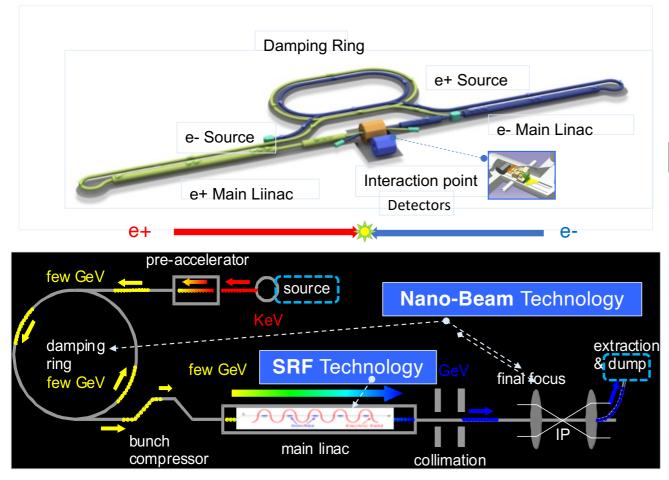


Draft-230214

1

ILC Progress

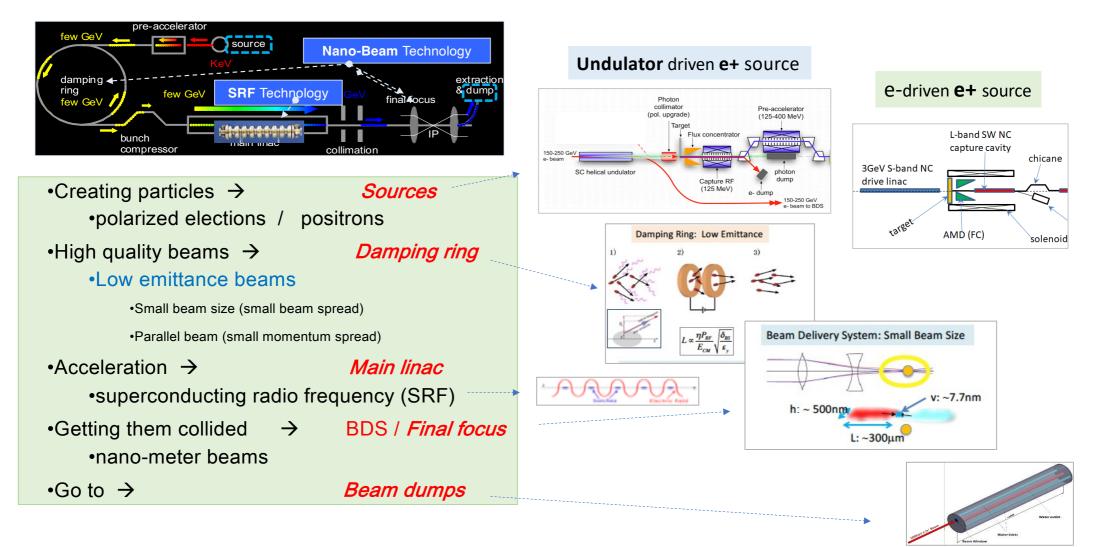
Shin-ichiro Michizono and Akira Yamamoto


(ILC-IDT and KEK)

To be presented at HKUST IAS HEP Conference*, Feb. 15, 2023 * https://ias.hkust.edu.hk/events/high-energy-physics-2023

Outline

- Introduction:
 - Progress in Accelerator Technology
- ILC Technical Network (ITN) for Global Acc. R&D Programs
- Future Prospect in Technology Advances
- Summary

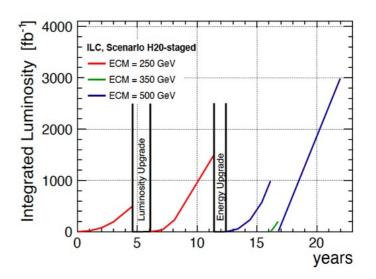

ILC and the Accelerator Technology

Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ¹⁰ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / 0.961 ms
# bunch / pulse	1312 / <mark>2625</mark>
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< 31.5 > MV/m (+/-20%) $Q_0 = 1x10^{10}$
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)
AC-plug Power	111 / 138 MW

ILC Area systems

ILC Baseline and the Upgrades

Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	E / <i>L</i>	Upgrade	es
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	\mathcal{L}	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	f_{rep}	$_{\rm Hz}$	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Accelerating gradient	G	MV/m	31.5	31.5	31.5	31.5	31.5	45
Average beam power	P_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_x	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1 $\%$	$\mathcal{L}_{0.01}/\mathcal{L}$		73~%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power *	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	L_{site}	$\mathbf{k}\mathbf{m}$	20.5	20.5	20.5	31	31	40


• * AC plug-power may be further reduced (10 ~ 20 %), if the RF (Klystron) and SRF/Cryogenics (Q-value) Efficiency may be improved, and

• the peak power reduction will become critical important, as a primary requirement.

