FPC & HOM coupler, cryomodule,

efficient SC cavities

Jefferson Lab

E_{acc} (MV/m)

twin aperture arc dipoles

thin-film coatings...

prototype high-yield e⁺ source w HTS solenoid at SwissFEL

under study: CCT HTS quad's & sext's for arcs

IAS-HEP 2023

FCC Civil Engineering & Site

Optimized placement and layout (2021)

8 surface sites – less land, <40 ha

Possibility of 4 FCC-ee experiments

All sites close to road infrastructures <

5 km of new road constructions in total for all sites combined

Several sites close to **400 kV grid lines** Good road connections of PD, PF, PG, PH suggest **operation pole around Annecy / LAPP**

FCC-ee Sustainability Studies

highly sustainable Higgs factory

luminosity vs. electricity consumption

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection

optimum usage of excavation material int'l competition "mining the future®"

https://indico.cern.ch/event/1001465/

IAS-HEP 2023

FCC-ee annual energy consumption ~ LHC/HL-LHC

120 GeV	Days	Hours	Power OP	Power Com	Power MD	Power TS	Po Shut	wer down		
Beam operation	143	3432	293						1005644	MWh
Downtime operation	42	1008	109						110266	MWh
Hardware, Beam commissioning	30	720		139					100079	MWh
MD	20	480			177				85196	MWh
technical stop	10	240				87			20985	MWh
Shutdown	120	2880					6	69	199872	MWh
Energy consumption / year	365	8760							1.52	TWh
Average power									174	MW
JP. Burnet, FCC We	JP. Burnet, FCC Week 2022						Z	W	н	TT
	Bear	m energy (GeV)		45.6	80	120	182.5		
incl. CERN	Enei	Energy consumption (TWh/y)			1.82	1.92	2.09	2.54		

More details in F. Zimmermann's talk

powered by mix of renewable & other C-free sources

France & Switzerland: already

 \sim lowest electricity C content,

10 18 19

in the world (90% C-free) 📲

FCC-ee upgrades, extensions, possible staging

• ≥4 differently optimized experiments

Laboratoire de Physique

- FCC-ee: not only Higgs, but Z and W factory (TeraZ); tt upgrade (~1 BCHF); optional direct s-channel Higgs production at 125 GeV
- civil construction & technical infrastructures shared with [and prepare] 100 TeV hadron collider FCC-hh
 - stage 2 of FCC integrated program
- numerous other possible extensions (ep/eA/AA, Gamma Factory, ERL upgrade, LEMMA-type μ collider FCC-μμ ? ...)

Calls for at least 4 detector concepts; 3 under development (CLD, IDEA, NL ECAL, with room for more) P. Janot, M. Dam, et al.

Just pick up a case study in the TeraZ programme, and you'll make a unique contribution

Common FCC detector software framework in a joint effort

Institut national de physique nucléaire et

de physique des particules

CEPC Accelerator Design and Challenges

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV

CEPC Key technologies

February 2023

CEPC Baseline, extension and upgrades

CEPC TDR Parameters (upgrade)

	Higgs	w	Z	ttbar
Number of IPs				
Circumference [km]		1	100.0	
SR power per beam [MW]			50	
Half crossing angle at IP [mrad]			16.5	
Bending radius [km]			10.7	
Energy [GeV]	120	80	45.5	180
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1
Piwinski angle	5.94	6.08	24.68	1.21
Bunch number	415	2162	19918	58
Bunch spacing [ns]	385	154	15(10% gap)	2640
Bunch population [10 ¹⁰]	14	13.5	14	20
Beam current [mA]	27.8	140.2	1339.2	5.5
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71
Phase advance of arc FODOs [degree]	90	60	60	90
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)
RF frequency [MHz]			650	
Beam lifetime [min]	20	55	80	18
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8

More details in F. Zimmermann's talk

CEPC TDR Power and Green CEPC

CEPC CDR Power for Higgs (SR 30MW/beam)

	Carles for Ulars	Location and electrical demand(MW)						
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

a Auxiliary facility should be built near to the heat load center.

>> Minimize the operating pressure.

