Overview of the CEPC Project

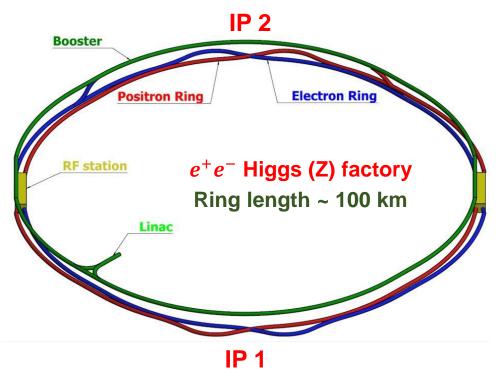
Haijun Yang (for the CEPC study group)

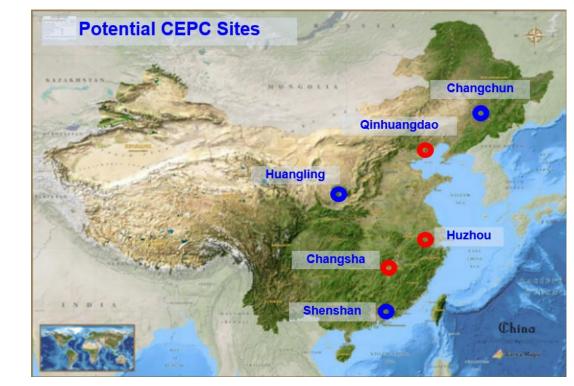
HKUST IAS HEP Program, February 12 – 16, 2023

Introduction to CEPC

- Goal and Plan
- Consensus on e⁺e⁻ Higgs Factory

Highlights of CEPC R&D

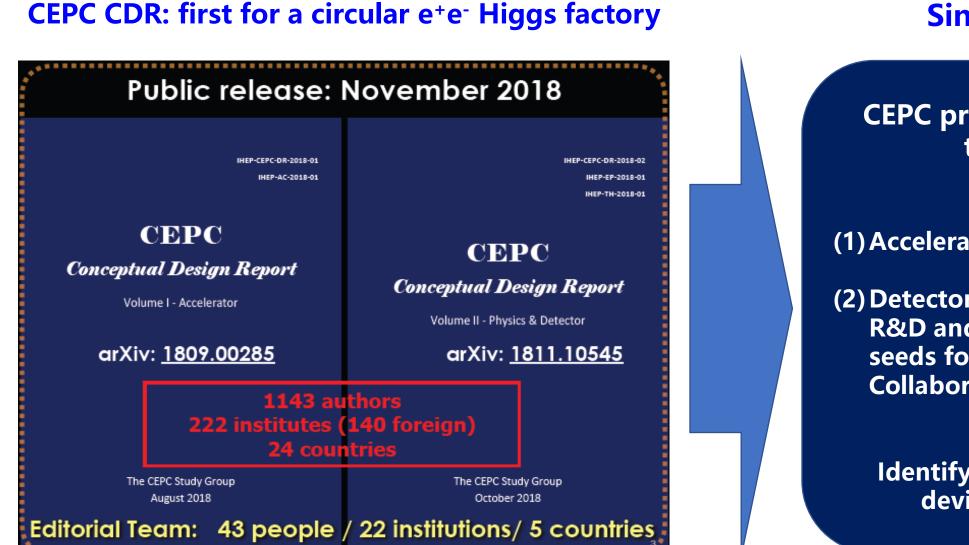

- Physics Program
- Accelerator R&D
- Detector R&D
- Project Global Aspects
 - Core Team, Institutions, Internationalization
 - Funding for R&D and Industrial Engagement
 - Project Cost Estimation and Sharing
 - Project Timeline
- Summary and Prospect



Circular Electron Positron Collider (CEPC)

- □ CEPC is an e⁺e⁻ Higgs factory producing Higgs / W / Z bosons and top quarks, aims at discovering new physics beyond the Standard Model
- Proposed in 2012 right after the Higgs discovery
- □ Proposed to commence construction in ~2026 and start operation in 2030s.
- **Upgrade:** Super pp Collider (SppC) of $\sqrt{s} \sim 100$ TeV in the future.

CEPC Major Milestones



4

Since 2019

CEPC project with R&D towards

(1) Accelerator TDR (2023)

(2) Detector key technologies R&D and establishment of seeds for International Collaborations

Identify challenges and devise solutions

Consensus in HEP Community for e⁺e⁻ Higgs Factory

The scientific importance and strategical value of an e⁺e⁻ Higgs factory is clearly identified.

2020

Clear consensus in HEP community

2013, 2016: the CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

An electron-positron Higgs factory is the highest-priority next collider for the

longer term, the European particle physics community has the ambition to operate

a proton-proton collider at the highest achievable energy. Accomplishing these

compelling goals will require innovation and cutting-edge technology:

Community Summer Study SN WMASS July 17-26 2022, Seattle

Seattle Snowmass Summer Meeting 2022

Conclusion from Executive Summary

Given the strong motivation and existence of proven technology to build an <u>e*e</u>-Higgs Factory in the next decade, the US should participate in the construction of any facility that has firm commitment to go forward.

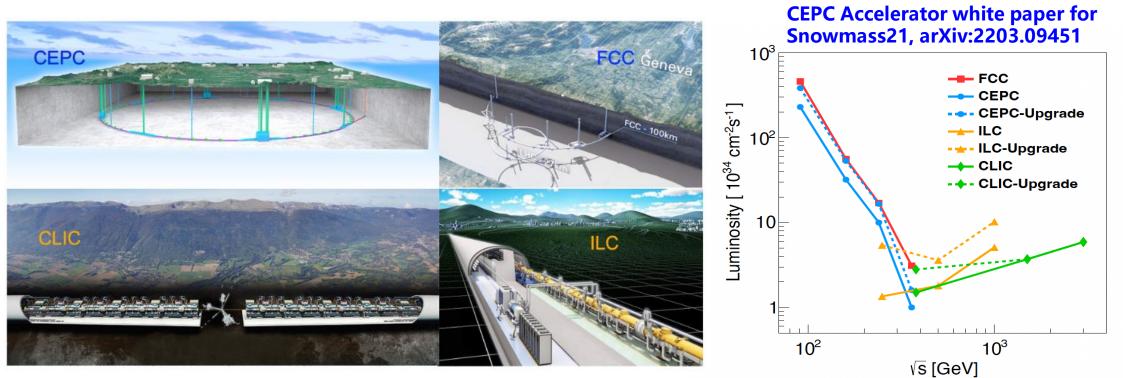
The e^+e^- colliders are the vehicle that will enable a high-precision physics program in the EW sector by increasing the precision of SM measurements. The physics case for an e^+e^- Higgs factory is compelling and the program is possible essentially with current technology. The various proposed facilities have a strong core of common physics goals that underscores the importance of realizing at least one such collider somewhere in the world. A timely implementation of a Higgs factory is important, as there is considerable US support for initiatives that can be achieved on a time scale relevant for early career physicists.

arXiv:2211.11084

Community Planning Exercise: Snowmass 2021

European Strategy

Update


In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals. Recently, the United States also proposed a new linear collider concept based on the cool copper collider (C3) technology [31].

6

CEP

Comparison with other international Higgs factories

CEPC has substantive advantage among mature e+e- Higgs factories (design report delivered)

Versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence)
- Lower cost: ~ ½ the construction cost with similar luminosity up to 240 GeV

Versus Linear Colliders

- Higher luminosity for Higgs and Z runs
- Potential upgrade for pp collider

Highlights of CEPC R&D

CEPC Physics Program (White Papers)

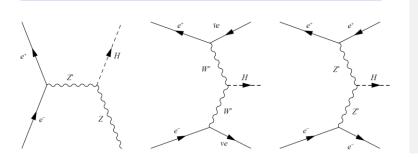
CEPC Operation mode		ZH	Z	W ⁺ W ⁻	ttbar
\sqrt{s} [GeV]		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	5.6	16	2.6	-
(,	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run time [years]		10	2	1	5
Latest	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
TDR	$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
(50MW)	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

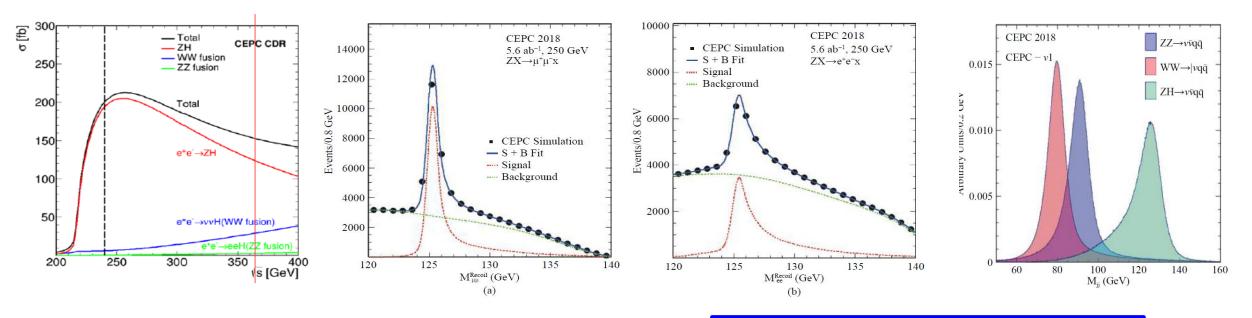
Physics similar to FCC-ee, ILC, CLIC

- ✤ 2019.3 Higgs White Paper published (CPC V43, No. 4 (2019) 043002)
- 2019.7 Workshop@PKU: EW, Flavor, QCD working groups formed
- 2020.1 Workshop@HKUST-IAS: Review progress, EW draft ready
- 2021.4 Workshop@Yangzhou: BSM working group formed
- ✤ 2022.5 Workshop of CEPC physics, software and detector
- 2022 Input for Snowmass study

arXiv:2205.08553

Yangzhou (2021)



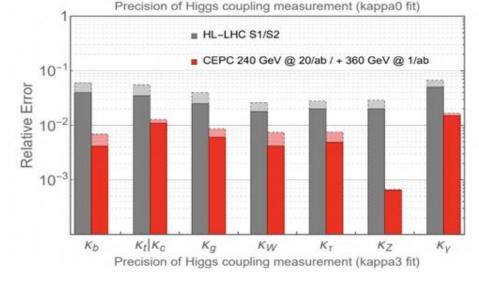

CEPC Physics Program (CDR)

e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
 Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified

Chinese Physics C Vol. 43, No. 4 (2019) 043002

***** O(100) Journal / arXiv papers



CEPC Physics Program

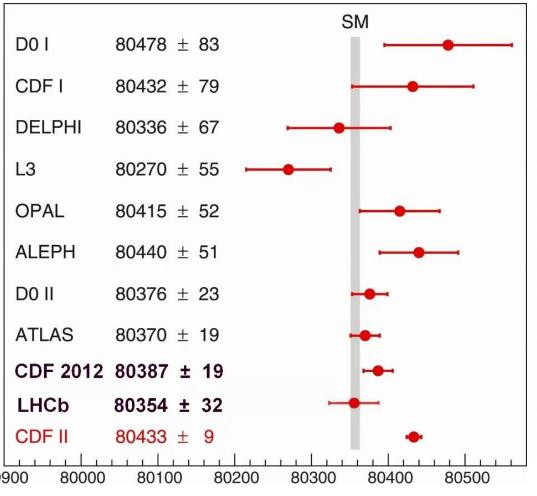


- Precision Higgs, EW, flavor physics & QCD measurements at unprecedented precision
- BSM physics (e.g. dark matter, EW phase transition, SUSY, LLP, ...) up to ~ 10 TeV scale

