

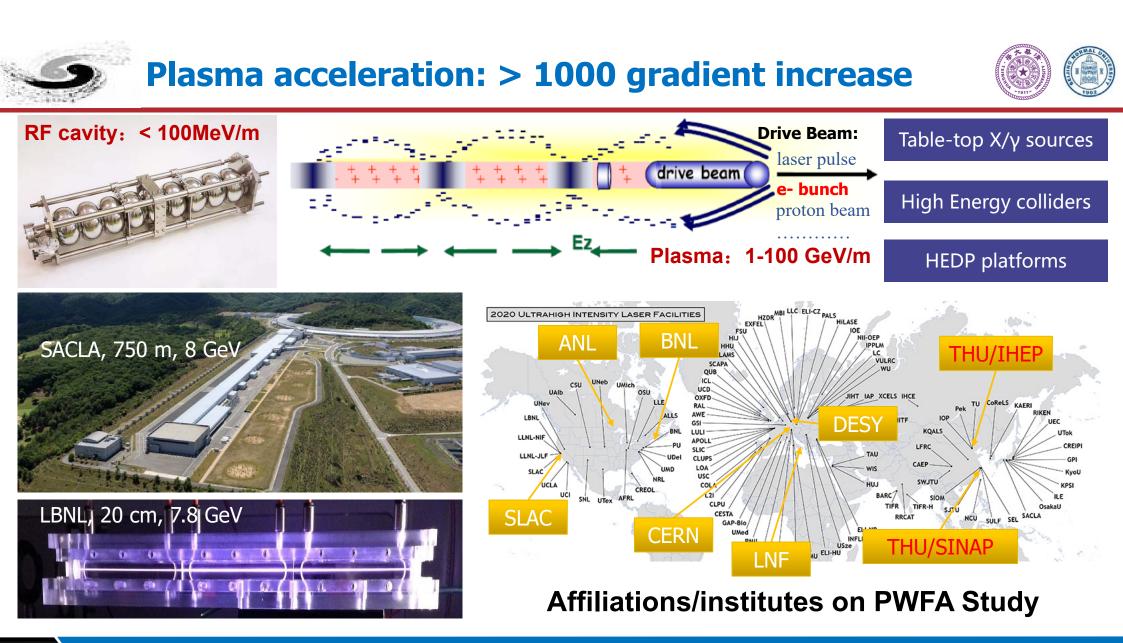
Lithium vapour

Wakefield acceleration

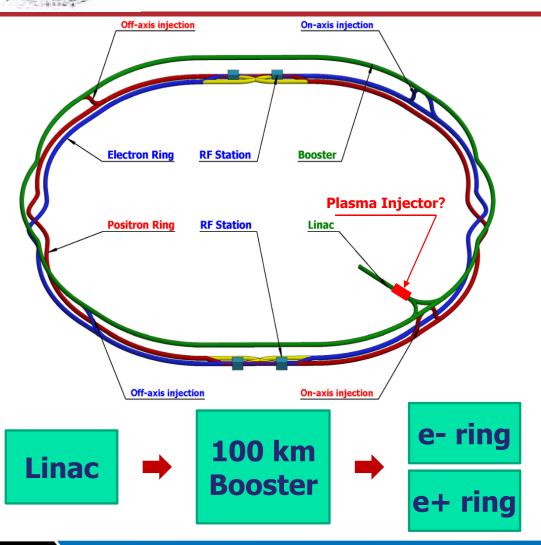
CEPC Plasma Injector Status and Test Facility Plan

Prof. Wei Lu, Dr. Dazhang Li, et al.

CE


On behalf of the IHEP-THU-BNU AARG team

- Introduction to CEPC & CPI
- Current status of CPI studies
- Roadmap and proposed test facilities



2023-HKIAS-CEPC Plasma Injector

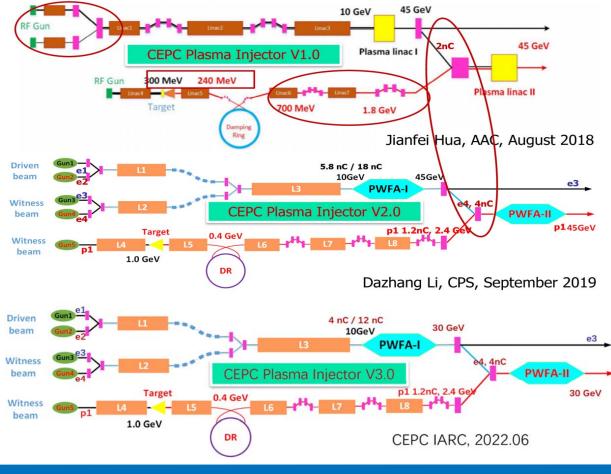
2023-02-15

100 km Booster \rightarrow Low field dipole problem

If the linac is only 10 GeV (as in CDR 2018)