20 Electric power consumption of auxiliary facility reaches 38.53 MW. Using high efficiency motor and variable frequency motor will help to reduce energy consumption.

so Adopting high temperature chiller, the cooling efficiency will increase by 2~3% for every 1°C increase of water outlet temperature.

Thermal energy recovery

Through heat recovery chiller, heat exchanger maximizes the heat absorbed by LCW as several heat sources.

so Air conditioning heat source

so Heating source in winter.(If possible, the heat supply could radiate to surrounding residential areas) >> Other heat sources

February 2023

CEPC proposal state and R&D

- CEPC CDR relased in Nov. 2018
- CEPC Accelerator TDR completion time: Dec. 2022

 Consistent TDR high luminosity parameter design as Higgs factory
 Key components with prototyping, techincal feasibility demonstrated, no technical show stopper
 Design and R&D technical documentation (Data, drawings, etc.)
 CEPC accelerator TDR document release in 2023
- CEPC Accelerator EDR Phase Plan:Jan. 2023-Dec. 2025
 - -Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way
 - -CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures, environment)
 - -Site dependent civil engineering design implementation preparation
 - -EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan" of China)

Institut national de physique nucléaire et

de physique des particules

FNAL "Site Filler" EPCCF and LEP3* * not proposed white paper

	240 GeV						
	LEP3 (ATS Note)	SiteFiller	FCCee (CDR 2018)				
Circumference [km]	26.7	16	98				
Beam current [mA]	7.2	5.	29				
$N \; [10^{11}]$	10	8.3	1.8				
n_b	4	2	328				
#IPs	2	1	2				
eta_{x}^{*} [m]	0.2	0.2	0.3				
eta_y^* [mm]	1	1	1				
$\epsilon_{oldsymbol{x}}$ [nm]	25	21	0.63				
$\epsilon_{m{y}}$ [nm]	0.1	0.05	0.001				
σ_{ℓ} [mm] (SR)	2.3	2.9	3.2				
b-b tune shift/IP	0.09/0.08	0.075/0.11	0.012/0.12				
RF frequency [MHz]	1300	650	400				
RF voltage [GV]	12	12	2				
η [%]	\pm 4 (RF)	±3 (RF)	±1.7 (DA)				
$ au_{bs}[{\sf min}]$	>17 (*)	9 (**), 36 (***)	18				
$ au_{Bhabha}[{\sf min}]$	18	8.7	38				
$\mathcal{L}/IP \ [10^{34} \ cm^{-2}s^{-1} \]$	1.1 (****)	1.0 (****)	8.5				

CERC Baseline design

- Flat beams are cooled in damping rings with top off
- Bunches are ejected with collision frequency
- Beams are accelerated with SRF linacs in two four-path ERLs
- After collision at top energy RF phases are changed to deceleration returning most energy to SRF linacs
- Decelerated beams are reinjected into cooling rings
- After a few damping times the trip repeats

CERC combines the advantages of existing colliders:

- Storage ring colliders: the energy and the particles of used beams are reused
- Linear colliders: efficient collisions can use a larger disruption parameter than a ring collider, because beams only collide once at high energy before recapture.
- This allows for significantly larger luminosity than in a ring, by an order of magnitude.

CERC can be built in stages, increasing the energy by adding SRF cavities

- CERC in luminosity is correlated to the SR power
 - 30 MW total SR power → green
 - 100 MW → 3 times more (solid red)
- CERC energy upgrade to cover √s ~500-600 GeV with increasing luminosity advantage over FCC-ee.
- CERC can be used for hadronelectron and hadron-positron collider in conjunction with FCC-hh