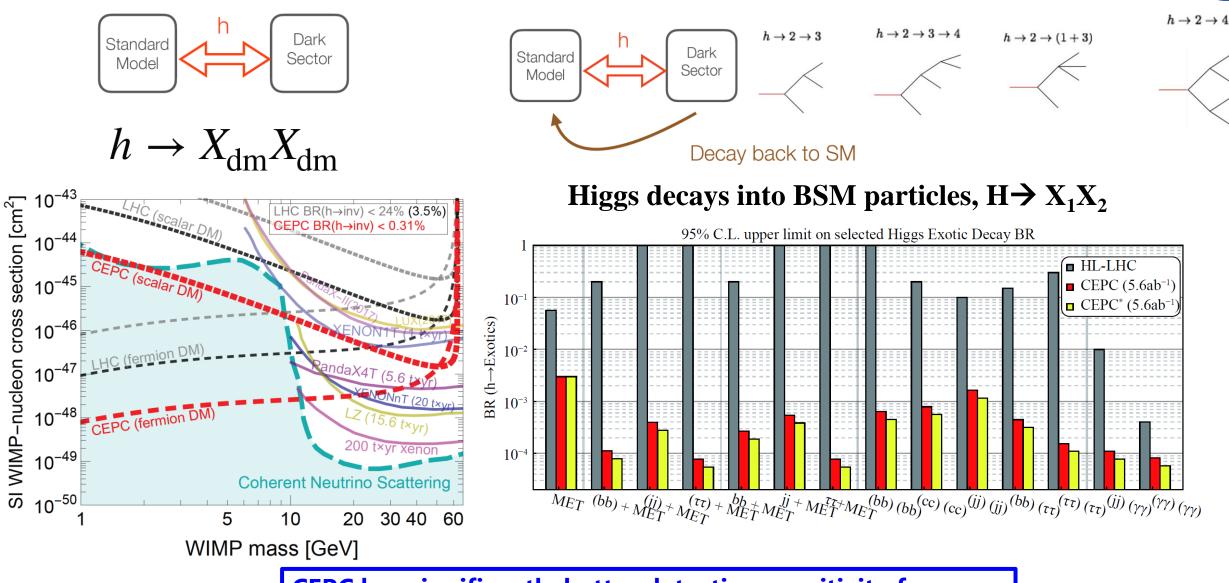
	$240{ m GeV},20{ m ab}^{-1}$		360	GeV, 1 a	ab^{-1}
	ZH	\mathbf{vvH}	ZH	\mathbf{vvH}	eeH
inclusive	0.26%		1.40%	\	\
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \rightarrow \gamma \gamma$	3.02%		11%	16%	
$H \rightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%			1.10%	

95% CL reach from SMEFT fit

arXiv:2205.08553


CEP

CEPC Physics Program: Higgs and EW

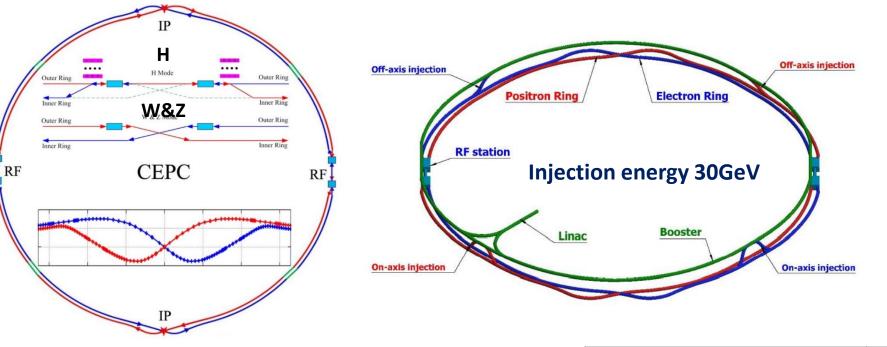

- Precision Higgs, EW, flavor physics & QCD measurements at unprecedented precision
- BSM physics (e.g. dark matter, EWPT, SUSY, LLP, ...) up to ~ 10 TeV scale

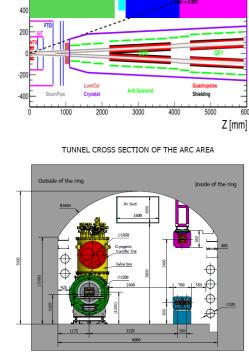
	main systematic	CEPC runs	CEPC precision (Stat. Unc.)	current precision	Observable
D0 I	E_{beam}	Z threshold	$0.1 { m ~MeV} (0.005 { m ~MeV})$	$2.1 { m MeV} [37-41]$	Δm_Z
CDFI	E_{beam}	Z threshold	$0.025 { m ~MeV} (0.005 { m ~MeV})$	$2.3 { m MeV} [37-41]$	$\Delta\Gamma_Z$
	E_{beam}	WW threshold	$0.5 { m ~MeV} (0.35 { m ~MeV})$	$9 { m MeV} [42-46]$	Δm_W
DELPH	E_{beam}	WW threshold	$2.0 { m ~MeV} (1.8 { m ~MeV})$	49 MeV [46–49]	$\Delta\Gamma_W$
L3		$t\bar{t}$ threshold	${\cal O}(10)~{ m MeV^a}$	$0.76 { m GeV} [50]$	Δm_t
20	Stat. Unc.	Z pole $(Z \to \tau \tau)$	$1.5{ imes}10^{-5}~(1.5{ imes}~10^{-5})$	4.9×10^{-3} [37, 51–55]	ΔA_e .
OPAL	point-to-point Unc.	Z pole $(Z \to \mu \mu)$	$3.5{ imes}10^{-5}~(3.0{ imes}~10^{-5})$	$0.015 \ [37, 53]$	ΔA_{μ}
ALEPH	tau decay model	Z pole $(Z \to \tau \tau)$	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	4.3×10^{-3} [37, 51–55]	$\Delta A_{ au}$
	QCD effects	Z pole	$20{ imes}10^{-5}~(3{ imes}10^{-5})$	$0.02 \ [37, 56]$	ΔA_b
D0 II	QCD effects	Z pole	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	$0.027 \ [37, 56]$	ΔA_c
ATLAS	lumiosity	Z pole	2 pb (0.05 pb)	37 pb [37-41]	$\Delta\sigma_{had}$
CDF 2	gluon splitting	Z pole	$0.0002~(5{ imes}10^{-6})$	$0.003 \ [37, 57-61]$	δR_b^0
	gluon splitting	Z pole	$0.001~(2{ imes}10^{-5})$	$0.017 \ [37, 57, 62-65]$	δR_c^0
LHCb	E_{beam} and t channel	Z pole	$2{ imes}10^{-4}~(3{ imes}10^{-6})$	$0.0012 \ [37-41]$	δR_e^0
CDF II	E_{beam}	Z pole	$1{\times}10^{-4}~(3{\times}10^{-6})$	$0.002 \ [37-41]$	δR^0_μ
/9900 8	E_{beam}	Z pole	$1 \times 10^{-4} (3 \times 10^{-6})$	0.017 [37-41]	$\delta R_{ au}^0$
	Calo energy scale	$ZH \operatorname{run} (\nu \nu \gamma)$	$2{ imes}10^{-4}~(3{ imes}10^{-5}$)	$0.0025 \ [37, \ 66]$	$\delta N_{ u}$

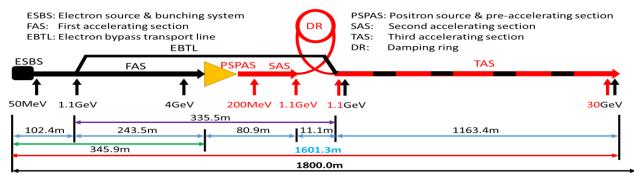
CEPC Physics Program: Discovery Potential

CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

Innovative Design	 > 100km Full/Partial Double Rings > Switchable operation for Higgs, W and Z > Flexible injection modes to satisfy different energies > World's 1st design of a high energy/flux γ-ray synchrotron light
Technical Performance	 High efficiency Klystron (aim at highest transfer efficiency) High performance SRF cavities (state-of-the-art Q and gradient) Novel magnets: Weak field dipole, dual aperture magnets (First Qualified Prototype)
Major Technology Breakthrough	 Plasma wakefield acceleration for Injector(New Acceleration Principle) High field superconducting magnet (Iron based HTS proposal)

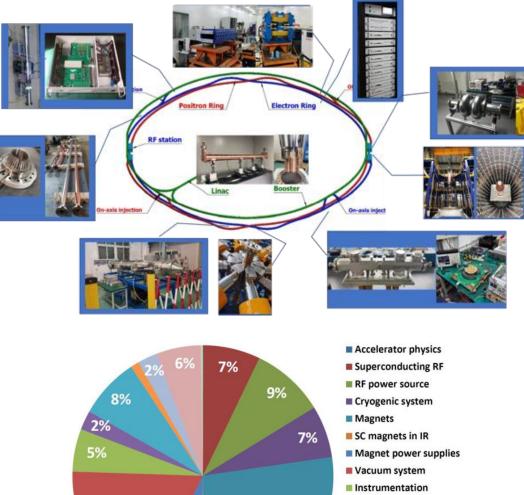

CEPC focuses on innovative designs and key technology R&D to fulfill the challenging design requirement !


CEPC Accelerator Design Improvement & TDR



Switchable operation for H & Z, W modes without hardware change.

CEPC TDR S+C-band 30GeV Linac Injector


Operation	n mode	ZH	Z	W⁺W⁻	tt
\sqrt{s} [G	eV]	~240	~91.2	158-172	~360
_	CDR (2018)	3	32	10	-
<i>L /</i> IP [×10 ³⁴ cm ⁻² s ⁻¹]	TDR (30MW)	5.0	115	16	0.5
[TDR (50MW)	8.3	191.7	26.6	0.8

800

Status of CEPC Accelerator R&D

- Control system
- Mechanical system
- Radiation protection
- Survey and alignment
- Linac and sources
- Damping ring

Specification Met

Prototype Manufactured

	Accelerator	Cost (billion CNY)	Ratio
✓	Magnets	4.47	27.3%
✓	Vacuum	3.00	18.3%
	RF power source	1.50	9.1%
<	Mechanics	1.24	7.6%
✓	Magnet power supplies	1.14	7.0%
√	SCRF	1.16	7.1%
✓	Cryogenics	1.06	6.5%
/	Linac and sources	0.91	5.5%
✓	Instrumentation	0.87	5.3%
<	Control	0.39	2.4%
	Survey and alignment	0.40	2.4%
✓	Radiation protection	0.17	1.0%
	SC magnets	0.07	0.4%
1	Damping ring	0.04	0.2%

27%

18%

7%

IHEP New SCRF Lab (PAPS) in Operation

CEPC SCRF Test Facility is located at IHEP Huairou Area (4500m²)

New SC Lab Design (4500m²)

SC New Lab (PAPS) has been put to operation in June 2021

Crygenic system hall

Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Temperature & X-ray

mapping system

Vacuum furnace (doping & annealing)

Second sound cavity

auench detection system

Nb3Sn furnace

Helmholtz coil for

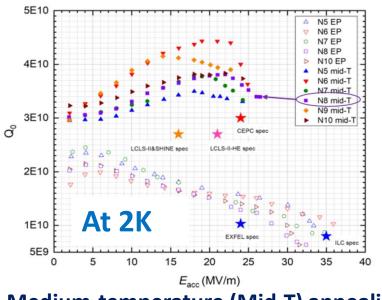
cavity vertical test

Vertical test dewars

Horizontal test cryostat

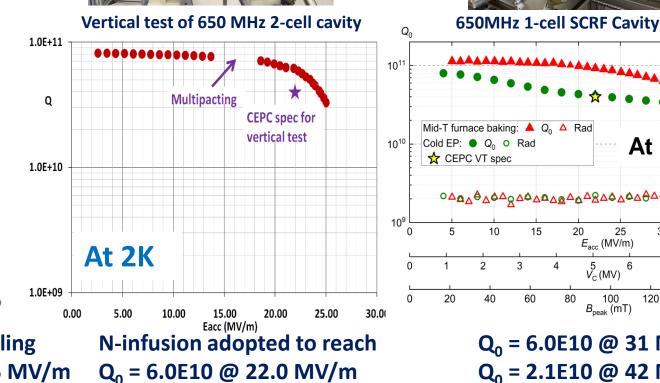
17

CEPC R&D: High Q SCRF Cavities

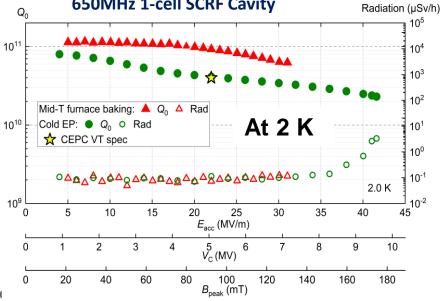

1.3 GHz 9-cell SCRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 MV/m$ \succ

- 650 MHz 2-cell SCRF cavity for collider ring: $Q_0 = 6.0E10 @ 22.0 MV/m$ \succ
- 650 MHz 1-cell SCRF cavity for collider ring: Q₀ = 6.0E10 @ 31.0 MV/m \succ