- Min. magnetic field for a booster bending magnet = 28 Gs
- Field error < 28 Gs * 0.1% = 0.028 Gs
- Field reproducibility < 29 Gs*0.05% = 0.014 Gs
- The Earth field ~ 0.2-0.5 Gs, the remnant field of silicon steel lamination ~ 4-6 Gs.

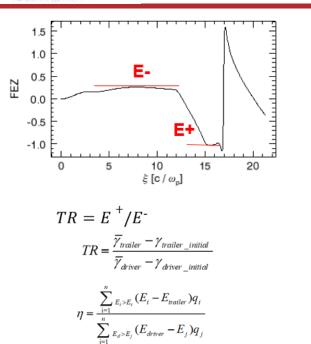
Either use the new type magnet, or increase the linac energy: ~1B RMB cost rise !!


CPI: CEPC Plasma Injector, since 2017

Use a \sim 10m plasma accelerator to boost the beam energy from 10 GeV to 30 GeV, or even higher

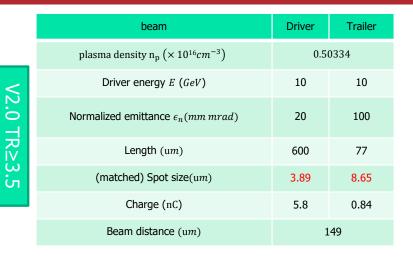
1st collaborated group meeting on 2017. 03 1st KEY conclusion: use PWFA not LWFA! IHEP+THU+BNU, 15+ staffs and 20+ PhDs

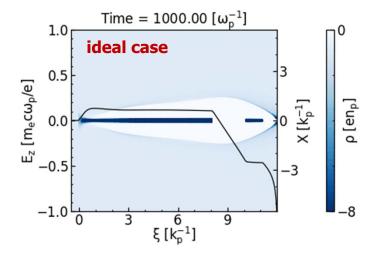
Introduction to CEPC & CPI

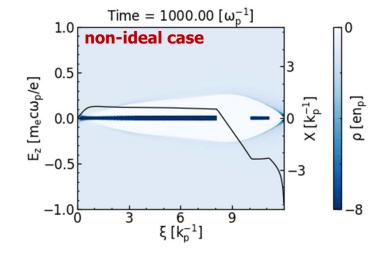

- Current status of CPI studies
- Roadmap and proposed test facilities

2023-HKIAS-CEPC Plasma Injector

2023-02-15


CPI e- acceleration: Transformer Ratio (TR)



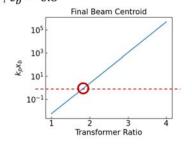

For CPI V1.0 and V2.0 TR ≥ (45.5-10)/10=3.55

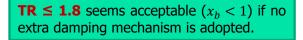
For CPI V3.0 TR ≥ (30-10)/10=2

Accelerating distance (m)	10.65
Trailer energy E(GeV)	45.5
Normalized emittance $\epsilon_n(mm mrad)$	98.44
Charge(nC)	0.84
Energy spread $\delta_E(\%)$	0.56
Efficiency (%) (driver \rightarrow trailer)	59.1

2023-HKIAS-CEPC Plasma Injector

2023-02-15

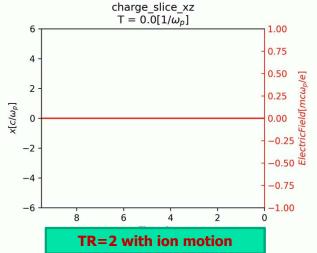

CPI e- acceleration: Transformer Ratio (TR)