- 2 x bunches, 2 x RF (**1.35** -> **2.7**x**10**³⁴)
 - Run 500GeV-machine at 250GeV, 10Hz:
 - factor 2 (2.7x10³⁴ -> 5.4x10³⁴)
 - Improve power efficiency

Energy upgrades:

- 500GeV (**31.5 MV/m Q₀=1** x 10¹⁰)
 - 1TeV (45 MV/m Q₀=2 x 10¹⁰, 300 MW)
 - more SCRF, tunnel extension
 - Site: 50km long, sufficient for 1TeV

Luminosity upgrades:

Courtesy: S. Michizono

~ 1.3 GHz SRF Accelerators, worldwide

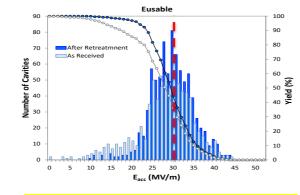
> 2,000 1.3 GHz SRF cavities being realized, in these decades !

Courtesy, H. Weise, N. Walker

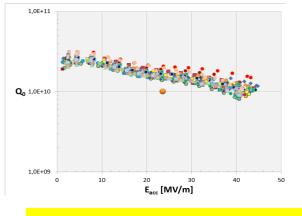
European XFEL, SRF Linac Completed and 5-year Operation

Progress:

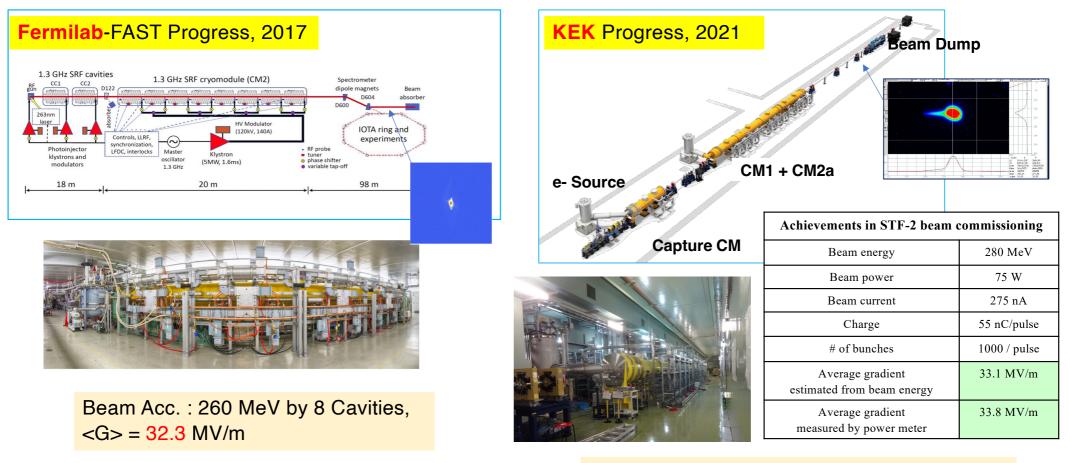
2013: Construction started 2017: E-XFEL beam start 2018: 17.5 GeV achieved



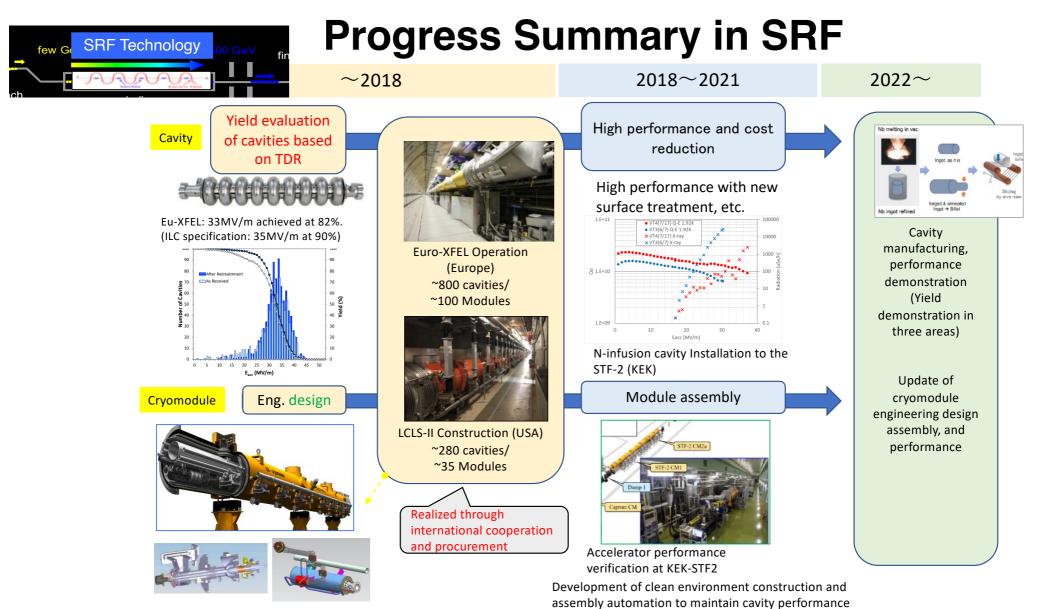
1.3 GHz / 23.6 MV/m 800+4 SRF acc. Cavities 100+3 Cryo-Modules (CM)