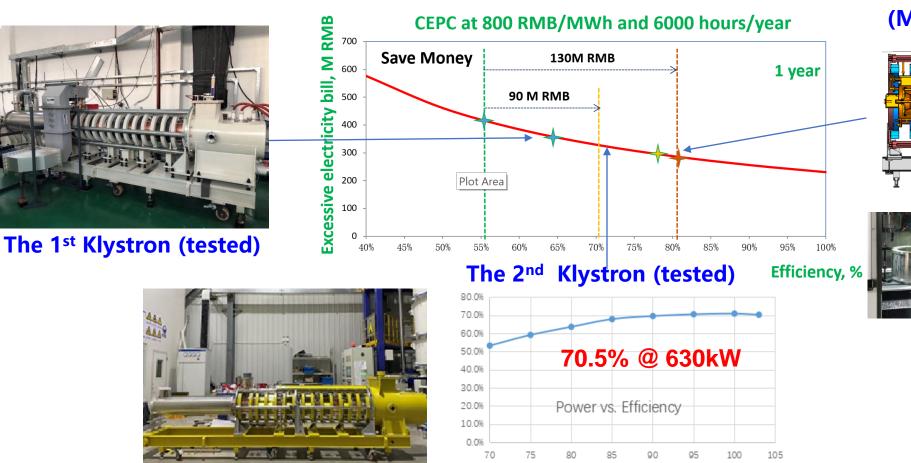
All SCRF satisfied CEPC design specifications !

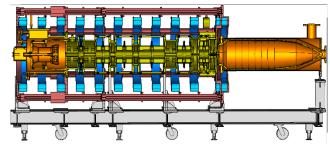


IHEP 1.3 GHz 9-cell Cavity Vertical Test



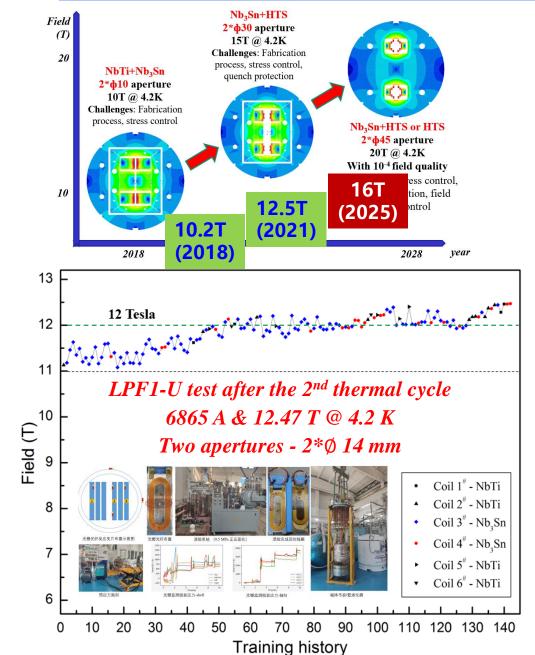
Medium-temperature (Mid-T) annealing adopted to reach $Q_0 = 3.4E10 @ 26.5 MV/m$

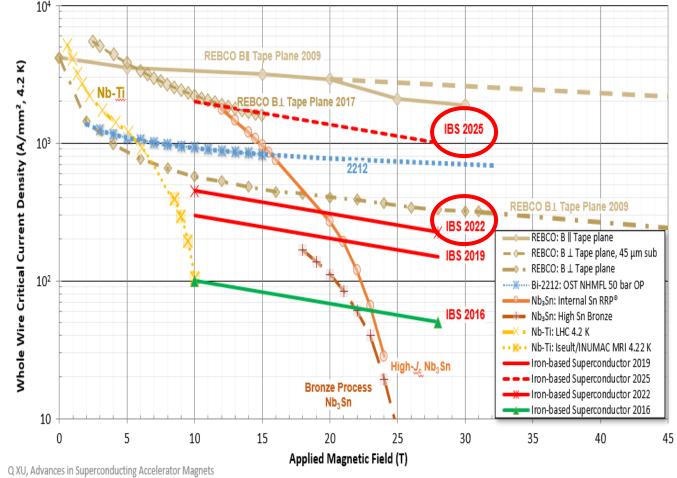

Q₀ = 6.0E10 @ 31 MV/m Q₀ = 2.1E10 @ 42 MV/m


CEPC R&D: High Efficiency Klystrons

- □ The 1st Klystron prototype, achieved efficiency ~ 65%.
- □ The 2nd Klystron prototype tested at PAPS in 2022, design eff. is 77%, achieved eff. ~ 70.5%
- □ The 3rd Klystron (MBK) is under fabrication, design eff. is ~ 80.5%.
- High efficiency Klystron helps to reduce electricity consumption.

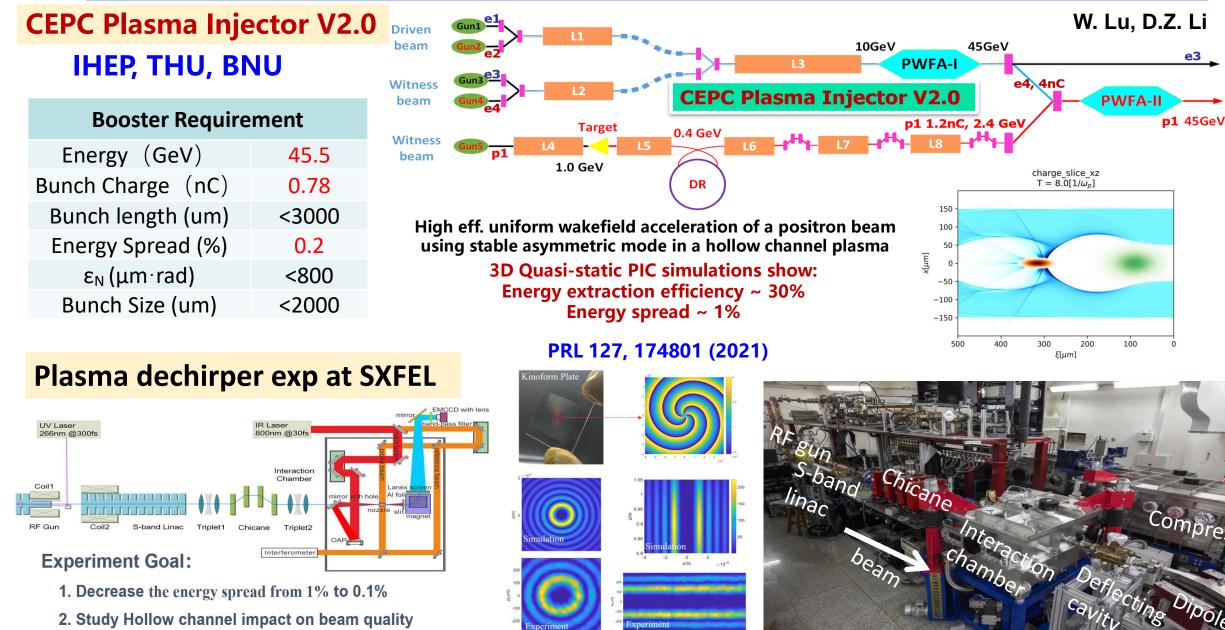
The 3rd multi-beam Klystron (MBK) under fabrication



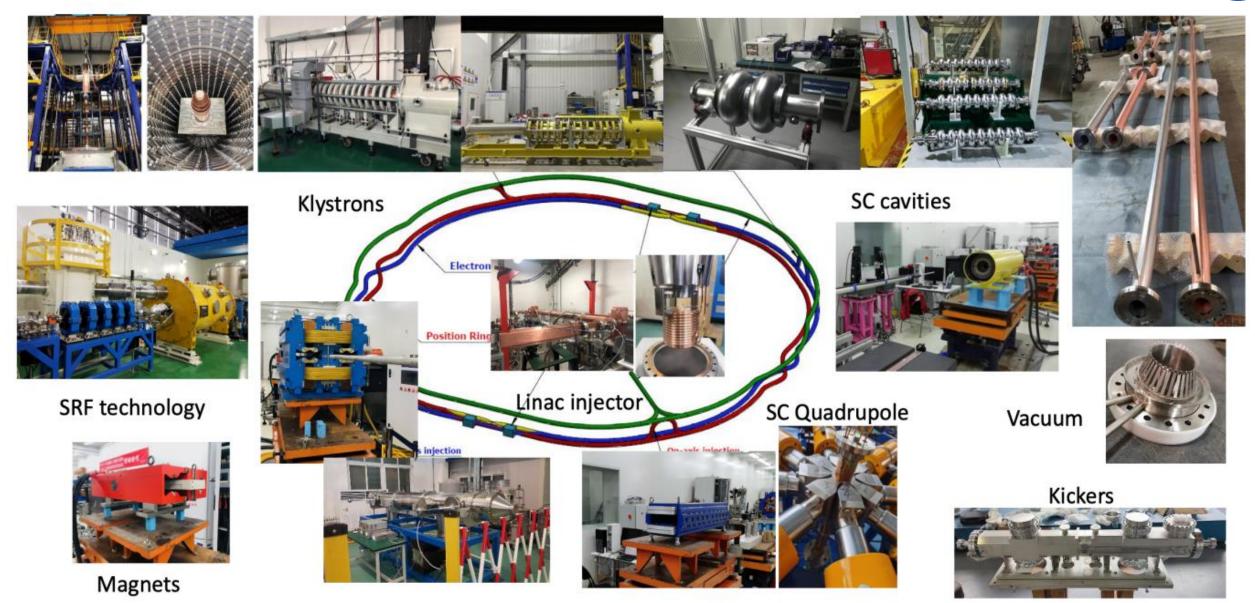

CEP

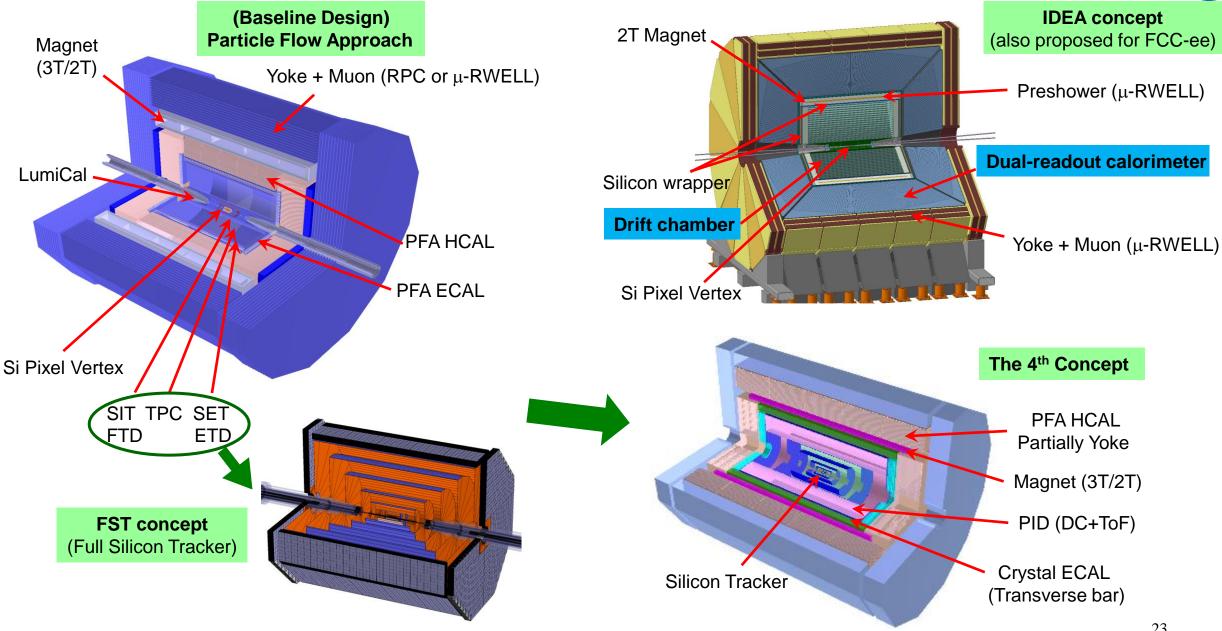
HTS SC Magnet and Iron-Based Superconductor