More details in F. Zimmermann's talk

Institut national de physique nucléaire et de physique des particules

$\gamma\gamma$ colliders with FELs: XCC

XCC Sustainability

Final Focus parameters	Approx. value	XFEL parameters	Approx. value
Electron energy	$70.0 \mathrm{GeV}$	Electron energy	$31 { m GeV}$
Electron beam power	0.64 MW	Electron beam power	0.28 MW
β_x/β_y	0.03/0.03 mm	normalized emittance	120 nm
$\gamma \epsilon_x / \gamma \epsilon_y$	1200/12 nm	RMS energy spread $\langle \Delta \gamma / \gamma \rangle$	0.05%
σ_x/σ_y at e^-e^- IP	16.2/1.6 nm	bunch charge	1 nC
σ_z	$10 \ \mu m$	Linac-to-XFEL curvature radius	$133 \mathrm{~km}$
bunch charge	1 nC	Undulator B field	$\gtrsim 1 \text{ T}$
Rep. Rate at IP	$240 \times 38 \text{ Hz}$	Undulator period λ_u	$9~\mathrm{cm}$
σ_x/σ_y at IPC	17.1/1.71 nm	Average β function	$12 \mathrm{m}$
$\mathcal{L}_{\text{geometric}}$	$1.1 \times 10^{35} \text{ cm}^2 \text{ s}^{-1}$	x-ray λ (energy)	1.2 nm (1 keV)
δ_E/E	0.05%	x-ray pulse energy	0.7 J
L^* (QD0 exit to e^- IP)	$1.5\mathrm{m}$	pulse length	$40 \ \mu { m m}$
d_{cp} (IPC to IP)	$10 \ \mu m$	$a_{\gamma x}/a_{\gamma y}$ (x/y waist)	$15.3/10.0 \ { m nm}$
QD0 aperture	9 cm diameter	non-linear QED ξ^2	0.29
Site parameters	Approx. value		
crossing angle	2 mrad		
total site power	88 MW		
total length	$\sim 3.0~{ m km}$		

Table 6: Summary of design parameters for $e^{-\gamma}$ mode at $\sqrt{s} = 140$ GeV.

- The XCC is presented as a lower cost alternative to e+e- Higgs factories
 - --- 140 GeV vs 250 GeV Linac
 - --- No damping rings
 - --- No positron source
- The XCC at E_{cm} =125-140 GeV can measure absolute Higgs couplings in a model independent manner with an accuracy of order 1%, which is close to the ILC precision. To fully match or exceed the ILC Higgs coupling accuracy, a way must be found to increase the top 1% e- γ luminosity at E_{cm} =140 GeV.

Parameter	Units	Value
Single Beam Power (70 GeV e ⁻)	MW	0.64
Single Beam Power (31 GeV e ⁻)	MW	0.28
Total Beam Power	MW	1.84
Electrical Power for RF	MW	23
Electrical Power for Cryo-Cooler	MW	34
Accelerator Complex Power	MW	31
Site Power	MW	88

More details in F. Zimmermann's talk

• There are strong synergies between XCC and the XFEL programs. Solutions to high energy/pulse XFEL production and focusing issues at XCC will lead to new opportunities in XFEL photon science.

HE - HL γγ Colliders

With the best of modern standard lasers, high-energy $\gamma\gamma$ colliders from electron beams of E \geq 250 GeV are possible at the expense of photon luminosity, or 1% of the geometric e+e- luminosity, i.e. 10 times lower than for photon colliders at c.m. energies below 0.5 TeV.

<u>We show how a single Free Electron Laser (FEL) design meets the specs to</u> produce γγ colliders as second interaction regions of e+e- colliders over the energy range of 0.5 TeV to 10 TeV c.m. without sacrificing γγ luminosity.

This FEL increases the expected γ intensity by a factor of 10 in the luminosity of $\gamma\gamma$ colliders as second interaction regions of 0.5 TeV to 1 TeV c.m. e+e- colliders, a factor of 6 for a 3 TeV c.m. e+e- collider, and a factor of 3 for a 10 TeV c.m. e+e- collider. This FEL concept therefore paves the way for High Energy & High Luminosity $\gamma\gamma$ colliders.