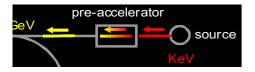


2023/2/15



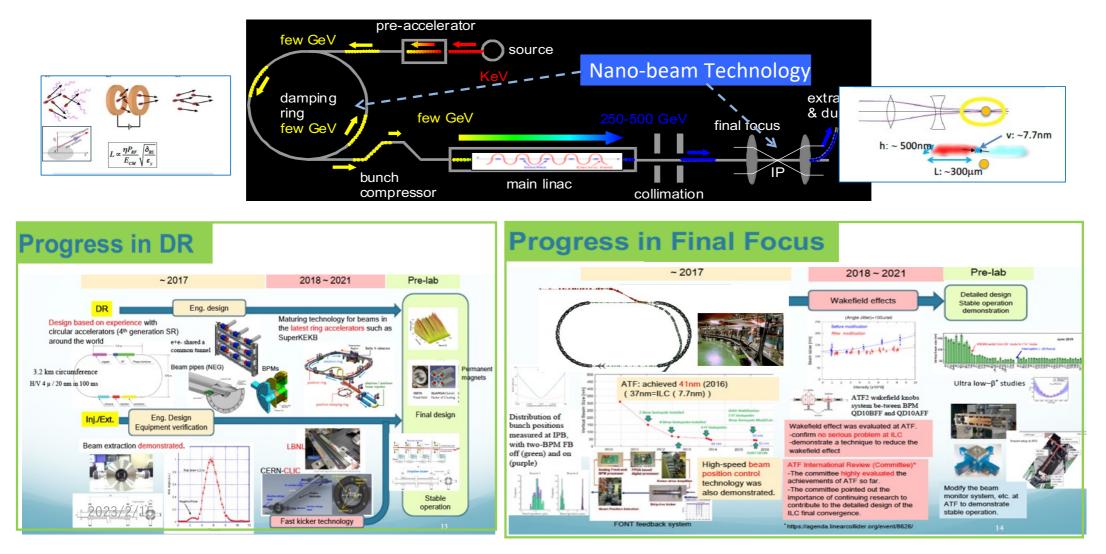
E-usable>: 29.8 MV/m(RI): 31 MV/m w/ 2° process
33 MV/m w/ 3° process




>10 % (47/420, RI) cavities exceeding 40 MV/m

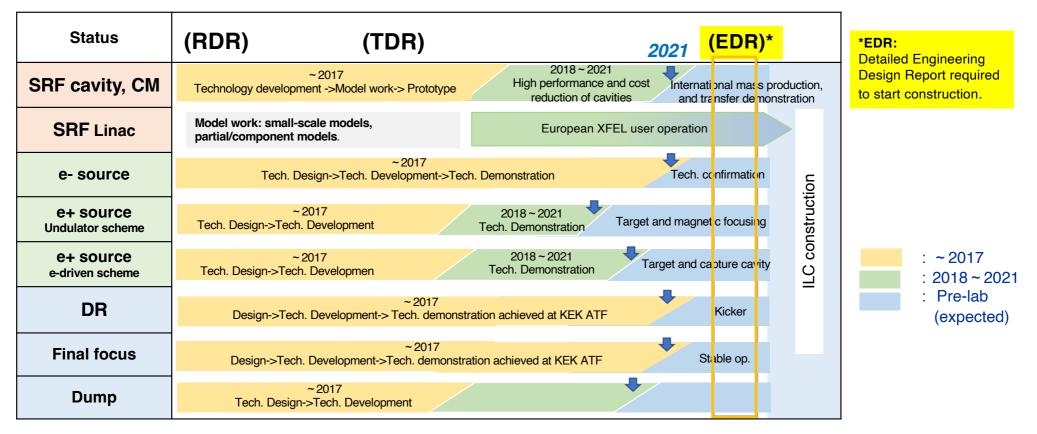
Fermilab, KEK achieving ILC Gradient Goal ≥ 32 MV/m with beam

 $\langle G \rangle = 33.1 \text{ MV/m}$ (averaging for 7 cavities)


