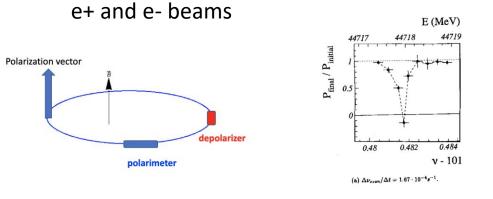
CEPC Polarization Study Status

Zhe Duan

On behalf of CEPC Beam Polarization Working Group 2023. 02. 15

IAS Program on High Energy Physics (HEP 2023) Feb 14-16, 2023

CEPC Beam polarization working group

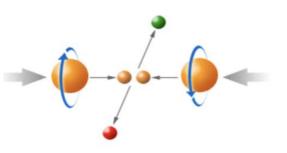

- Physics design:
 - Tao Chen, Zhe Duan, Hongjin Fu, Jie Gao, Sergei Nikitin (BINP), Dou Wang, Jiuqing Wang, Yiwei Wang, Wenhao Xia(graduated)
- Polarized electron source & linac:
 - Xiaoping Li, Cai Meng, Jingru Zhang
- Polarimeter:
 - Shanhong Chen, Yongsheng Huang, Guangyi Tang

- Discussions with D. P. Barber (DESY) on polarization theories and simulations are illuminating.
- Helpful discussions with E. Forest (KEK) & D. Sagan (Cornell) on usage of Bmad/PTC are acknowledged.

Motivation of CEPC polarized beam program

Vertically polarized beams in the arc

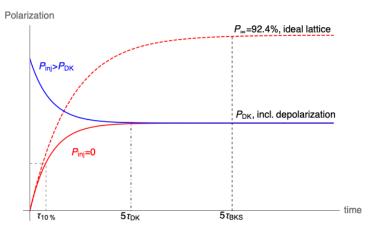
- Beam energy calibration via the resonant depolarization technique
- Essential for precision measurements of Z and
 W properties
- At least 5% ~ 10% vertical polarization, for both

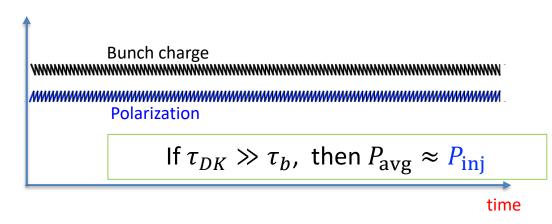


•

L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995).

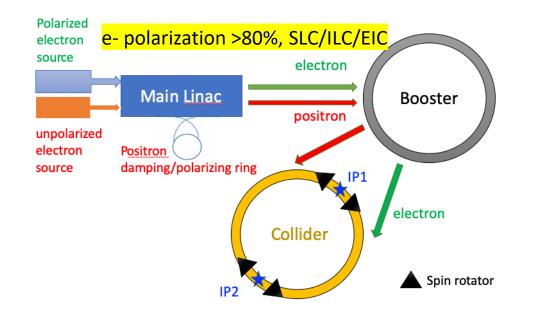
Longitudinally polarized beams at IPs


- Beneficial to colliding beam physics programs at Z, W and Higgs
- Figure of merit: Luminosity * f(Pe+, Pe-)
- ~50% or more longitudinal polarization is desired, for one beam, or both beams


- Supported by National Key R&D Program 2018-2023 to design longitudinally polarized colliding beams at Z-pole.
- The study in this presentation is based on CEPC CDR lattice & parameters.
- Will be included as a Chapter in the Appendix in the CEPC TDR.