			\frown		
FEL parameters	0.5 TeV		0.5 - 10 TeV		Units
Electron energy	1.5		2.3		GeV
Repetition rate, CW	1	1	6.6 - 16.2	\setminus	kHz
Linac length	< 150	1	< 200	/	m
Bunch charge	1	1	1		nC
Normalized rms emittance	< 0.7		< 0.7	1	µm rad
Relative energy spread, rms	< 0.1		< 0.05		%
Undulator period	10		15		cm
Undulator peak field	1.6		1.8		Т
Undulator parameter K	14.5		25		
Undulator length	< 10		< 20		m
Average betatron functions	5-7		5-7		m
FEL resonant wavelength	1.2		2.4		μm
FEL pulse energy	≥ 0.04		≥ 0.1		J
FEL pulse duration, rms	50		50		fs
FEL peak power	≥ 0.4	1	≥1	1	TW
FEL average power	≥ 40		≥ 100	/	W
FEL intensity	1×10 ¹⁴		3×10 ¹⁴		W/cm ²
FEL photons/pulse	~0.6×1018		~1.4×10 ¹⁸		

γγ collider parameters	0.5 TeV	1.0 TeV	3.0 TeV	10 TeV	Units
x-factor	2 (4)	4	12	40	
Max. photon energy	0.17 (0.20)	0.40	1.38	4.88	TeV
Lyy / Lee	≤ 10	≤10	≤ 6	≤ 3	%

To produce $\gamma\gamma$ colliders as second interaction regions of e+e- colliders over the energy range of 0.5 TeV to 10 TeV c.m., at 2.3 GeV every other bunch from each electron/positron beam is diverted to two identical high gain SASE FEL lines, where a helical undulator produces circular polarized 0.5 eV light with 0.1-1 Joules per pulse in a footprint of approximately 5 x 20 m2 each. The central FEL wavelength of 2.4 µm, obtained with either standard warm magnet or superconducting technology for the undulator, maximizes the luminosity of the $\gamma\gamma$. At least up to 1 TeV c.m., the $\gamma\gamma$ luminosity reaches approximately 10% of the electron-positron luminosity by virtue of the optimized FEL design, which is a factor of 10 higher than the 1% otherwise expected to date.

Muon Collider Higgs Factory * not proposed white paper

US MAP, D. Neuffer et al., 2013

	Parameter	Unit	Higgs I	Higgs //	1.5TeV	High Energy
	Collision Energy	GeV	126	126	1500	3000
	Beam energy	GeV	63	63	750	1500
	Average luminosity	10 ³¹ /cm ² /s	1.7	8.0	1250	4400
	Collision energy spread	MeV	3	4	750	1500
	Circumference, C	m	300	300	2500	4450
	Number of IPs	-	1	1	2	2
	β*	cm	3.3	1.7	1.0	0.5
	Number of muons / bunch	10 ¹²	2	4	2	2
	Number of bunches / beam	-	1	1	1	1
	Beam energy spread	%	0.003	0.004	0.1	0.1
	Normalized emittance, $\epsilon_{\perp N}$	mm∙rad	0.4	0.2	0.025	0.025
	Longitudinal emittance, $\boldsymbol{\epsilon}_{\parallel N}$	mm	1.0	1.5	70	70
	Bunch length, σ_{s}	cm	5.6	6.3	1.0	0.5
	Beam size at IP, r.m.s.	mm	0.15	0.075	0.006	0.003
1	Beam size in IR quads, r.m.s.	cm	4	4	1.4	1.4
	Beam-beam parameter	•	0.005	0.02	0.09	0.09
	Repetition rate	Hz	30	15	15	12
	Proton driver power	MW	4	4	4	4

More details in F. Zimmermann's talk

Collider Maturity

Collider	Design Maturity	R&D Maturity
ILC-250	10	9-10
ILC-500	10	9-10
ILC-1000	6-7	6-7
CLIC-380	9	10
CLIC-1500	8	9-10
CLIC-3000	8	8-9
C3-250	3	3
C3-550	3	2
C3-Nb₃Sn	1	0
HELEN	3 (ML)	2 (SRF)
ReLiC	3	4
ERLC	3	4
ΧСС γγ	2	2
ΗΕ&ΗL γγ	0	0

Collider	Design Maturity	R&D Maturity
FCC-ee	9	9
CEPC	9	9
CERC	3	4
LEP3	3	8
EPCCF	3	8
MC-HF	3	2