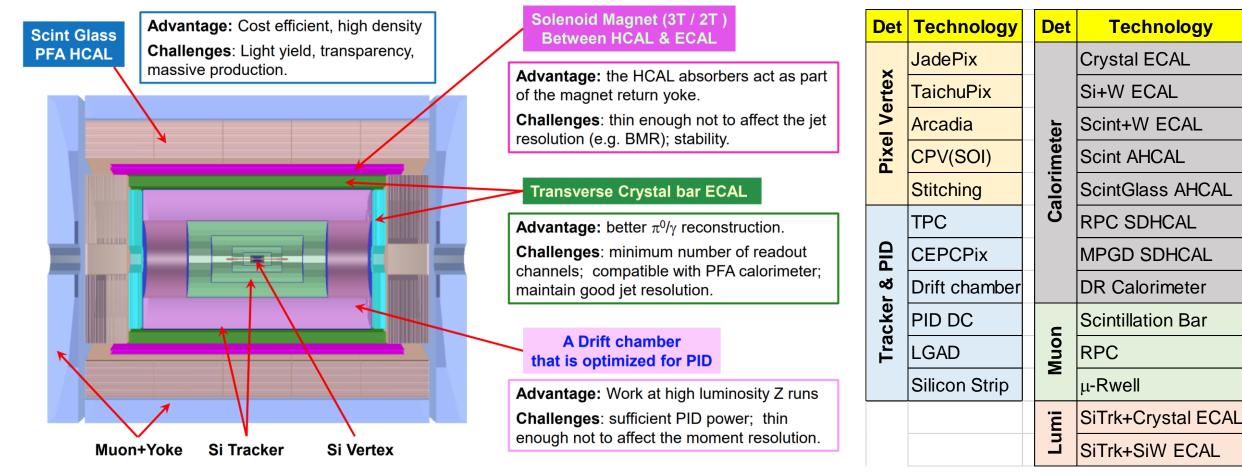
20



- Stainless-steel stabilized IBS tape achieved the highest J_e in 2022
- Significantly reduced the cost and improve mechanical properties of IBS conductor.


CEPC Accelerator: Plasma Injector

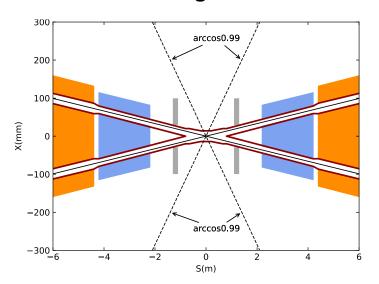

CEPC Key Technologies R&D

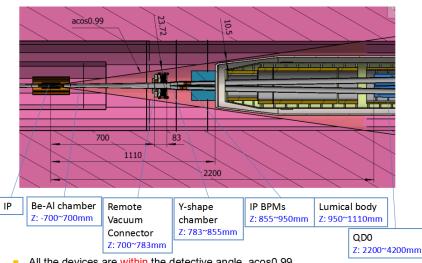

CEPC Conceptual Detector Designs



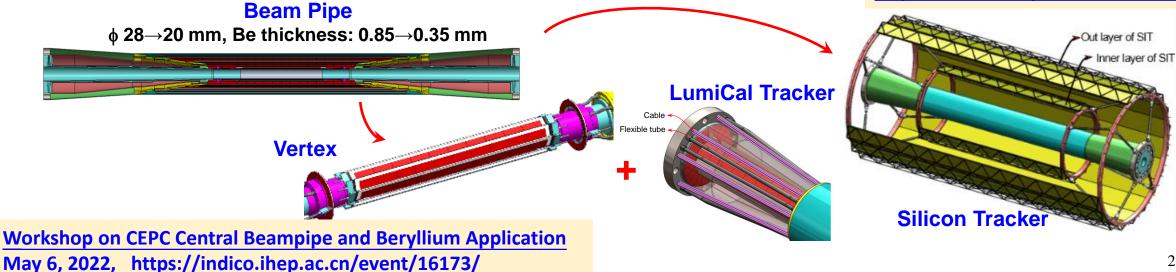
Novel Conceptual Detector Design

Novel detector design based on PFA calorimeter. Aim at improving BMR 4% → 3%

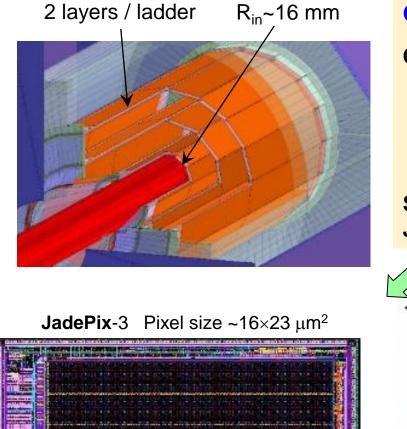

Detector	World-class level	CEPC design
PFA based (ECAL)	<mark>∼</mark> 15% / √E	< 3% / VE (Crystal ECAL)
PFA based (HCAL)	<mark>∼</mark> 50% / √E	\sim 40% / vE (Scintillating glass HCAL)


CEPC R&D: Machine Detector Interface (MDI)

Crossing angle: 33 mrad Focal length: 2.2 m


Final focusing magnets (QD0, QF1) with **Segmented Anti-Solenoidal Magnets**

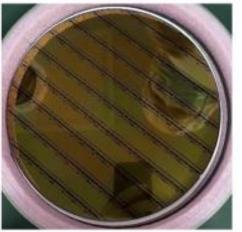
All the devices are within the detective angle, acos0.99.


2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23 https://indico.ihep.ac.cn/event/14392/

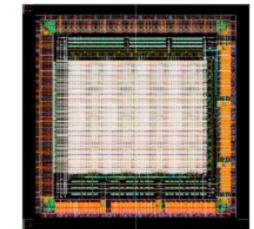
CEPC R&D: Silicon Pixel Chips

Goal: σ (IP) ~ 5 μ m for high P track

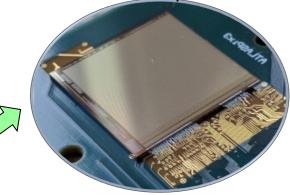
CDR design specifications


- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, CEPCPix



TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

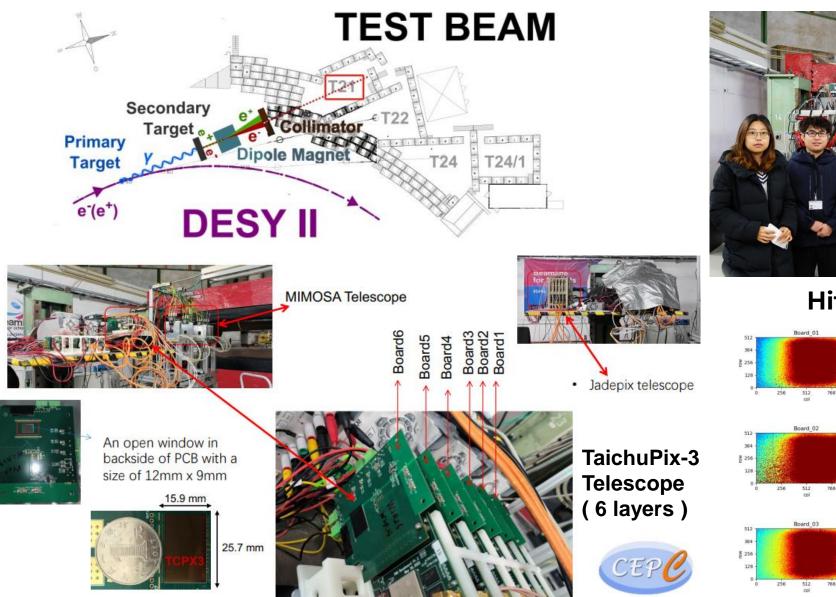

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

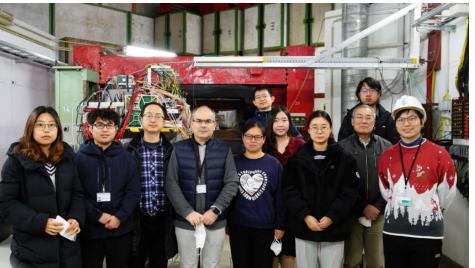
MOST 2

Develop **CEPCPix** for a CEPC tracker basing on **ATLASPix3 CN/IT/UK/DE** TSI 180 nm HV-CMOS process

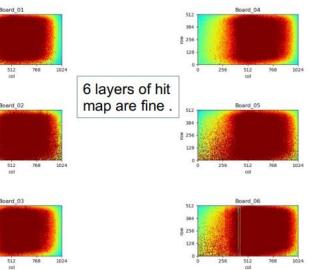
Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 1


Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

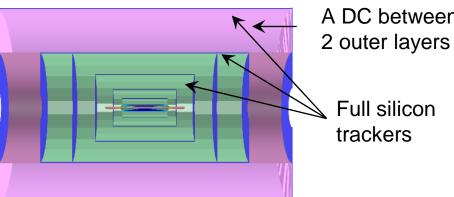


CEPC R&D: Vertex Detector Prototype

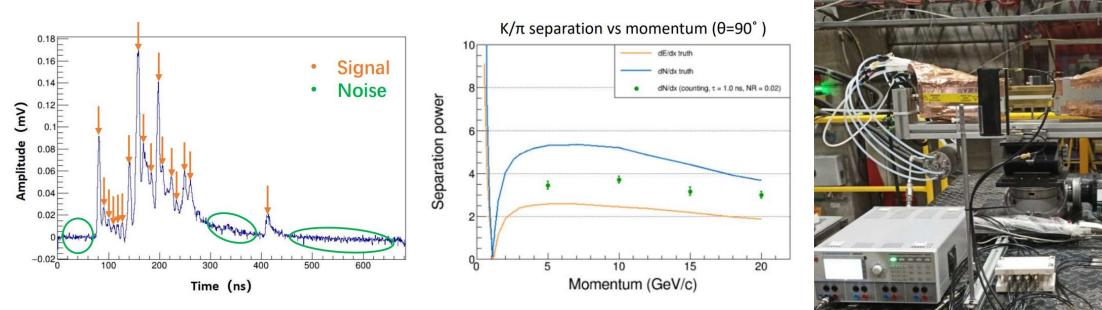


Full vertex detector prototype (TaichuPix-3, JadePix-3) has TB at DESY in Dec. 2022.