Beam polarization in the collider rings

• Non-colliding "pilot" bunch: decay mode


Colliding bunch: top-up injection

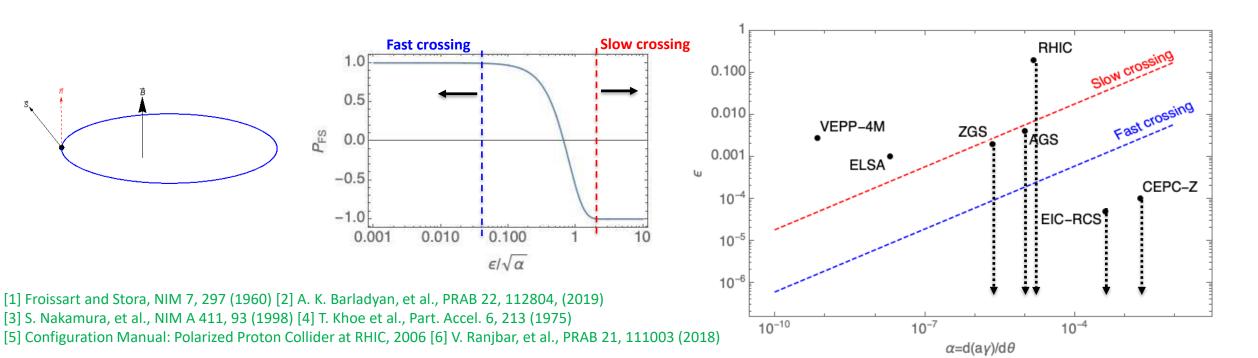
- Injection of polarized beams is required
 - to achieve high-level longitudinal polarization without significantly sacrificing luminosity
 - also benefits resonant depolarization measurements w/ pilot bunches.

CEPC CDR parameters	45.6 GeV (Z, 2T)	80 GeV (W)	120 GeV (Higgs)
Polarization build-up time w/o radiative depolarization $ au_{BKS}$ (hour)	256	15.2	2.0
Beam lifetime $ au_b$ (hour)	2.5	1.4	0.43
$P_{\rm DK}$ required to realize $P_{\rm avg} \ge 50\%$ in top-up mode, if $P_{\rm inj} = 80\%$	0.6%	5%	11%

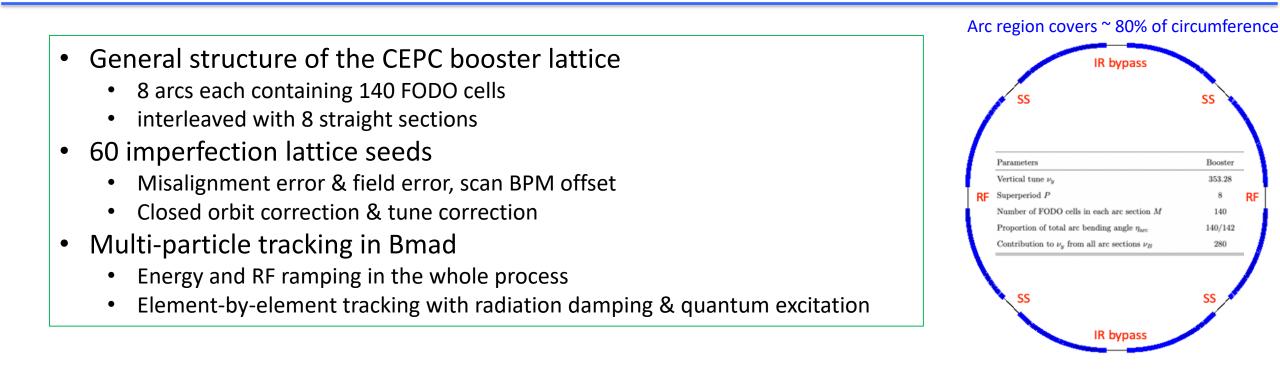
Preparation and injection of polarized beams