- Transformer ratio R, Energy transfer efficiency 60%
- + $Q_w = 1$ nC, $Q_d = 1.67 R$ nC, Beam size σ_r
- Initial noise level $\sim \frac{\sigma_r}{\sqrt{N}} = \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5}$
- Drive beam length $k_p L_d \sim 2R$
- Witness beam length $k_p L_w \sim 1$
- Initial energy γ_0
- Accelerating distance $k_p s \sim \gamma_0 R$
- We can obtain the final beam centroid of the witness beam at the end of the acceleration

$$\succ x_b \sim \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5} \times e^{1.3\left(\frac{\gamma_0}{2}\right)^{\frac{1}{6}} c^{\frac{1}{3}} c^{\frac{1}{3}}_b R^{\frac{1}{3}} \left(\sqrt{2}R + \frac{1}{\sqrt{2}}\right)^{\frac{2}{3}}}$$

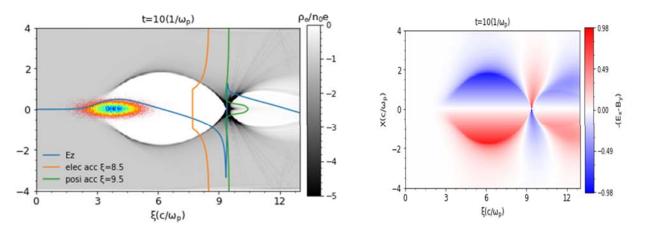

For a 10GeV driver, beam size $k_p \sigma_r = 0.2$, c=0.7, $c_p = 0.8$

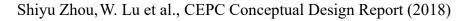


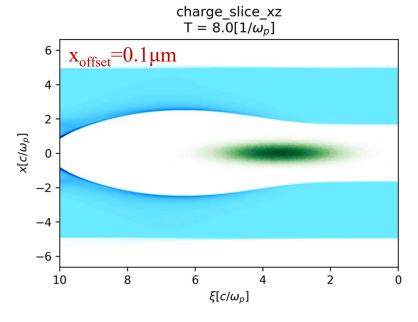
CEPC injector's baseline was changed: 10 GeV \rightarrow 30 GeV \rightarrow TR \geq 2

Ion motion can significantly decrease the hosing instability

CPI e- acceleration: error tolerance analysis

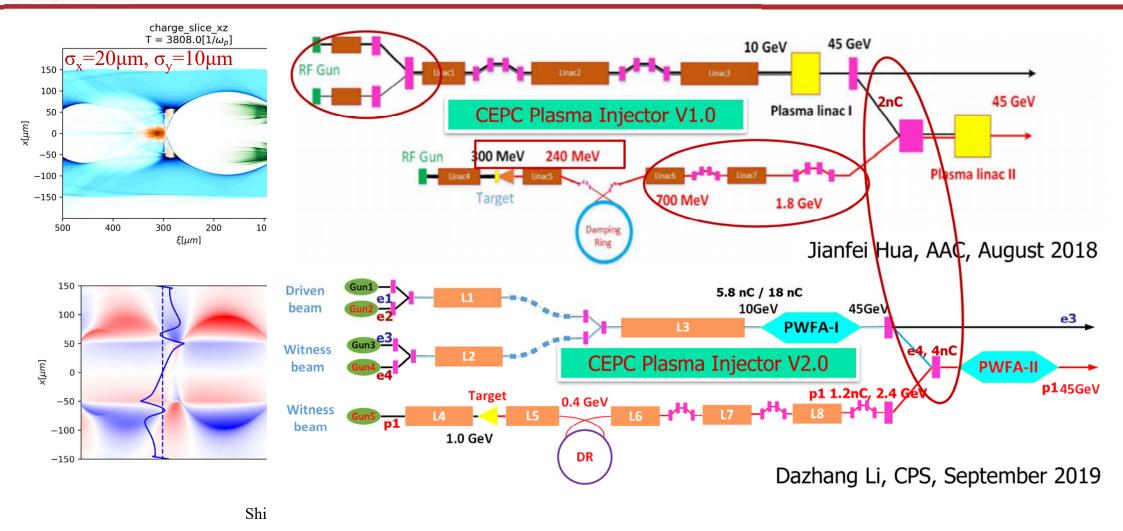





A "perfect" wakefield means:

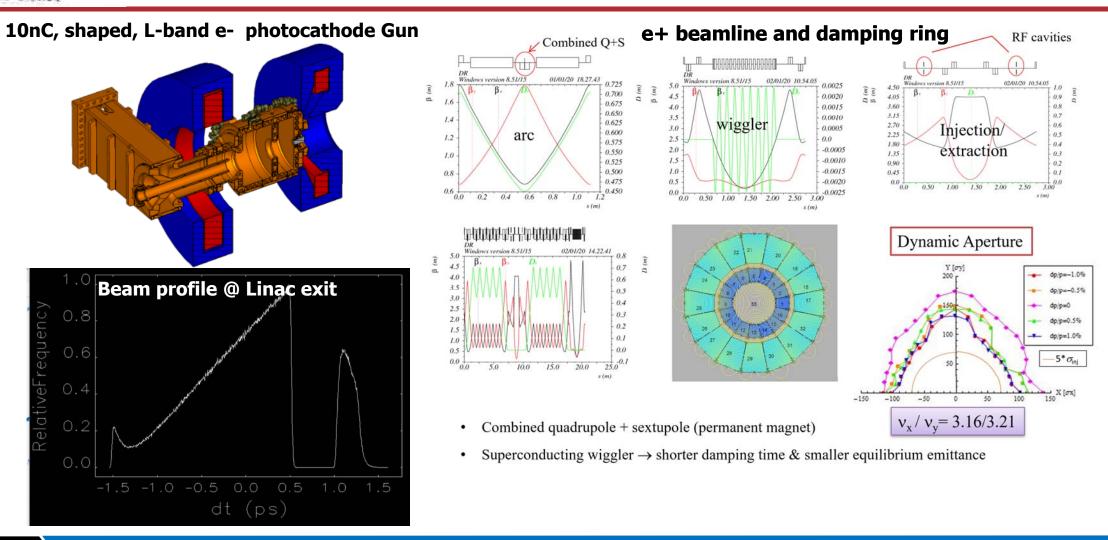
- > Flat longitudinal wakefield, particles at different position experience same Ez
- > Transverse wakefield can provide focusing forces to the accelerated particles

So, the blowout wakefield in uniform plasmas is quite fit for e- acceleration, while unfit for e+ acceleration

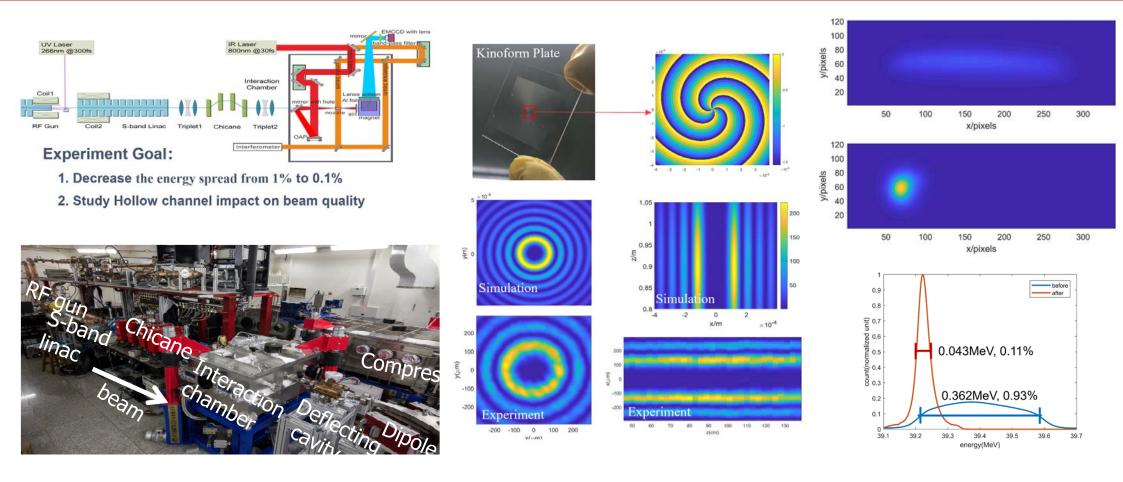


- High efficiency 60%
- Low energy spread ~0.5%
- **Small emittance growth**
- Need e- driver, e+ trailer and plasma channel exactly coaxial

CPI e+ acceleration: stable & high efficiency



2023-HKIAS-CEPC Plasma Injector



Key technique – passive plasma dechirper

Yipeng, Wu et al., PRL 122 204804 (2019); Dr. Shuang Liu's PhD Thesis (2020)