Hitmap of 4 GeV e⁺/e⁻ beam



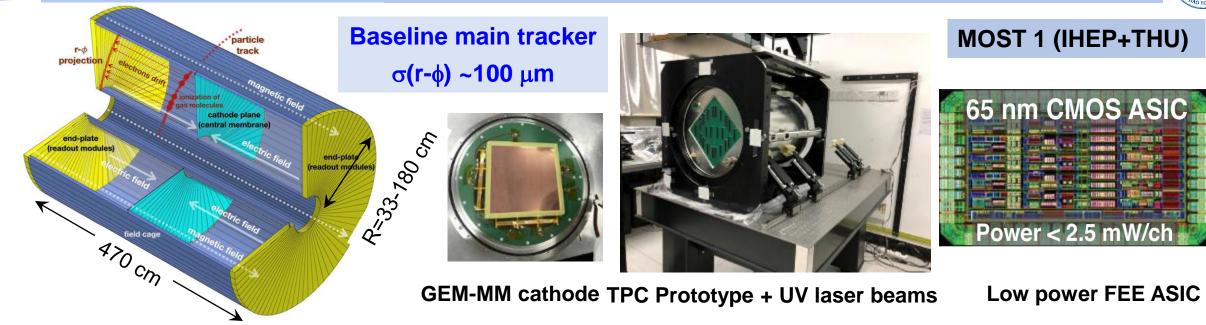
CEPC R&D: Drift Chamber for PID

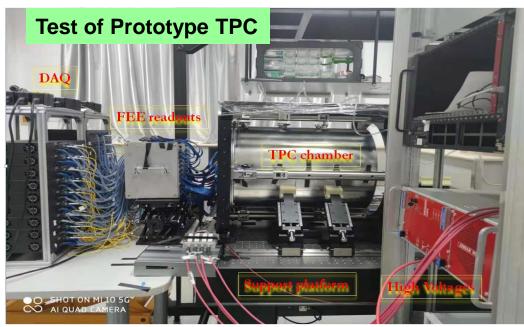


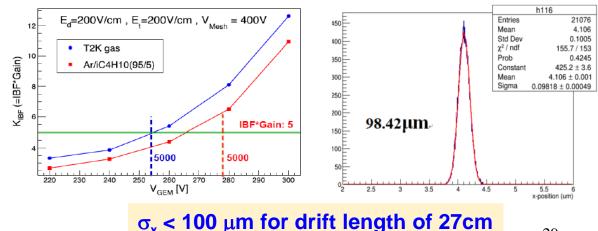
Goal: $3\sigma \pi/K$ separation up to ~20 GeV/c.

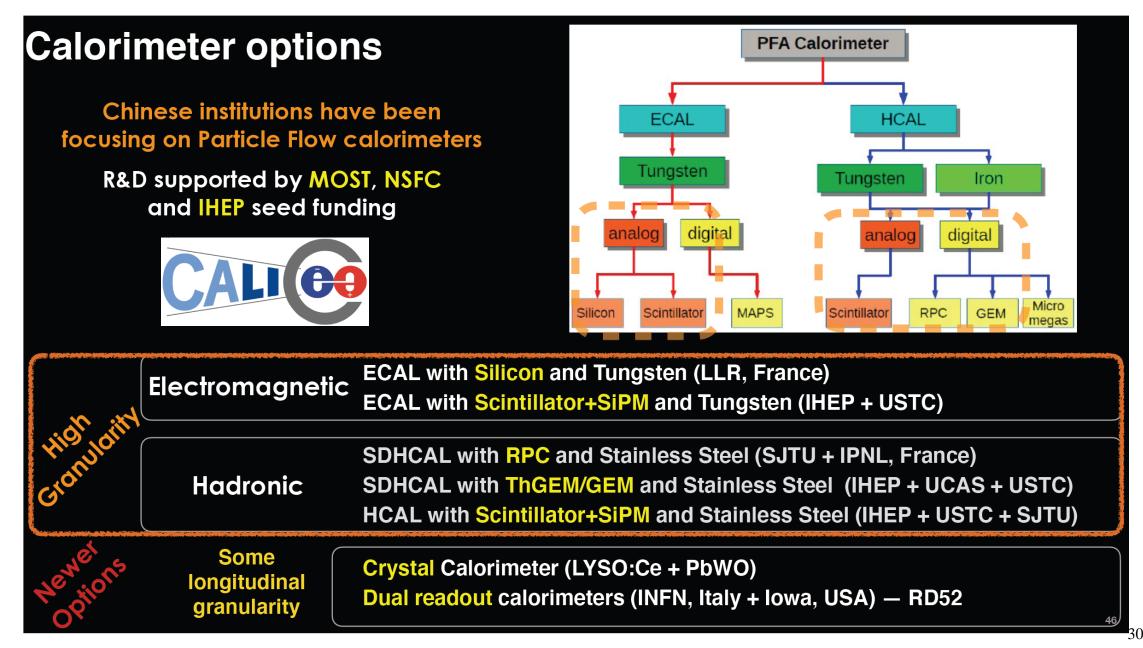
- Cluster counting method, or **dN/dx**, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

A DC between




IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the TB (led by INFN group) in 2021 and 2022


CEPC R&D: Time Projection Chamber


Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

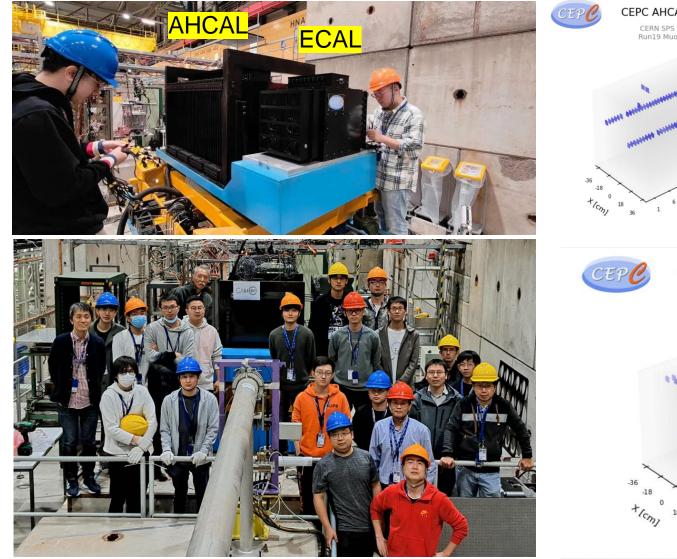
CEPC R&D: PFA Calorimeters

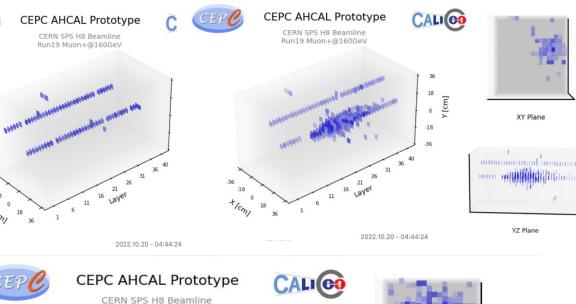
tungsten

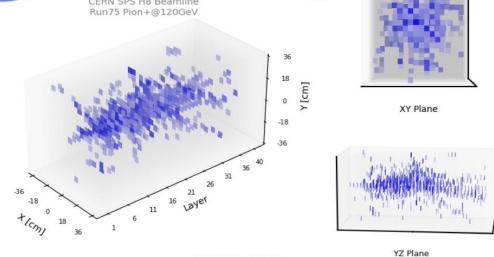
CEPC R&D: PFA Calorimeter Prototypes

ScW ECAL Prototype (32-layer, 6720-ch)

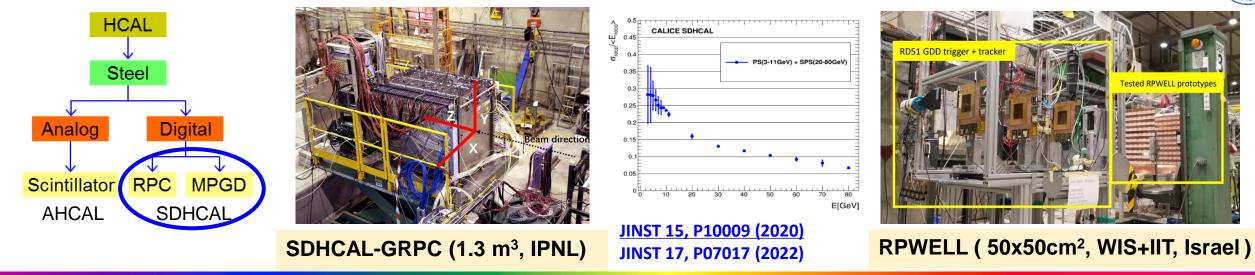
Sct + SiPM AHCAL Prototype (40-layer, 12960-ch)





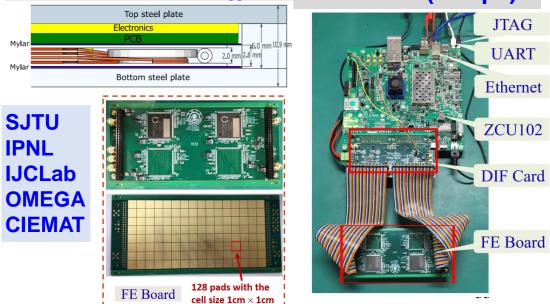

CEPC R&D: PFA Calorimeter Prototypes

> PFA ScW-ECAL & AHCAL prototypes: Test Beam at CERN SPS H8 (Oct. 2022)


2022.10.22 - 12:20:50

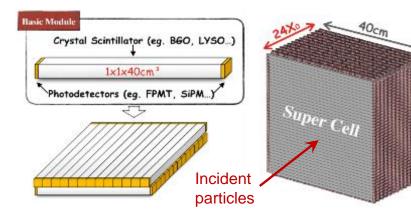
USTC, IHEP, SJTU, Japanese & Israel groups have close collaboration and regular meetings ³²

CEPC R&D: SDHCAL

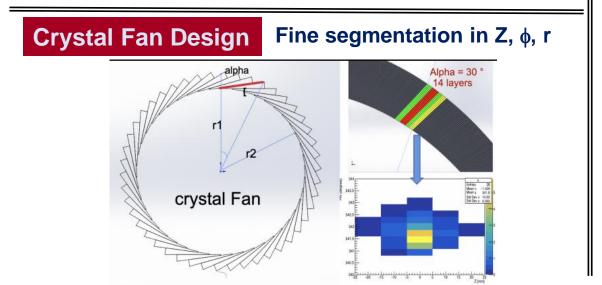

MOST 1: RPC and MPGD (RWELL) R&D, MIP Eff > 95%

GRPC 1m x 1m (SJTU) JINST 16, P12022 (2021)

RWELL 0.5m x 1m (USTC+IHEP)


R&D Plan: 5-D SDHCAL (X, Y, Z, E, Time) - MRPC + fast timing PETIROC ASIC (~40 ps)

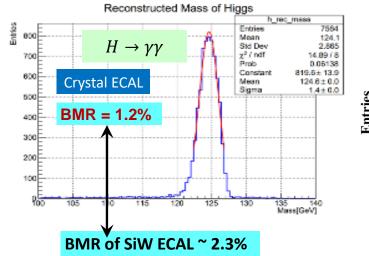
CEPC R&D: High Granularity Crystal ECAL



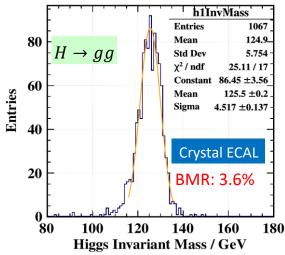
- Boson Mass Resolution < 4%
- Better BMR than ScW-ECAL
- Much better sensitivity to γ/e, especially at low energy.

Bench Test

- Timing at both ends for positioning along bar.
- Significant reduction of number of channels.