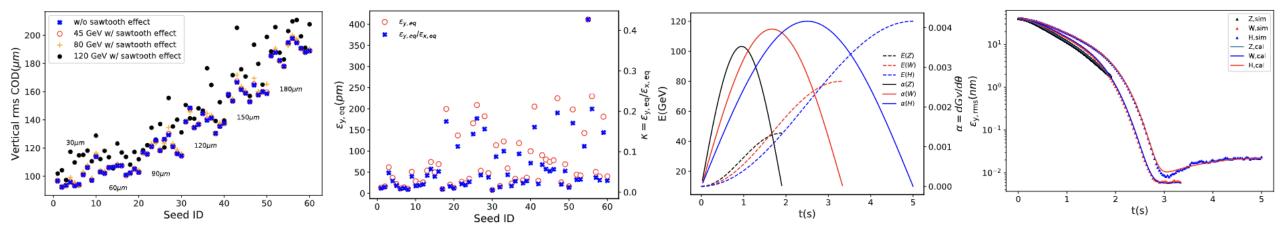
Aspect	Key issue	Pages in this presentation
Polarized beam acceleration in booster	How serious is depolarization, possible mitigation? [1,2]	6-10
Equilibrium beam polarization in collider rings	What are the mechanisms of radiative depolarization?[3]	11
Resonant depolarization	How to generate polarized e+ beam?[1]	12-14
Longitudinally polarized colliding beams	How to design spin rotators in the collider rings?[1,4]	15

[1] Z. Duan, talk on eeFACT 2022, FCC EPOL Workshop 2022;

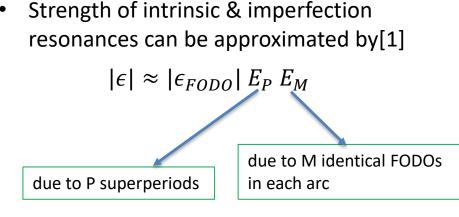

[2] T. Chen, Z. Duan, D. H. Ji, D. Wang, arXiv:2302.05321v1 [physics,acc-ph]

[3] W. H. Xia, Z. Duan, D. P. Barber, Y. W. Wang, B. Wang, J. Gao, arXiv:2204.12718v1 [physics.acc-ph], submitted to PRAB

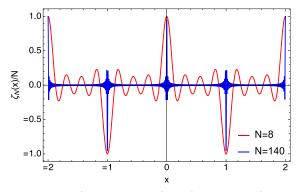

[4]W. Xia, Z. Duan, J. Gao and Y. W. Wang, RDTM (2022) doi: 10.1007/s41605-022-00344-2

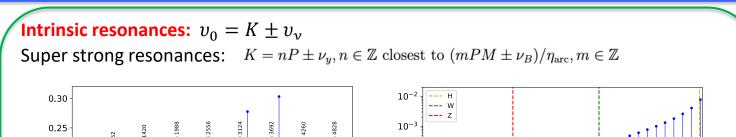

Depolarization in the booster

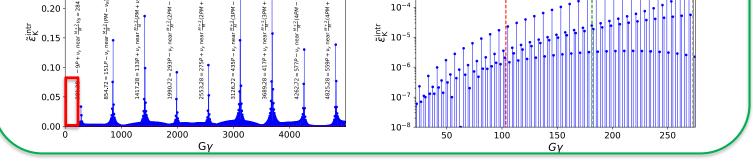
- The spin tune $v_s \approx a\gamma$ changes and could cross spin resonances $v_s = k + k_x v_x + k_y v_y + k_z v_z$
 - The spin resonances $v_0 = k$ are spaced by 440 MeV for e+/e-
- The non-adiabatic crossing could vary $J_s = \vec{S} \cdot \vec{n}$ and lead to depolarization [1]
 - Spin resonance strength ε
 - Acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} [\text{GeV/s}]C[\text{km}]$
- Polarization is maintained ($\Delta P < 1\%$) for the regimes of fast crossing & slow crossing