Design Maturity	Maturity Criteria #1 (Design Maturity)	Maturity Criteria #2 (R&D Maturity)
o	No end-to-end design concept prepared	Concept proposed, but no systematic design requirements and/or parameters available.
1	No end-to-end design concept prepared	Concept proposed, proof-of-principle R&D underway
2	End-to-end preliminary design concept under development	Ongoing R&D to address fundamental physics/technical issues.
3	End-to-end preliminary design concept available	Sub-system operating parameters established based on preliminary design concepts for novel/critical sub-systems
4	End-to-end integrated design concept under development	Preliminary design concepts with operating parameters established for all sub-systems. Sub-system design R&D underway.
5	End-to-end integrated design concept available. Enables end-to- end performance evaluation.	Sub-system preliminary designs exist. Sub-system design R&D continues.
6	End-to-end performance evaluation complete. Reference (pre- CDR level) Design Report under development.	Sub-system performance risk assessment complete.
7	Reference Design available. Sub-system parameters and high potential alternatives documented.	Sub-system detailed design and performance R&D for highest risk sub-systems underway.
8	Conceptupal Design Report in preparation.	Sub-system specifications with validated operating parameters established. High risk sub-system R&D underway.
9	Conceptual Design Report and detailed cost estimate avaialable.	High risk sub-system R&D ongoing. Risk mitigation strategy for sub-system performance established.
10	Ready for Construction Proposal. Detailed Engineering Design being developed.	Performance Optimization R&D underway.

arXiv:2209.05827v1 [physics.acc-ph] 13 Sep 2022

Joint technology R&D topics beyond CDR

Energy not challenging

- SCRF: Nb3Sn coated Copper cavities and TW structures (70 MV/m)
- NCRF: Cryo-cooled Copper structures (120 MV/m), HTS coatings
- **Cryogenics:** massive production, plugged compatibility, transport issues, gas-pressure regulations, more efficient gas coolers

Sustainability

- Energy consumption, efficiency, sustainability, carbon footprint
- High-Efficiency RF power sources:
 Klystrons, Solid State Amplifiers, IOTs

Luminosity precision !!!!

- Positioning, Monitoring, Alignment and Stabilisation: global strategies, instrumented girders, radiation-hard ground motion sensors.
- e+ production optimization: flux concentrators, pulsed solenoid, capture linacs, targetry issues....
- Nanobeams colliding techniques: concepts and feedback
- **Damping Rings and Booster**: low emittances and 4th generation lattices for colliders
- Magnets: Interaction Region, Permanents, Injection/Extraction devices

- Manufacturing techniques including additive, cost reduction and massive production
- High power Beam Dumps (multi-MW)
- Machine protection and collimation
- Polarized beams and polarimetry
- Beam instrumentation
- Robotics and automatization

There is no favorable wind if we don't know where we are going...

Thanks to: Georg Hoffstaetter, Qing Qin and Frank Zimmermann

General comments

- Transfer of know-how, experience and expertise to the young generation is crucial. These colliders will be the colliders for the next generation of accelerator physicists. Our projects need to be attractive/motivation to them (co-ownership responsibilities, better career perspectives).
- The next Higgs collider will be certainly unique and is a global enterprise
- Coordination and harmonization between the EPPSU 2020-LDG and USA Snowmass'21 process will be necessary in some common topics. We have some tools on hand as the recently approved EAJADE (Europe– America–Japan Accelerator Development and Exchange programme) focused in Higgs Factories, with participation of major EU (CERN, INFN, CEA, DESY, CNRS, CSIC, UOXF), Japan (KEK, Tokyo Univ., Tohoku Univ.) USA (BNL, FNAL, SLAC, JLAB, LBNL, Cornell Univ.) and Canada (VISPA) labs.
- **Societal impact** (medical, industrial, security,...) of colliders projects has to be better explained, communicated and exploited. All colliders are expensive projects, we have to convince about the need of having these kind of facilities. The transition of accelerator technology, from its use in basic science to applications more directly benefiting society, has been a very visible trend in recent decades; and that represents only the first step in a major evolution for particle accelerators.