Full Simulation Studies

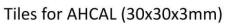

+ Optimizing PFA for crystals

laser collimator

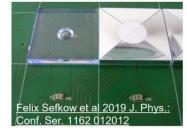
Performance with photons

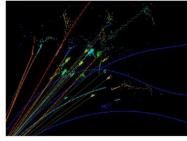
Performance with jets

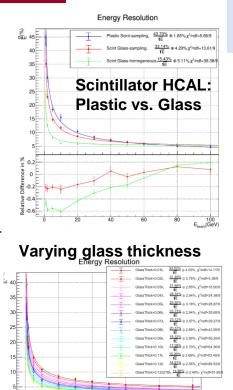
Dual readout crystal calorimeter also being considered by USA and Italian colleagues


CEPC R&D: New HCAL with Scintillating Glass Tiles

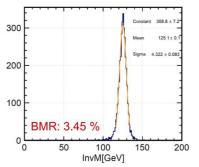
te of High Energy Physic

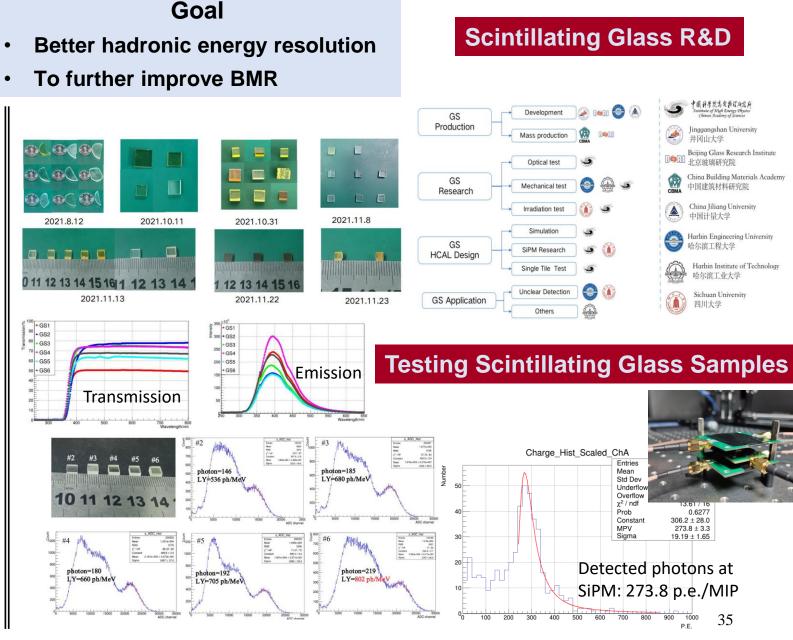

35

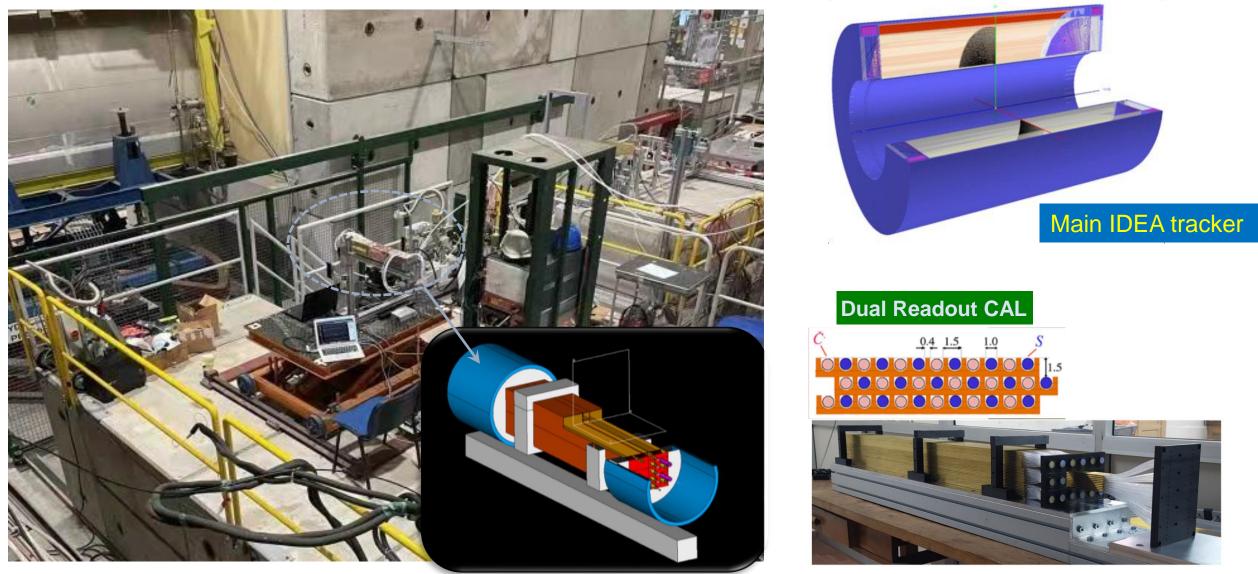




"SiPM-on-Tile" design for HCAL




 $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

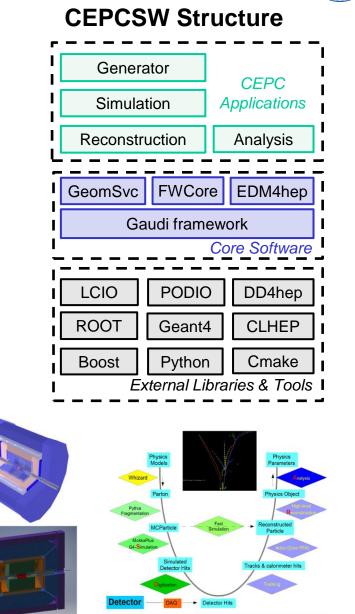

Performance study with jets

CEPC R&D: IDEA Tracker and Dual Readout Calorimeter

Italian groups and IHEP colleagues participated the test beam at CERN.

CEPC Software Migration to Key4hep

Key4hep: an international collaboration with CEPC participation **CEPCSW:** a first application of Kep4hep – Tracking software **CEPCSW is already included in Key4hep software stack**


https://github.com/cepc/CEPCSW

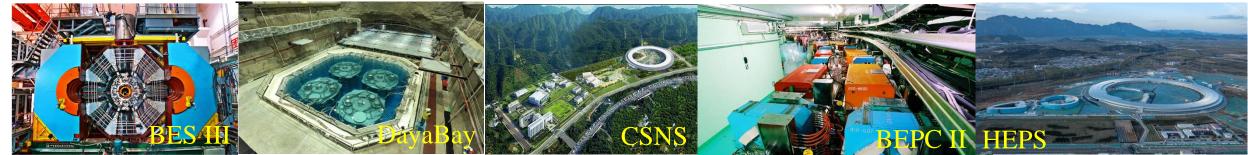
Architecture of CEPCSW

- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

Core Software

- Gaudi framework: defines interfaces of all software components and controls the event loop
- EDM4hep: generic event data model
- FWCore: manages the event data
- GeomSvc: DD4hep-based geometry management service

Full simulation reconstruction Chain functional, iterating/validation with hardware studies



Project Global Aspects


Synergies: IHEP experience with large projects

- IHEP is one of the few institutions in the world that can host a project like the CEPC:
 - It has rich management experience and successful constructed many large scientific facilities
 - It has full coverage of all technical disciplines for accelerators and detectors, in particular for the design and construction of circular e+e- collider (BEPCII) and the detector(BESIII)
 - It has all needed infrastructure for construction of large facilities
 - It has successfully hosted international projects such as BESIII, Daya Bay, JUNO, LHAASO, etc.
- CEPC is committed by IHEP and workplan endorsed by CAS

CEPC R&D Status

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for R&D
- Large amount of key technologies validated in other projects: **BEPCII**, **HEPS**, ...

CEPC R&D ~ 50% cost of acc. components	 > High efficiency klystron > 650MHz SRF cavities > Key components to e+ source > High performance Linac > Electrostatic Deflector > Cryogenic system 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Vacuum chamber tech. Survey & Alignment for ultra large Acc. MDI
BEPCII / HEPS ~ 40% cost of acc. components	 > High precision magnet > Stable magnet power source > Vacuum chamber with NEG coating > Instrumentation, Feedback system > Traditional RF power source > SRF cavities 	 Electron Source, traditional Linac Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

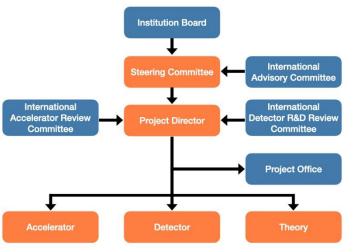
~ 10% missing items consist of anticipated challenges in the machine integration, commissioning etc. and the corresponding international contribution

CEPC Industrial Promotion Consortium (CIPC)

- CIPC, established in 2017, composed of ~ 70 high tech. enterprises, covers Superconducting materials, SC cavities, cryomodules, cryogenics, Klystrons, electronics, power source, vacuum, civil engineering, etc. CIPC actively joins the Key technology R&D and prepares for the mass production for the CEPC construction.
- CEPC strongly promote relevant technology development (cost-benefit).
- CEPC study group is surveying main international suppliers.

Klystron

CCT SC Magnet


SC Coil Winding

CEPC Team

CEPC Organization

Table 7.2: Team of Leading and core scientists of the CEPC Name Brief introduction Role in the CEPC team The leader of CEPC, chair of the SC Yifang Wang Academician of the CAS, director of IHEP Professor of IHEP Xinchou Lou Project manager, member of the SC Yuanning Gao Academician of the CAS, head Chair of the IB, member of the SC of physics school of PKU Professor of IHEP Jie Gao Convener of accelerator group, vice chair of the IB, member of the SC Haijun Yang Professor of SJTU Deputy project manager, member of the SC Jianbei Liu Professor of USTC Convener of detector group, member of the SC Professor of USTC Convener of theory group, member Hongjian He Managemen team, eading scien Joao Guimaraes da Costa Professor of IHEE Convener of detector group Jianchun Wang Professor of IHEP Convener of detector group Yuhui Li Professor of IHEP Convener of accelerator group Chenghui Yu Professor of IHEP Convener of accelerator group Professor of IHEP Jingyu Tang Convener of accelerator group Professor of SJTU Convener of theory group Xiaogang He Jianping Ma Professor of ITP Convener of theory group

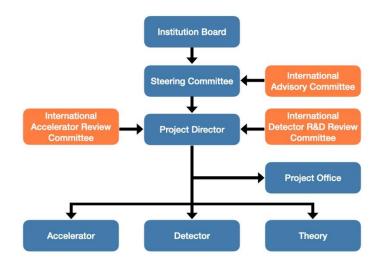
Institution Board: 32 institutes, top universities/institutes in China

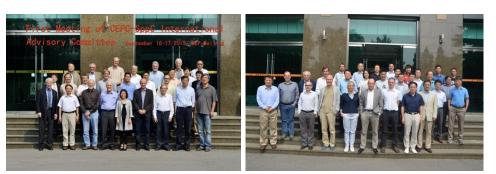
- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, LHCb ...

					Number	Sub-system	Conveners	Institutions	Team (senior staff)
	Table 7.3: Team	tem	-	1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40	
· · · · · · · · · · · · · · · · · · ·				_		Detector	Xiangming Sun , Wei Wei	NWPU, SDU, Strasbourg,	
Number	Sub-system	Convener	Team (senior staff)		2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60
1	Accelerator physics	Chenghui Yu, Yuan Zhang	18			Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,	
2	Magnets	Wen Kang, Fusan Chen	12					RAL, SDU, Tsinghua, Bris- tol, Edinburgh, Livepool,	
3	Cryogenic system	Rui Ge, Ruixiong Han	11					USTC, Warwick, Sheffield,	
4	SC RF system	Jiyuan <mark>Z</mark> hai, Peng Sha	1200	1.1			L	ZJU,	
5	Beam Instrumentati	Jiyuan Zhai, Peng Sha	+ ~3000	aete	ect	Osertis d tector	Tartshi, Celer Mingyr Dong, Huirong Or	LECTONIAL DESY,	~ 30
6								INFN, NIKHEF, THU	
7	Power supply ~ 4	OO Bin from BE	;ϒϹʹϧϐϲϽι	III/J		Magnet	Felpent Ning	IHEP	~ 10
8								CALICE Collab., IHEP,	~ 40
0	Injection & extraction	Jinhui Chen	nce CEPC	ac	bbr	ove	🗋 aijun Yang, Yong Liu	INFN, SJTU, USTC	
9	Mechanical system	Jianli Wang, Lan Dong	4		6	Muon	Fabio Glacomeni, Liang Li,	FDU, IHEP, INFN, SJTU	~ 20
10	Vacuum system	Haiyi Dong, Yongsheng Ma	5	-			Xiaolong Wang		
11	, i i i i i i i i i i i i i i i i i i i	Ge lei, Gang Li	6		7	Physics	Manqi Ruan, Yaquan Fang,	IHEP, FDU, SJTU,	~ 80
11	Control system	Ge lei, Galig Li	0				Liantao Wang, Mingshui		
12	Linac injector	Jingyi Li, Jingru Zhang	13	_			Chen		
13	Radiation protection	Zhongjian Ma	3		8	Software	Shengseng Sun, Weidong Li, Xingtao Huang	IHEP, SDU, FDU,	~ 20
Sum		117	-			Sum		~ 300	
			1	-					

......