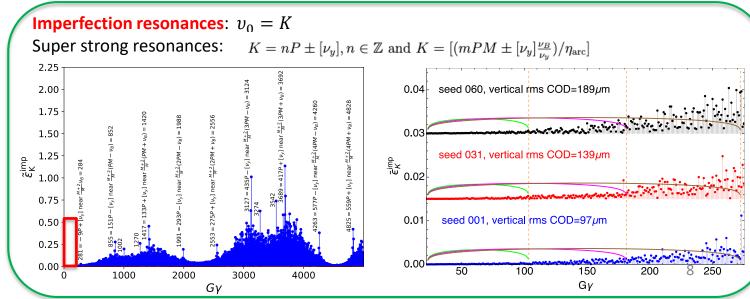


Setup of CEPC booster lattice

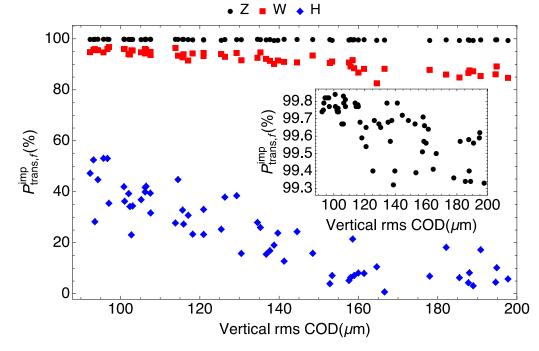



Spin resonance structure of CEPC Booster



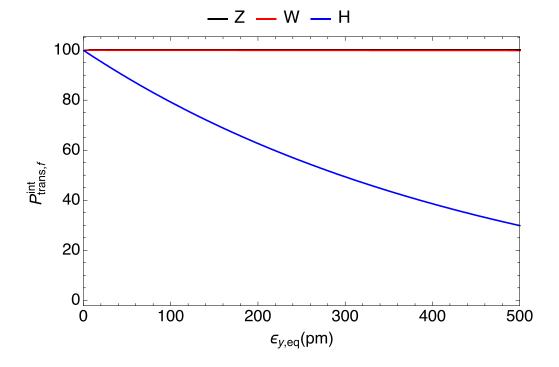

- Enhancement or cancellation occurs when specific conditions are met or not
- Resonances are generally weak within working beam energies of CEPC.

[1] S. Y. Lee, Spin dynamics and snakes in synchrotrons (World Scientific, 1997).


Estimation of depolarization with Froissart-Stora formula

$$P^{\rm imp}_{\rm trans}(t) \; \approx \; \prod_{K \leq G \gamma(t)} \frac{P_f}{P_i}(K, \alpha)$$

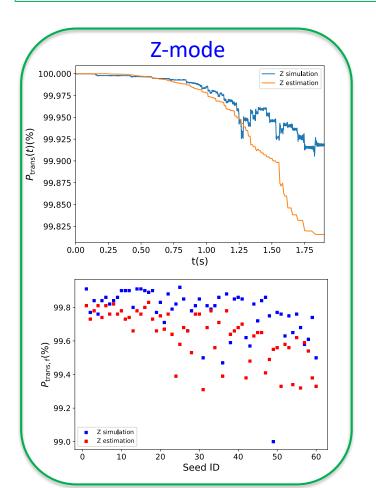
Assumption:

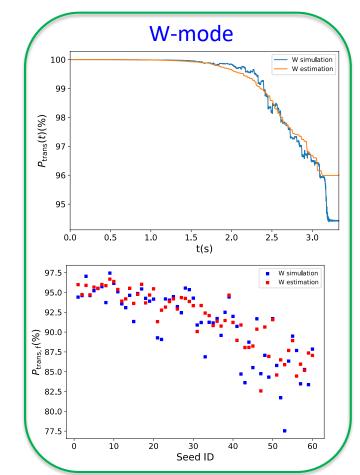

- single crossing of imperfection & intrinsic resonances
- there are no interference between resonance crossings

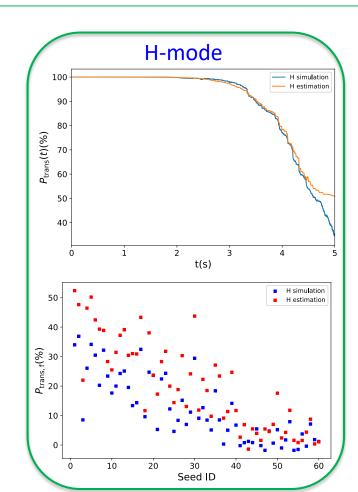
• Imperfection resonance

....