2023-HKIAS-CEPC Plasma Injector

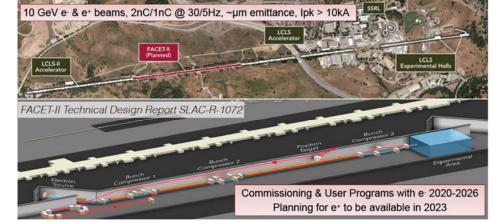
- Introduction to CEPC & CPI
- Current status of CPI studies
- Roadmap and proposed test facilities

2023-HKIAS-CEPC Plasma Injector

2023-02-15

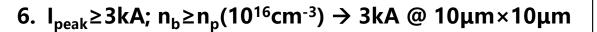
Key	/ issues	Preliminary study/ Conceptual design	Detailed and convincing simulations / designs	Experiment test / Prototype
	HTR	\checkmark	\checkmark	×
e- PWFA	Beam quality preservation	\checkmark	\checkmark	×
	Error analysis	\checkmark	×	×

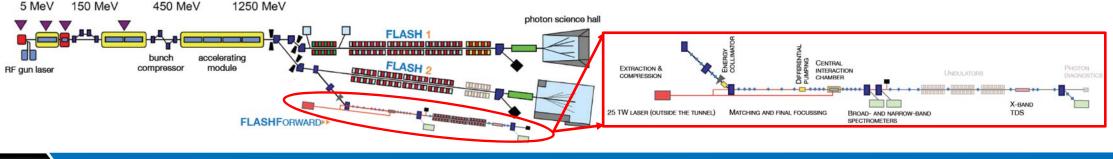
Biggest uncertainty: lack of experimental test


Need a dedicated PWFA test facility for CPI!

	веантропертезстуацон	v	~	~
Conv. acc. physics	Beam merging	\checkmark	×	×
and techniques	Instrumentation	\checkmark	×	×
	Timing synchronization	\checkmark	×	×
	Positron beamline	\checkmark	\checkmark	×
	Plasma dechirper	\checkmark	\checkmark	\checkmark
Plasms source and	Plasma lens	×	×	×
beam manipulation	Plasma sources	\checkmark	\checkmark	×
	Staging	\checkmark	×	×

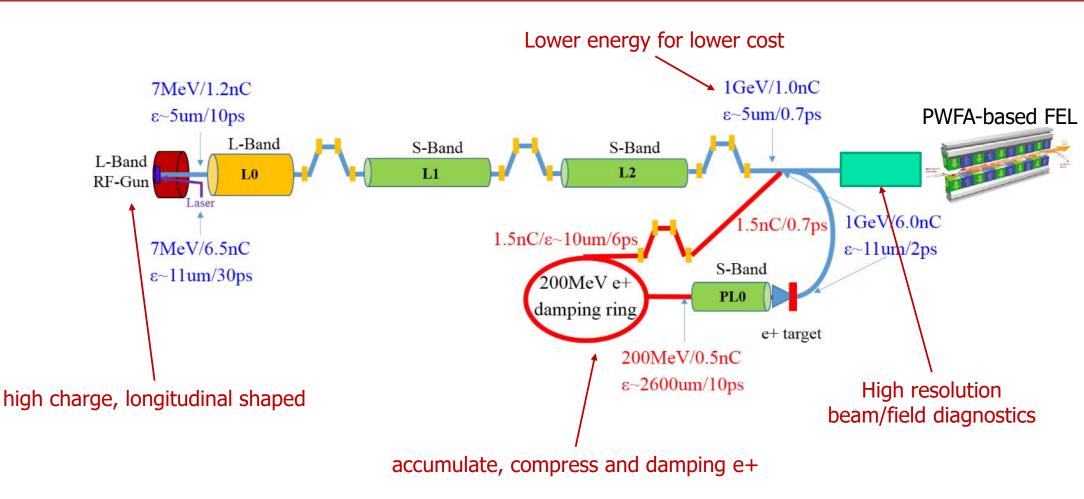
Principles of CPI TF: unique and cost-effective