Progress in positron source

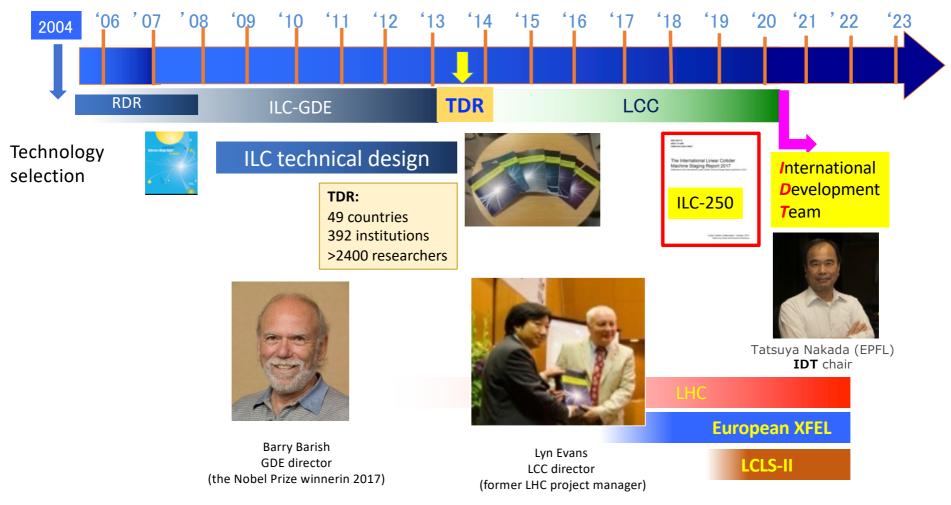
10

Progress in Nano-beam Technology


ilc

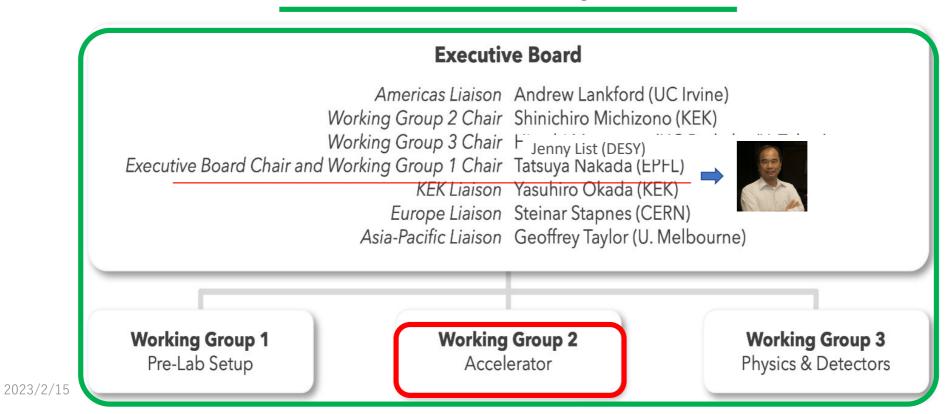
Summary of ILC Technology Readiness Level Reached in 2021

Since CDR/RDR in 2007 and TDR in 2013, the technical development has progressed toward ILC construction.



Outline

- Introduction:
 - Progress in Accelerator Technology
- ILC Technical Network (ITN) for Global Acc. R&D Programs
- Future Prospect in Technology Advances
- Summary


History of ILC Collaboration

ILC International Development Team

ILC supported by ICFA

April 2022:

ICFA re-stated support for ILC and extended IDT mandate:

• **<u>IDT</u>**, oversighted by ICFA, has identified:

- Time-critical Work Packages (WP-prime's), and is exploring collaboration among KEK and international partners, with ILC Techical Network (ITN), with new funding expected in Japan, JFY2023 ~ (starting April 2023), enabling Japanese contribution to encourage other region's efforts,
- Preparing the phase for ILC-Prelab & Engineering Design Report (EDR) for the ILC construction, and

• **ICFA** continues to encourage:

• inter-governmental discussions between Japan and potential partner nations toward an **ILC** realization.