• Intrinsic resonance

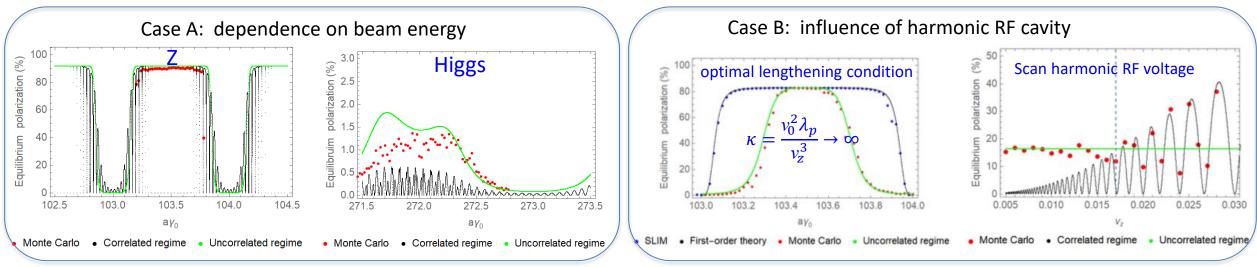

Depolarization effects: simulation vs. estimation


In the acceleration to Z & W


- The spin resonances are generally weak
- Polarization is mostly maintained
- Estimations agree fairly well with simulations

In the acceleration H

- The spin resonances become stronger at higher energies
- Severe depolarization occurs
- Mitigation methods to be explored



Radiative depolarization in the collider rings

• Two distinct spin diffusion mechanisms were proposed in [1] in 1970s, regarding the regimes of spin resonance crossing, in the combined effects of synchrotron oscillation and synchrotron radiation

Regime	Correlated regime	Uncorrelated regime
Condition	$\kappa = \frac{v_0^2 \lambda_p}{v_z^3} \ll 1$	$\kappa = rac{v_0^2 \lambda_p}{v_z^3} \ll 1$ is violated and $rac{v_0 \sigma_\delta}{v_z} \gg 1$
Theory	Non-resonant spin diffusion & perturbative treatment of $\frac{\partial \hat{n}}{\partial \delta}$	Resonant spin diffusion
Depolarization effect	Higher-order synchrotron sideband spin resonances	No dependence on v_z , weaker depolarization

 Monte-Carlo simulations were compared with these theories[2], showing a gradual evolution from the correlated regime to the uncorrelated regime in parameter scan, suggesting existing theories are incomplete, requiring further development

[1] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979) [2] W. H. Xia, Z. Duan, D. P. Barber, Y. W. Wang, B. Wang, J. Gao, arXiv:2204.12718v1 [physics.acc-ph], submitted to PRAB

e+ damping/polarizing ring

16/12/22 09.27.07

120.

50

100

- 0.50

0.45 0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

-0.05

•

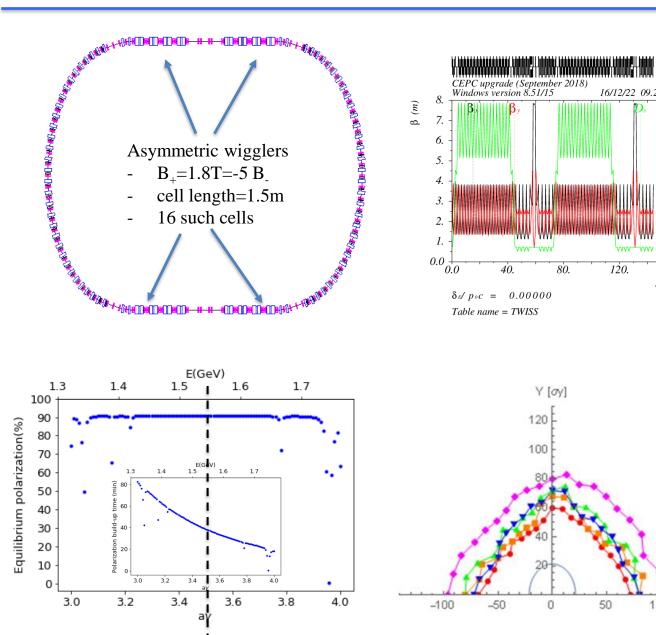
0.0

160. s (m)