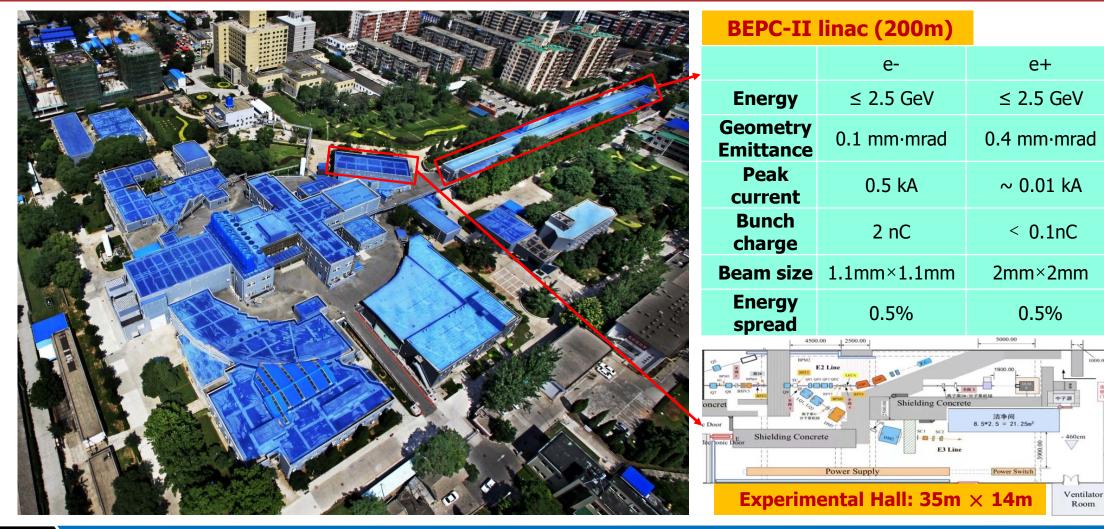


Electron Beam Parameter	Baseline Design	Operational Ranges	Positron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5	Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	2	0.7-5	Charge per pulse [nC]	1	0.7-2
Repetition Rate [Hz]	30	1-30	Repetition Rate [Hz]	5	1-5
Norm. Emittance γε _{x,y} at S19 [μm]	4.4, 3.2	3-6	Norm. Emittance yex,y at S19	10, 10	6-20
Spot Size at IP σx,y [µm]	18, 12	5-20	Spot Size at IP σx,y [µm]	16, 16	5-20
Min. Bunch Length oz (rms) [µm]	1.8	0.7-20	Min. Bunch Length oz (rms)	16	8
Max. Peak current Ipk [kA]	72	10-200	Max. Peak current Ipk [kA]	6	12

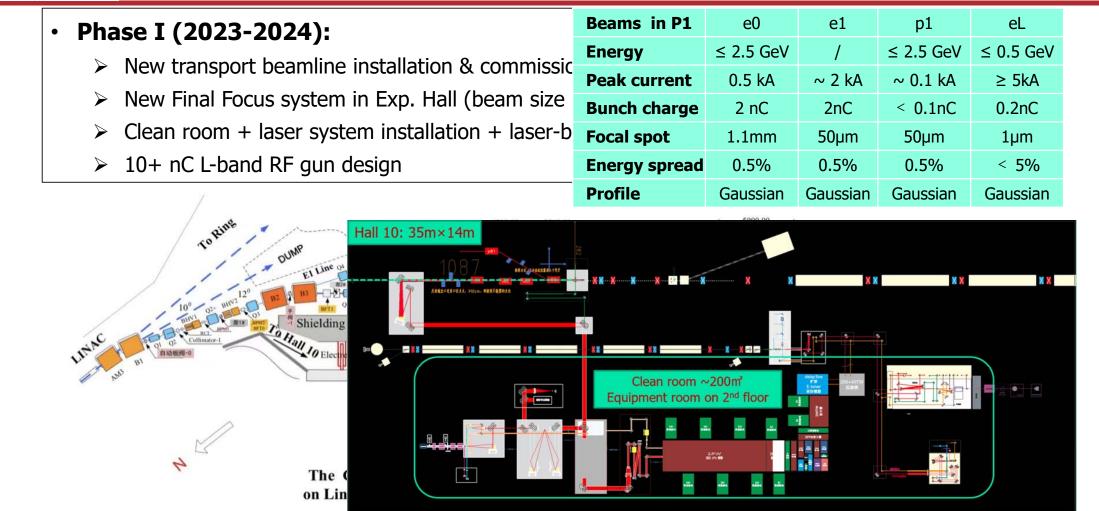
Principles of CPI TF


- 1. MUST including e+ beamline
- 2. High charge (10+ nC) L-band RF Gun needed
- 3. Staging of different types of accelerators
- 4. As low energy (cost) as possible
- 5. PWFA-based FEL studies included