https://icfa.hep.net/wp-content/uploads/ICFA Statement April2022 Final.pdf

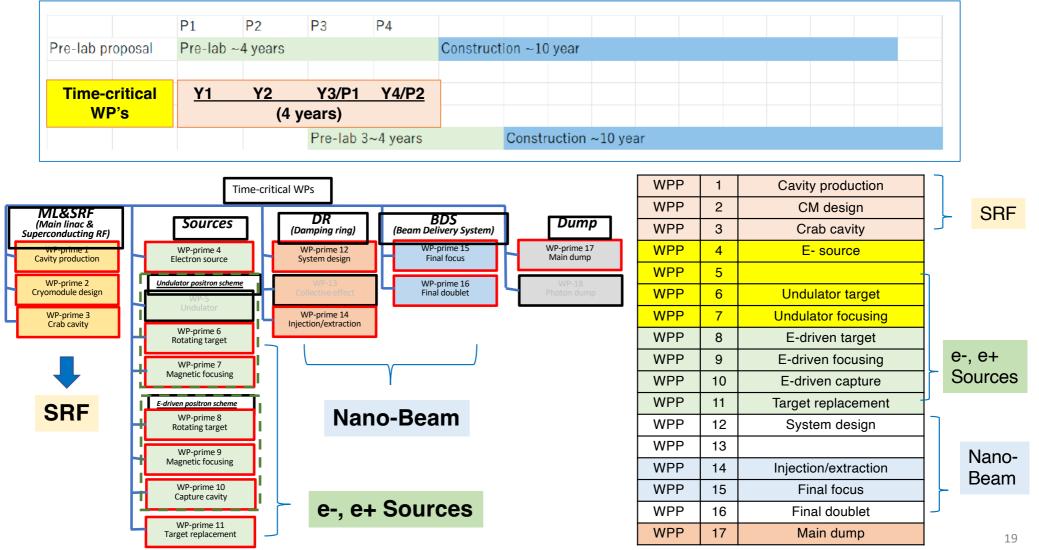
Courtesy: T. Nakada, in 2022

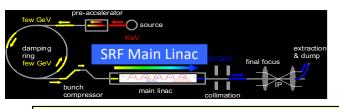
The IDT Mandates and Activities

- Organising ILC Technology Network,
- Making further advances in the development of ILC related technologies in view of providing more solid **bases for the ILC** engineering design and opportunities for other accelerator applications.
- The work programme derived from the work packages in the ILC Pre-lab proposal by selecting technically most critical items (WP-primes) and those that require long time to develop, based on collaboration agreements between KEK and interested laboratories worldwide.
- The execution of the work will be managed by each collaborations.
- The **IDT** will provide the **overall coordination** work including;
 - 1. Technical <u>description</u> of the work programme
 - 2. Definition of <u>deliverables</u> and required resources
 - 3. Distribution of the deliverables and defining the timeline
 - 4. Help drafting of MoU and research agreements
 - 5. <u>Follow up and monitoring of the overall project</u>
- Anticipated start in April 2023, i.e. the start of the Japanese Fiscal Year 2023 for a period of around two to four years depending on the work.

IDT Scope for ILC Realization

Aug. 2020

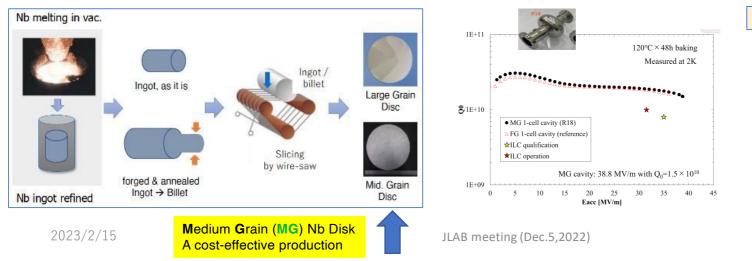



http://doi.org/10.5281/zenodo.4742018

2023/2/15

https://agenda.linearcollider.org/event/9735/c ontributions/50816/attachments/38190/5996 8/Time-Critical_WPsV8b.pdf

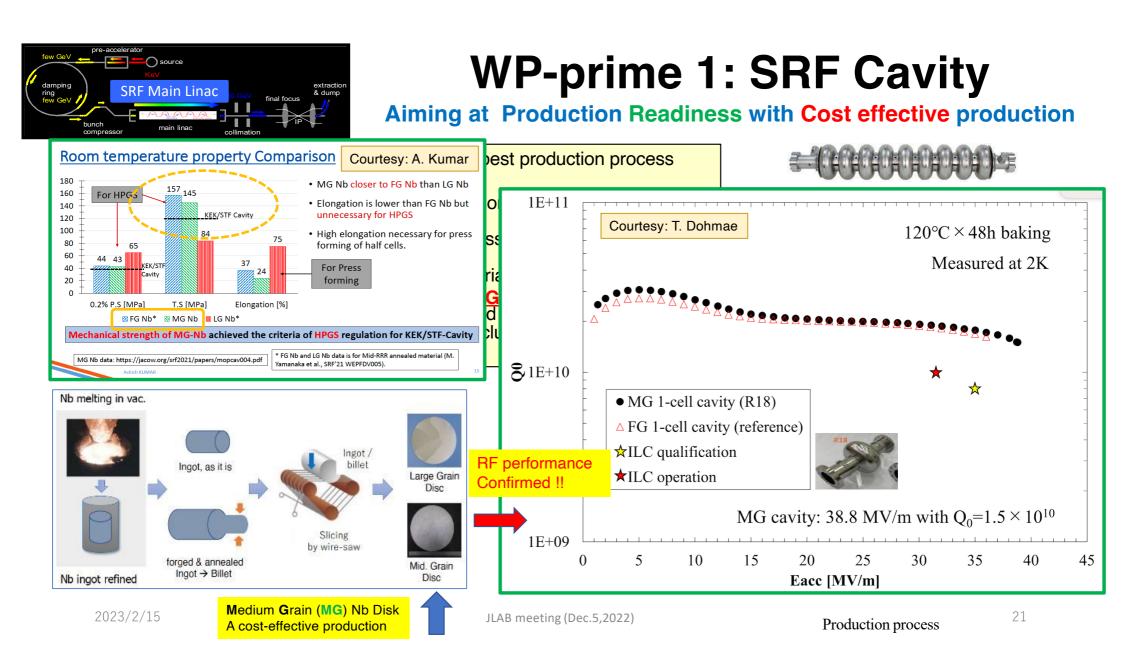
WP-Primes at <u>ILC Technology Network</u>