D(m)

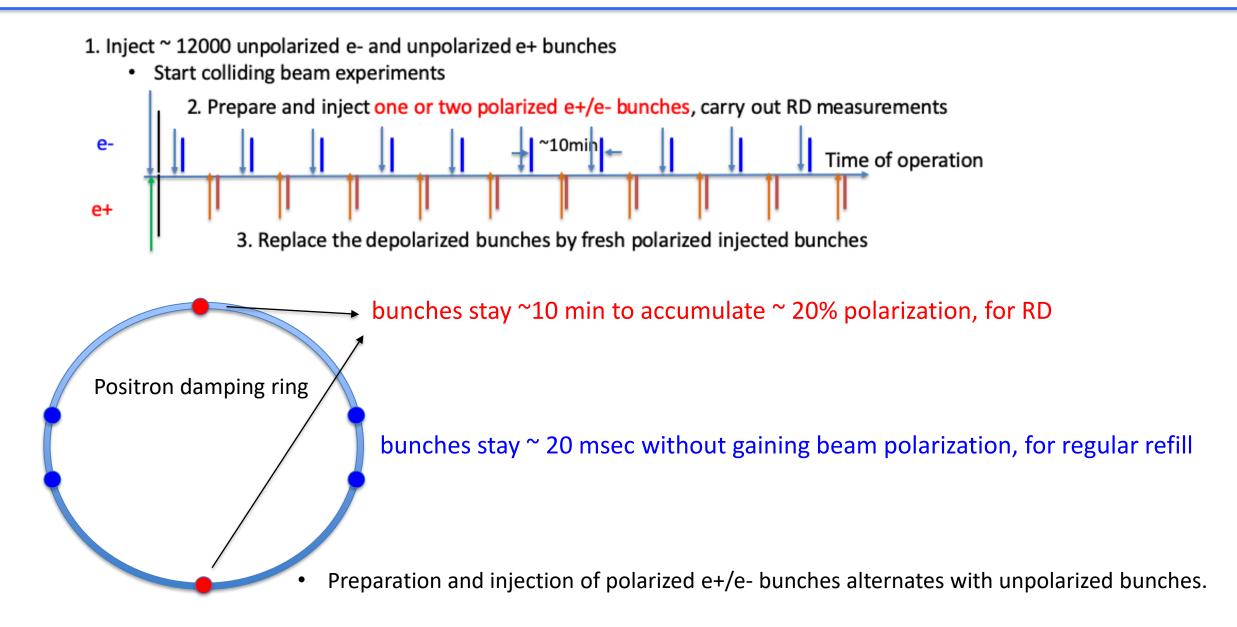
dp/p=-1.5%

dp/p=-1.0%


dp/p=1.0%

dp/p=1.5%

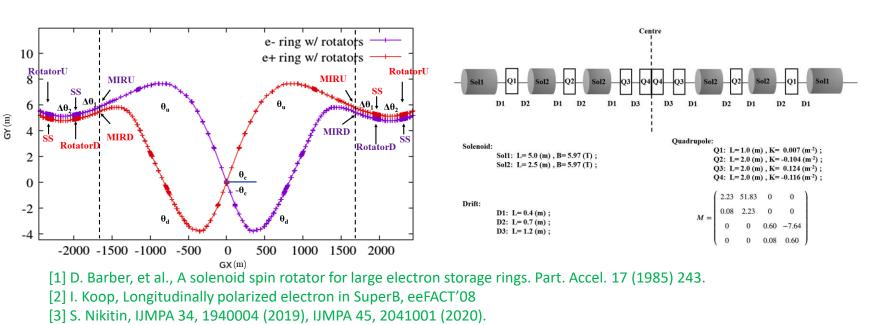
5*o*inj


X [ox]