Table 7.4: Team of the CEPC detector system


T



CEPC International Committees

CEPC Organization

Name	Affiliation	Country
Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.K
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	КЕК	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

International Advisory Committees

International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku
- IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, operating since 2015
 IARC & IDRC: leading experts of this field, provide guide to the project director

CEPC International Efforts

CEPC attracts significant International participation

- Conceptual Design Report: 1143 authors from 221 institutes (including 140 Intl. Institutes)
- 20+ MoUs signed and executed
- Intensive collaboration on Physics studies
- Oversea scientists made substantial contributions to the R&D, especially the detector system
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS: Next one at Marseille
- Annual working month at HKUST-IAS (since 2015)
- Recent CEPC Workshop: Oct. 24-28, 2022 (423 registrants, 285 talks, 38 posters)

CEPC International Efforts

ESPPU input

CEPC Input to the ESPP 2018 - Physics and Detector

CEPC Physics-Detector Study Group

Abstract

The Higgs boson, discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC), plays a central role in the Standard Model. Measuring its properties precisely will advance our understandings of some of the most important questions in particle physics, such as the naturalness of the electroweak scale and the nature of the electroweak phase transition. The Higgs boson could also be a window for exploring new physics, such as dark matter and its associated dark sector, heavy sterile neutrino, et al. The Circular Electron Positron Collider (CEPC), proposed by the Chinese High Energy community in 2012, is designed to run at a center-of-mass energy of 240 GeV as a Higgs factory. With about one million Higgs bosons produced, many of the major Higgs boson couplings can be measured with precisions about one order of magnitude better than those achievable at the High Luminosity-LHC. The CEPC is also designed to run at the Z-pole and the W pair production threshold, creating close to one trillion Z bosons and 100 million W bosons. It is projected to improve the precisions of many of the electroweak observables by about one order of magnitude or more. These measurements are complementary to the Higgs boson coupling measurements. The CEPC also offers excellent opportunities for searching for rare decays of the Higgs, W, and Z bosons. The large quantities of bottom-quarks, charm-quarks, and tau leptons produced from the decays of the Z bosons are interesting for flavor physics. The o perform posed for icepts can

the arXiv: 1901.03170 and 1901.03169 fut planning and the international organization of the CEPC team between the transmission of the CEPC team between the team between tea

CLEPC team is to perform detailed tecnnical design studies. Enfective international collaboration would be crucial at this stage. This submission for consideration by the ESPP is part of our dedicated effort in seeking international collaboration and support. Given the importance of the precision Higgs boson measurements, the ongoing CEPC activities do not diminish our interests in participating in the international collaborations of other future electron-positron collider based Higgs factories.

Snowmass input

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other topics as shown in Fig. 1. The ~100 km tunnel for such a machine could also host a *Super Proton Proton Collider* (SPCC) to reach energies well beyond the LHC.

The CEPC is a large international scientific project initiated and to be hosted by China. It was presented for the first time to the international community at the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in Novemb

White R Yellow F made. Ti has beet international for the second s

CEPC accelerator entered the phase of Technical Design Report (TDR) endorsed by CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system, MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: gaoj@ihep.ac.en

> CEPC provides critical input to ESPPU & Snowmass as a major player

- > Team member actively participated intl. study (ESPPU and Snowmass committees) and Panel discussions
- CEPC attracts intensive international collaboration, ensuring that the CEPC design and technology are among the most advanced in the world.

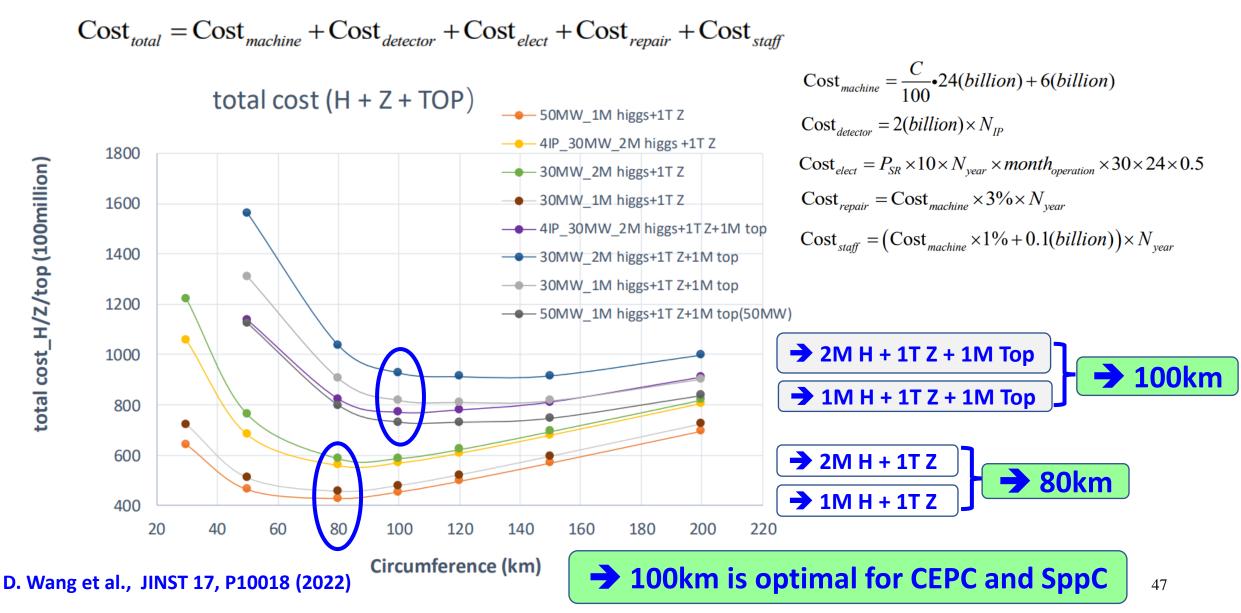
CEPC Cost Estimation and Sharing

Table 8.1: Cost estimation of the CEPC

CDR Cost: ~ 1000 independent items added up

- Cost estimated with two indpendent methods, agrees at 10% level
- CEPC design relies on well studied, or mature technology reducing uncertainties on Cost estimation
- Cost estimation for TDR phase is progressing: no major change

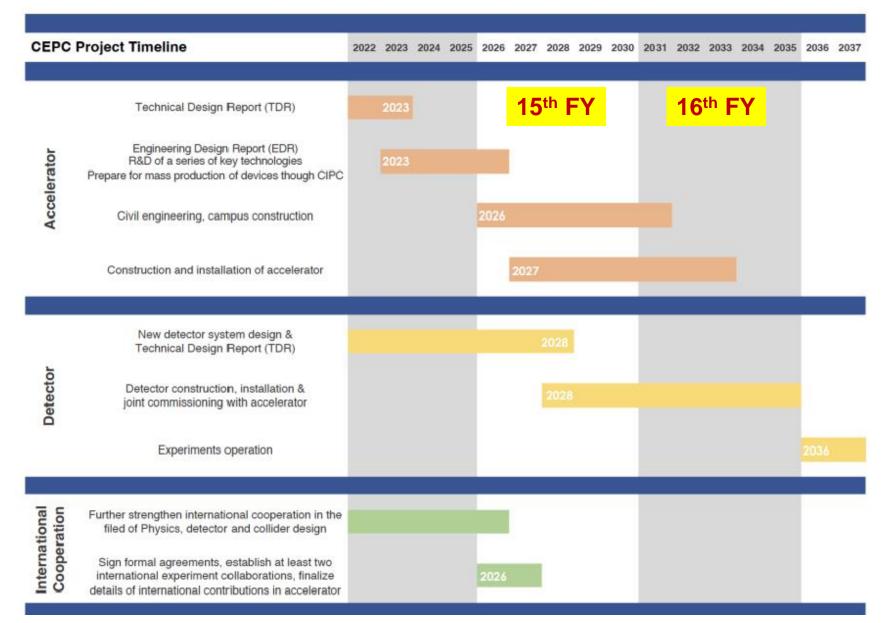
Tier I	Tier II	Amount (100 M CNY))
	Collider	99.2	
	Booster	39.2	
	Linac and sources	9.1	
Accelerator	Damping ring	0.44	
Accelerator	Common: Cryogenics	10.6	
	Survey & alignment 4		
	Radiation protection	1.7	
Conventional facilities	-	102	
Detectors	-	40	
γ -ray beam lines	-	3	
Project management (1%)	-	3	
Contingency (15%)	-	46	
Total	-	358 ~	5B CHF


Funding Sources	Funding Model #1 (Billion RMB)	Funding Model #2 (Billion RMB)
Central Government	25	10
Local Government	5	20
International Partners	6	6

CEPC Cost Estimation and Optimization


Optimization of CEPC total cost with physics operation vs. Circumference (km)

Candidate Sites and Science Cities



CEPC Project Timeline

> 2023: Accelerator TDR; 2026: EDR; Start construction upon approval

49

Continuing R&D and deep understanding of physics potentials

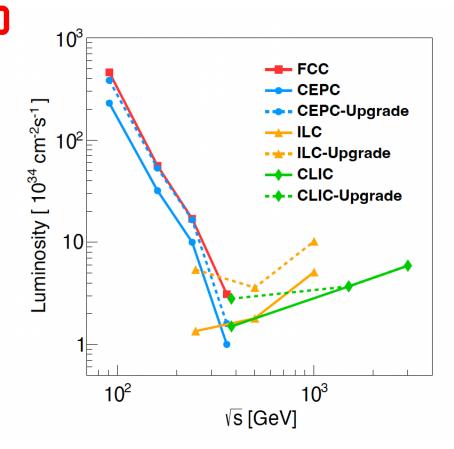
- Made suggestions to MOST for R&D support and validations of key technologies & innovations
- Carrying out **design improvement**, **R&D**, site investigations-study
- R&D and made major **progress + breakthroughs** in common technologies
- **CEPC physics whitepaper**; physics potentials input for Snowmass

International Collaboration and Engagement

- Engaging actively in ILC, FCC as well as HL-LHC upgrade activities, enhancing CERN-China relationship
- Actively participating international **detector R&D** collaborations: CALICE, LCTPC, RD*, ECFA-DRD, ...
- Finding and sharing solutions to common issues (design, accelerator/detector components, ...)
- Hope we will have more in-person meetings and closer collaboration in the coming years

Acknowledgements

Many thanks to the CEPC study group for enormous efforts and achievements !



CEPC Accelerator TDR Design (Upgrade)

	Higgs	w	Z	ttbar			
Number of IPs		2					
Circumference [km]		100.0					
SR power per beam [MW]			50				
Half crossing angle at IP [mrad]			16.5				
Bending radius [km]			10.7				
Energy [GeV]	120	80	45.5	180			
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1			
Piwinski angle	5.94	6.08	24.68	1.21			
Bunch number	415	2162	19918	58			
Bunch spacing [ns]	385	154	15(10% gap)	2640			
Bunch population [10 ¹⁰]	14	13.5	14	20			
Beam current [mA]	27.8	140.2	1339.2	5.5			
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71			
Phase advance of arc FODOs [degree]	90	60	60	90			
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7			
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113			
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9			
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6			
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1			
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)			
RF frequency [MHz]			650				
Beam lifetime [min]	20	55	80	18			
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8			

Higher SR power of 50MW, the Lumi. will increase ~66%.