WP-prime 1: SRF Cavity

Aiming at Production Readiness with Cost effective production

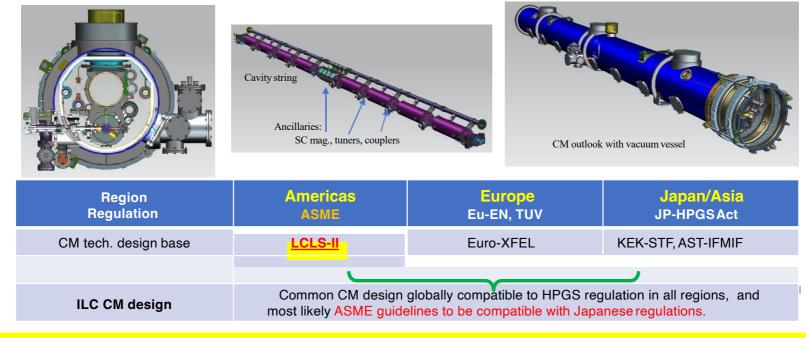
- Research with single-cell cavities to establish the best production process including: \bullet Advanced Nb sheet/disk cost effective production method \rightarrow MG Advanced surface treatment recipe
- Globally common design with compatible High Pressure Gas Safety (HPGS) regulation
- ◆24 nine-cell cavities are to be developed for industrial-production readiness
 - ♦8 cavities (4 / batch) in each region \rightarrow 4 with FG and 4 with MG Production process encouraged to be optimized in each region
- ◆RF performance/success yield to be examined (including 2nd pass and further)
 - \bullet 3rd pass to be examined if effective



	# cavities to be			
	produced			
	Americas	Europe	JP/Asia	
single-cell	2	2	2	

8+a

nine-cell	8	8		
Material/Sub-component				
QA o	f Material/Sub	-С		
Cavity Production				
S	Surface Process	5		
45	Vertical Test = Cavity RF Test			


Production process

WP-prime 2: Cryomodule (CM) Design

Referring progress in particular LCLS-II experiences

- Unify cryomodule (CM) design with ancillaries, based on globally common engineering design, drawings. and
- Establish globally compatible safety design base to be approved/authorized by HPGS regulations individually in each region, most likely referring ASME guidelines to be compatible with Japanese regulations.

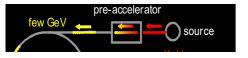
2023/2/15 An International CM, KEK contributed, to be demonstrated with cavities globally contributed !!

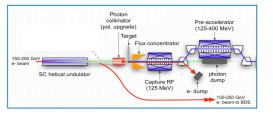
WP-prime 3: Crab Cavity Development with Two-Design Down-selection and Prototypes

- RF property simulation to optimize cavity design
- Pre-down-selection to choose two primary candidates
- Development and evaluation of two prototype cavities
- Demonstration of synchronized operation with prototypes
- Down-selection to choose final cavity design
- Cryomodule design based on final cavity design

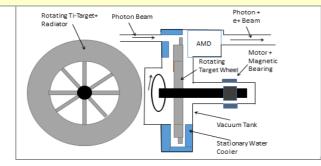
Item	Recent specification (after TDR)		
Beam energy	125 GeV (e ⁻)		
Crossing angle	14 mrad		
Installation site	14 m from IP		
RF repetition rate	5 Hz		
Bunch train length	727 µsec		
Bunch spacing	554 nsec		
Operational temperature	2.0 K (?)		
Cavity frequency	1.3/3.9 GHz		
Total kick voltage	1.845/0.615 MV		
Relative RF phase jitter	0.023/0.069 deg rms (49 fs rms)		


QFEX2BS **ODEXIS** QFEX2AS CRAB SK1 SD0 ZVFONT QF1 SF1 -QD0 14.049m Elliptical/Racetrack Lanc. Univ. (3.9 GHz) ODU RF Dipole (RFD) Double Quarter Wave CERN (DQW) Wide Open BNL Waveguide (WOW) **Ouasi-waveguide** MultIcell Resonator FNAL (QMIR)

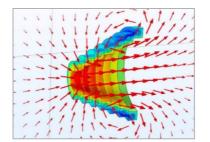

two beamline distance 14.049 m x 0.014 rad = 197 m m

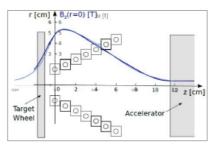

WP-prime 4: Electron Gun

- The electron gun consists of
 - ➢ High-voltage photo gun
 - ➢ Drive laser system
 - GaAs/GaAsP Photocathode
- High-voltage gun is the most urgent item
 - > The gun voltage in TDR is 200 kV. A higher voltage desirable.
 - > Meaningful technical progresses since TDR would be reflected in a new design
 - > New GaAs gun based on lessons learned from 350 kV CsKSb magnetized dc photogun