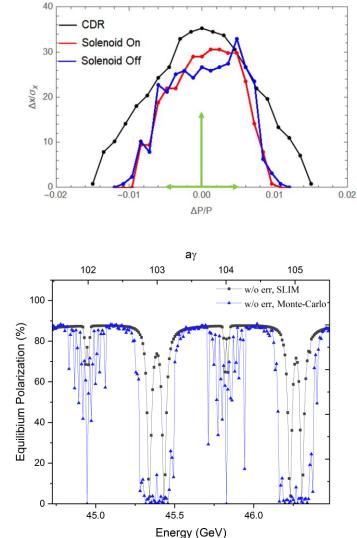
dp/p=0

DR V4.0	unj	polarized e	+	polarized e+
Energy (Gev)		1	.54	42
Circumference (m)		1	44	.2
Number of trains		/	2(4) +1(2)
Number of bunches/trian			1(2	2)
Total current (mA)			12.	4
Bending radius (m)			3.4	4
Dipole strength $B_0(T)$		-	1.0	7
Wiggler strength $B_+(T)$			1.8	3
Wiggler cell length (m)			1.5	5
U ₀ (kev/turn)		1	90	.9
Damping time x/y/z (ms)		7.77/	7.7	7/3.89
Momentum compaction		0	0.01	15
Storage time		20 ms		10 min
δ ₀ (%)		0	0.07	72
ε_0 (mm.mrad)			13	8
injection σ_{z} (mm)			6	
Extract σ_{z} (mm)		5.7		5.6
ε_{inj} (mm.mrad)		2	250	00
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)		151/15		138/14
$\delta_{inj}/\delta_{ext}$ (%)		0.18	3 /0	0.072
RF acceptance (%)			1.8	3
f _{RF} (MHz)			65	0
V _{RF} (MV)	3.95			
Longitudinal tune	0.044			

RD scenario & e+ damping/polarizing ring



What we can gain from injecting polarized beams for RD?


Scenarios o	f polarized beam generation	Self-polarization in the collider[1]	Injection of polarized beams[2]
Hardware	Polarized electron gun	None	Yes
	Asymmetric wigglers	In the collider	In the positron damping ring
Polarization	level	5% ~ 10%	> 70% for e-, > 20% e+
Dead time f	or physics	Initial 1~2 hours in each fill	None
Frequency of	of RD measurements	Every ~10 min per beam	More frequent for e- beam
RD on collid	ing beams	None	Possible, especially at lower bunch charge
Horizontal p precession	olarization for free spin method	Strong spin flipper in the collider	Spin rotator in the transfer line; much higher polarization

Spin rotators in the collider ring @ Z-pole

- Solenoid-based spin rotators
 - interleaved solenoid + quads [1] to cancel coupling effects
- Anti-symmetric insertion just outside interaction region [2,3,4]
- Influence[4]
 - Increase of circumference ~ 2.8 km, can be optimized
 - DA shrinks but still sufficient, can be further optimized
 - Depolarization is relatively weak near 45.6 GeV, confirmed by simulations
 - Cancellation of energy dependence with the anti-symmetric design

[4] . W. Xia, Z. Duan, J. Gao and Y. W. Wang, RDTM (2022) doi: 10.1007/s41605-022-00344-2

Summary

- For polarized beam applications at CEPC, we've studied the possibility of generating polarized beams from the source and injecting into the collider rings. Some key issues have been addressed
 - Beam polarization can be mostly preserved in the booster up to 45.6 GeV and 80 GeV.
 - Polarized e+ beam can be generated in the e+ damping/polarizing ring, for RD measurements.
 - Spin rotators have been implemented into the collider rings @Z-pole, with promising performance.
- Mechanisms of radiative depolarization effect still require further investigation.

Thank you for your attention!