2023-HKIAS-CEPC Plasma Injector


2023-HKIAS-CEPC Plasma Injector

2023-02-15


PWFA TF based on BEPC-II linac (~100M CHY)

Timetable for Exp. Hall re-construction

• Phase II (2025-2027):

- L-band RF gun fabrication and test
- Beam, plasma and laser diagnostics system installation
- > PWFA experiments with moderate intensity e- beam

• Phase III (2027-):

▶ RF gun installation and linac upgrade (beam size 0.1 mm \rightarrow 0.01 mm, peak current 2 kA \rightarrow 6 kA)

2023-HKIAS-0	2023-HKIAS-CEPC Plasma Injector			2023-02-	15	20
	Profile	Gaussian	triangle	Gaussian	Gaussian	
	Energy spread	0.5%	/	/	< 5%	
	Focal spot	50µm	< 10µm	< 20µm	1µm	
	Bunch charge	2nC	10 nC	~ 1 nC	0.2nC	
	Peak current	~ 2 kA	≥ 6 kA	~ 3 kA	≥ 5kA	
 PBA based FEL studies 	Energy	/	≤ 2.5 GeV	~ 0.6 GeV	≤ 0.5 GeV	
 New e+ beamline installation (damping ring PWFA experiments with e+ beam and high i 		e1	e2	p2	eL	

Key issues studied at different phase (not only for C

Phase I	e0	e1	p1	eL	
Energy	\leq 2.5 GeV	/	\leq 2.5 GeV	\leq 0.5 GeV	
Peak current	0.5 kA	~ 2 kA	~ 0.1 kA	≥ 5kA	e- PWFA
Bunch charge	2 nC	2nC	< 0.1nC	0.2nC	C 1 117
Focal spot	1.1mm	50µm	50µm	1µm	
Energy spread	0.5%	0.5%	0.5%	< 5%	e+ PWF
Profile	Gaussian	Gaussian	Gaussian	Gaussian	
Phase II & III	e1	e2	p2	eL	
Energy	/	\leq 2.5 GeV	~ 0.6 GeV	\leq 0.5 GeV	Conv. ac
Peak current	~ 2 kA	≥ 6 kA	~ 3 kA	≥ 5kA	physics a
Bunch charge	2nC	10 nC	~ 1nC	0.2nC	technique
Focal spot	50µm	< 10µm	< 50 µm	1µm	
Energy spread	0.5%	/	/	< 5%	
Profile	Gaussian	triangle	Gaussian	Gaussian	Plasms sou

Re	driver	trailer		
e- PWFA	① blowout acc.	e1 or eL		
e- PWFA	③ HTR acc.	e2	e1 or eL	
e+ PWFA	1 acc. structure	e1	/	
	1 preliminary acc.	eL	p1	
	③ High quality acc.	e2	p2	
	② L-band RF gun test	/	/	
	③ Beam profile	e2	/	
Conv. acc.	① Beam merging	e1/eL		
physics & techniques	② Instrumentation	eL	/	
	② Synchronization	eL	e1/e2	
	③ e+ beamline	p2	/	
_	 Dechirper 	e1/eL	/	
Plasms source	2 Plasma lens	/	/	
and beam manipulation	① Plasma sources	/	/	
	③ Staging	e1,	e2, eL	

Summaries and prospects

CPI e- acceleration

- New baseline for CPI e- acceleration fixed (10 GeV \rightarrow 30 GeV, TR \sim 2)
- Overall start-to-end simulation is ongoing, will get results before TDR
- No extra damping mechanisms besides ion motion are considered. TR≥3 is still active and investigated

CPI e+ acceleration

- Asymmetry beam scheme is well accepted
- More schemes are studied, for example, TR~2 e+ acceleration

Experiments studies recovered now, waiting for beamtime

- Plasma dechirper experiment got good results, and experiment on SXFEL is ongoing.
- A dedicated TF for PWFA is crucial, and a TF based on BEPC-II is in promoted step by step
- CPI is still at conceptual design stage, and still has a big gap to TDR or EDR stage compared with other mature systems. No showstoppers till now
- CPI is a middle step, not a finish line. HTR (TR≥3) + Staging = 120/180 GeV Full energy injection, even future PWFA collider !

22

Thank you!