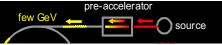


WP-p-6: Undulator-driven e+ Source: Rotating Target , WP-p-7: Focusing System

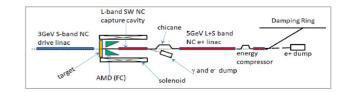


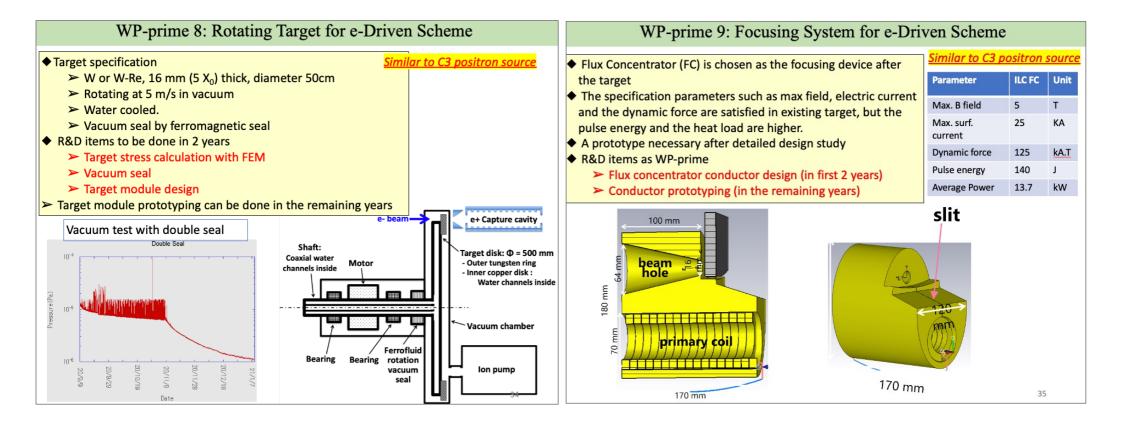

Undulator positron source

- Target specification
 - Titanium alloy, 7mm thick (0.2 X₀), diameter 1m
 - > Rotating at 2000 rpm (100 m/s) in vacuum
 - Photon power ~60 kW, deposited power ~2 kW
 - > Radiation cooling, Magnetic bearings
- R&D to be done as WP-prime
 - Design finalization, partial laboratory test, mock-up design (in the first 2 years)
 - Magnetic bearings: performance, specification, test

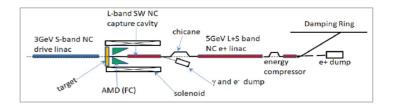


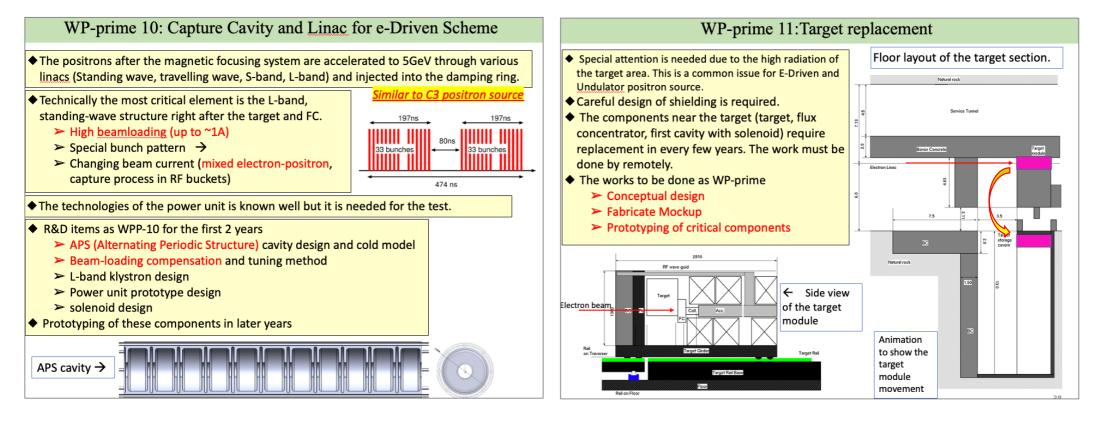
- The critical item for the undulator scheme is the magnetic focusing system right after the target
- Possible candidates are: (a) Pulsed solenoid, (b) Plasma lens
- The strongest candidate is (a) pulsed solenoid.
- R&D items to be done as WP-prime
 - > Detailed simulations for (a) (already on-going)
 - >> Principal design for a prototype pulsed solenoid
 - Field measurements with 1kA (pulsed and DC) and with 50kA both in a single pulse mode and finally in a 5ms pulsed mode
 - Prototype of (b) plasma lens (funded study on-going)



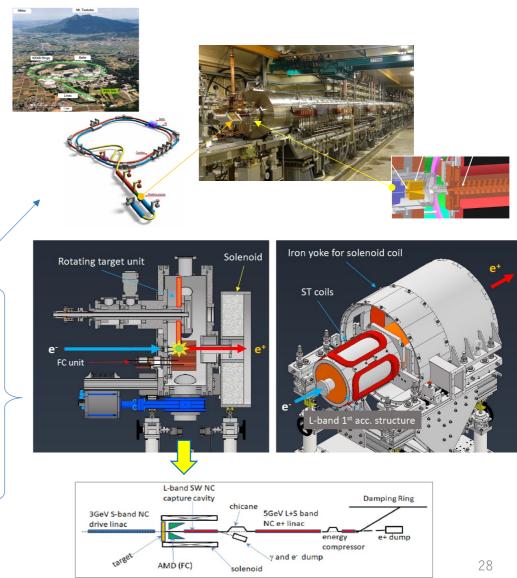


25




WP-Prime 8~11: Electron(e-) driven positron source (1/3)

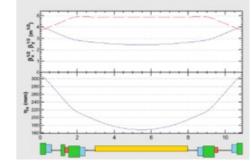
WP-Prime 8~11: e- driven positron source (2/3)



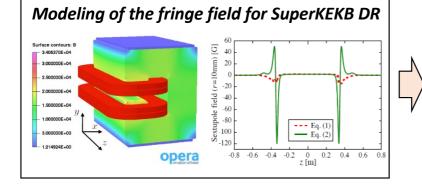
WP-Prime 8~11: e-driven e+ source (3/3)