Status of CEPC Detector R&D

Extensive detector R&D benefitted from experience

- Silicon strip : from ATLAS detector upgrade
- MDI, Drift chamber & SC magnet : from BESIII
- > CEPC R&D on key technologies
 - Silicon pixel, silicon tracker and TPC
 - PFA calorimeter

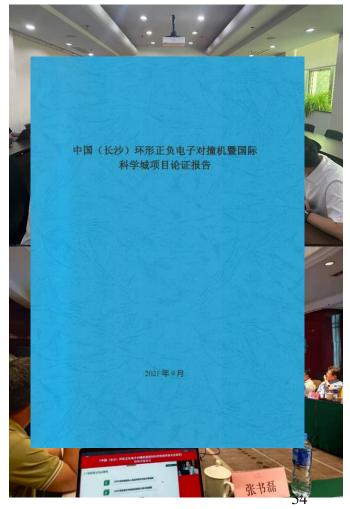
> With international partners, all sub-detector covered

- PFA calorimeter: with CALICE Collaboration
- TPC: with LCTPC Collaboration
- Drift chamber: with Italian colleague
- Silicon tracker: with UK/Germany/Italian colleague
- Silicon vertex: with French/Spain colleague

					– Silicon vertex detector R&D (3 -5μm)
Sub-detector	Specification	Requirement	World-class level	CEPC prototype	
Pixel detector	Spatial resolution	$\sim 3\mu{ m m}$	$3-5 \ \mu m \ [12, 13]$	$3-5\mu{ m m}$ [14–16]	
TPC/drift chamber	dE/dx (dN/dx) resolution	$\sim 2\%$	$\sim 4\%$ [17, 18]	~ 4% [19–21]	0.04 → 16×16 µm ² 0.04 0.04 0.00 0.04 0.00 0.00 0.00 0.0
				Prototype built	
Scintillator-W	Energy resolution	$< 15\%/\sqrt{E({ m GeV})}$	12.5% [22]	to be measured	0.02
ECal	Granularity	$\sim 2 \times 2 \ {\rm cm^2}$		$0.5 \times 0.5 \ {\rm cm^2}$	
PFA calorimeter				Prototyping [25]	
4D crystal ECal	EM energy resolution	$\sim 3\%/\sqrt{E({ m GeV})}$	$2\%/\sqrt{E({ m GeV})}$ [23, 24]	$\sim 3\%/\sqrt{E({ m GeV})}$	
	3D Granularity	$\sim 2 \times 2 \times 2 \mathrm{~cm^3}$	N/A	$\sim 2 \times 2 \times 2 \text{ cm}^3$	PFA ScW-ECAL and AHCAL 4D crystal ECAL
Scintillator-Steel	Support PFA,			Prototyping	
HCal	Single hadron σ_E^{had}	$< 60\%/\sqrt{E({ m GeV})}$	$57.6/\sqrt{E({ m GeV})}\%$ [26]		
Scintillating	Support PFA			Prototyping	
glass HCal	Single hadron σ_E^{had}	$\sim 40\%/\sqrt{E({ m GeV})}$	N/A	$\sim 40\%/\sqrt{E({ m GeV})}$	
Low-mass	Magnet field strength	$2 \mathrm{T} - 3 \mathrm{T}$	1 T – 4 T [27–29]	Prototyping	
Solenoid magnet	Thickness	$< 150 \mathrm{~mm}$	$> 270 \mathrm{~mm}$		

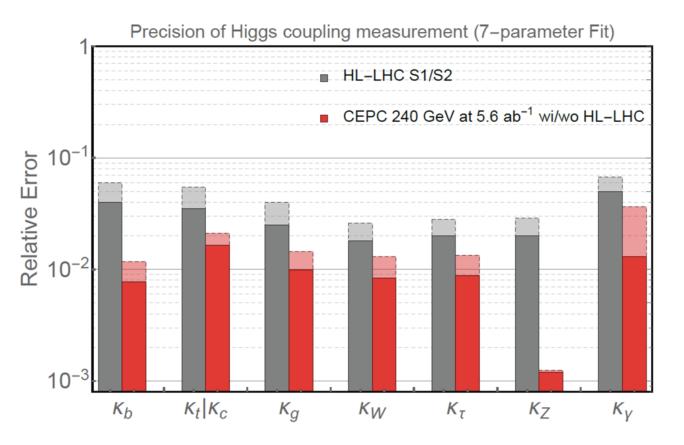
→ CEPC Detector R&D: Joao G. da Costa

CEPC Site Selection

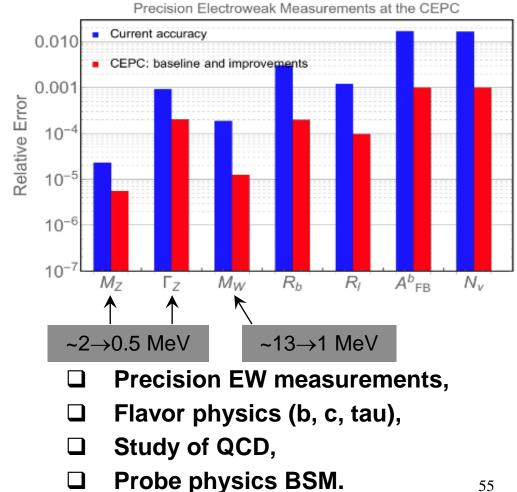

• July 5, 2021: Changsha Bureau of S&T entrusted Hunan U. to conduct a feasibility study.

 Sept 4, 2021: Hunan U. organized a review meeting by a committee consisting of experts from multiple disciplines which evaluated CEPC for its science, feasibility of a new science city based on CEPC, and overall impact on Changsha. The overall conclusion is very positive. The local government is very interested in and supportive of the CEPC project.

- Site selection is based on geology, electricity supply, transportation, environment for foreigners
- Local support & economy, ...



CEPC Physics Program (CDR)

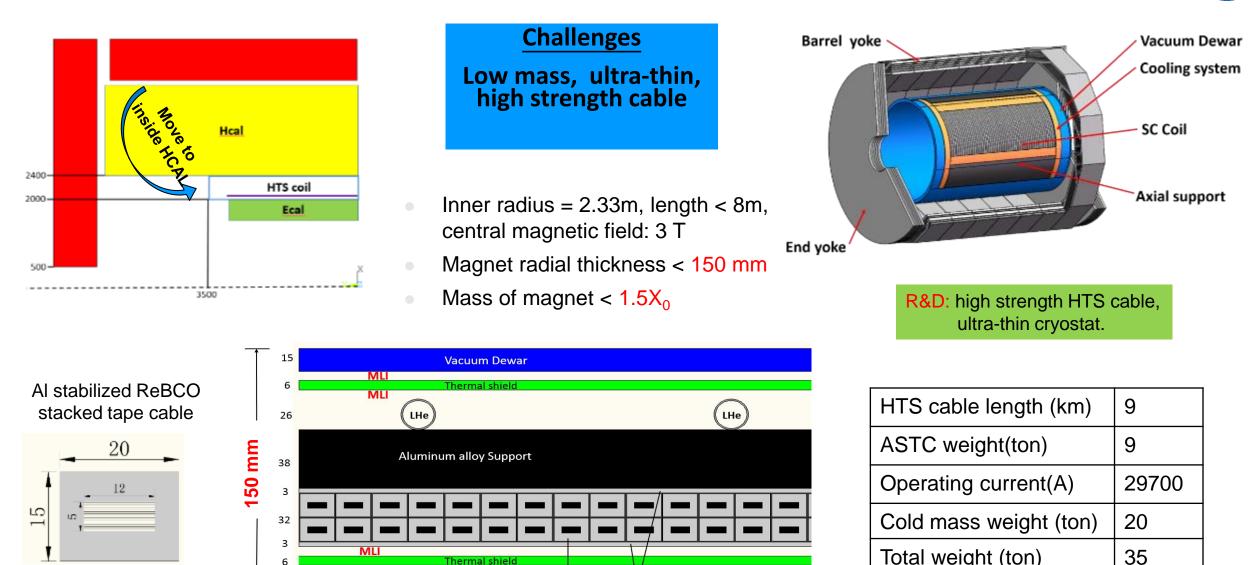

Order of magnitude improvement in precision => Unknown / discoveries

Compare to the HL-LHC, CEPC can improve the precision of Higgs couplings significantly

Chinese Physics C Vol. 43, No. 4 (2019) 043002

CEPC can improve the precision of the EW parameters by a factor of ~ 5-10

CEPC Study for Snowmass: Physics


	9% 🔳 11:53	窗*249			HD ⁴⁶ ,111 🔶	
WG		• • • •		言息(121)	く 聊天信	
EF01	8					
EF02	开心	庄胥爱	方亚泉	王连涛	曼曼奇	
LFUZ		X				
	李一鸣	张昊	杨思奇	GLI	刘真	
EF03			SPALEX			
	王伟	賴培築	郑太范	蛋儿蛋儿	梁志均(
EF04 P			A TOWN OF THE			
	张华桥	I_U	廖红波	朱宏博	朱华星	
EF05-07	7Ē				Start Start	
	XCLou	Wang J	赵明锐	史欣	Cen	
EF08					1	
	顾嘉荫	李数	李钊	李衡讷	李海波	
EF09-10	5.3				Description of the second	
	王健	武雷 (lovecho	刘言东	高俊	
	5				Wry _	

WG	Lol
EF01	Higgs boson CP properties at CEPC
EFUI	Measurement of branching fractions of Higgs hadronic decays
EF02	Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation
EFU2	Complementary Heavy neutrino search in Rare Higgs Decays
	Feasibility study of CP-violating Phase ϕ s measurement via Bs \rightarrow J/ $\Psi \phi$ channel at CEPC
EF03	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider
	Searching for Bs $\rightarrow \phi$ vv and other b \rightarrow svv processes at CEPC
	Measurement of the leptonic effective weak mixing angle at CEPC
EF04	Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observables
	NNLO electroweak correction to Higgs and Z associated production at future Higgs factory
F05-07	Exlusive Z decays
	SUSY global fits with future colliders using GAMBIT
EF08	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC
	Search for t + j + MET signals from dark matter models at future e+e- collider
F09-10	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets
	Dark Matter via Higgs portal at CEPC
	Lepton portal dark matter, gravitational waves and collider phenomenology

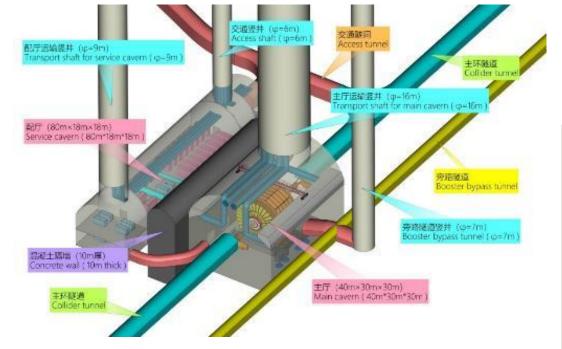
Solenoid Magnet Inside HCAL

nermal shield

HTS cable

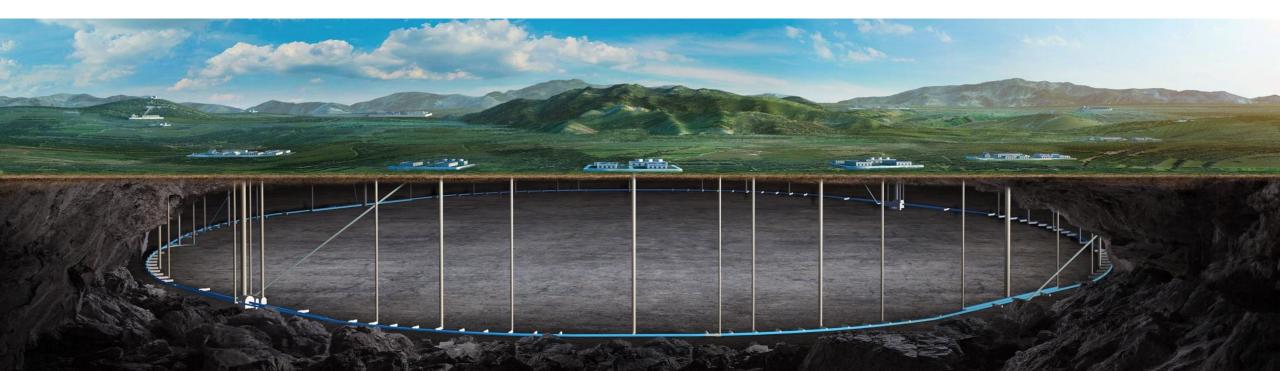
Pure Al strips

Vacuum Dewar


MLI

Total weight (ton)

The Experimental Area


Main cavern to host the detector

- 40*30*30 m³ (L*H*W)
- One main access shaft, Ø16 m
- An 1K-ton gantry crane for large heavy objects
- Auxiliary cavern for peripheral equipment and devices
- 80*18*18 m³ (L*H*W)
- One service shaft of Ø9 m
- One personnel access shaft Ø6 m

Ground level buildings

Thank you !