An effort to be enhanced in the WP-Prime 8-11, ITN phase :

- A prototype development, based on <u>experiences at Super-KEKB e+ source</u>
- Engineering design toward ILC:
 - <u>3D-CAD model and engineering</u> <u>drawings</u> for manufacturing, based on simulation and experiments


Damping Ring (DR) design required to satisfy the <u>low</u>
 <u>emittance</u> and the <u>large dynamic aperture</u> simultaneously:
 DR design will be **further improved** by incorporating


Increasing the dynamic aperture is also important:

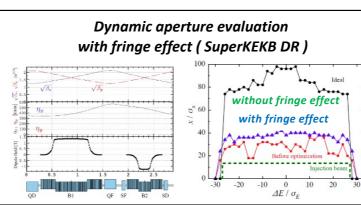

 By quantitatively evaluating effects of fringe field to the dynamic aperture of magnets in ILC DR, the method for evaluating the fringe field to the dynamic aperture in accelerator design will be established.

◆The system design of ILC DR will be <u>further optimized.</u>

Damping ring optics

pre-accelerator

few G


few GeV

damping

few GeV

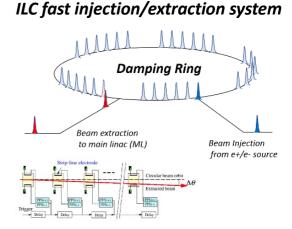
 $\propto \frac{\eta P_{RF}}{E_{CM}} \sqrt{\frac{\delta_{RS}}{\varepsilon_{y}}}$

ring

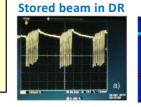
29

WP-prime 14: System design of ILC DR injection/extraction kickers

<u>Courtesy:</u> <u>ATF collaboration</u>

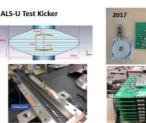

damping ring few GeV

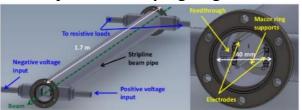
few GeV


pre-acceleration

A fast kicker system using a semiconductor pulse power supply with nanosecond response was confirmed as proof of principle at KEK's ATF about 10 years ago.

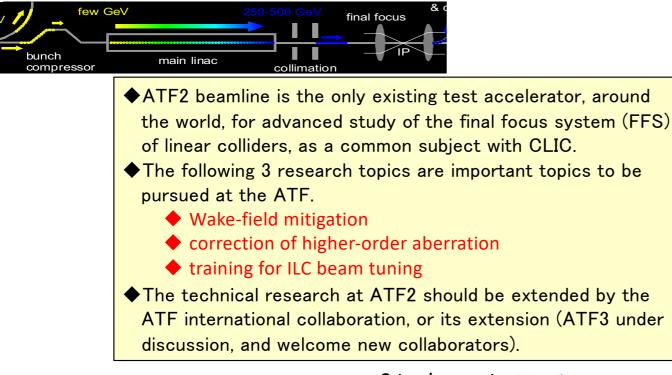
- Semiconductor technology has been evolving, and it is now possible to advance nanosecond response beam injection/excitation systems using the recent semiconductor technology.
- The technical evaluation of the fast kicker power supply using the recent semiconductor technologies.
- The evaluation of fast pulsed power supply technology will contribute not only to the fast kicker system but also to the performance and reliability of nanosecond-scale beam control technology and its application to a wide range of accelerator systems.

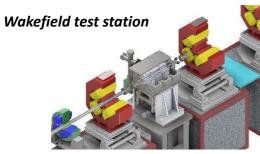

Beam extraction test at KEK ATF



Swap-out injection system planned at LBNL

Beam injection/extraction system for CLIC damping ring

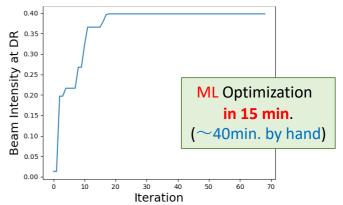




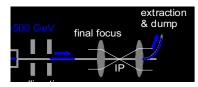
30

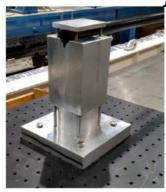
WP-prime 15: System design of ILC FF System

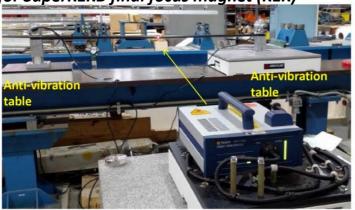
<u>Courtesy:</u> <u>ATF collaboration</u>



Octupole magnets for higher-order aberration

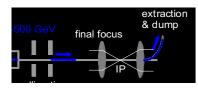

ATF2 beamline


Maximum search algorithms applied to beam tuning (→ Machine Learning (ML))

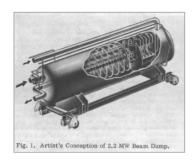


WP-prime 16: Final doublet design optimization

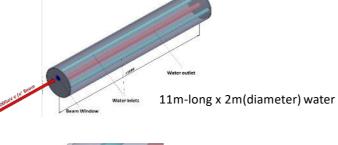
- Cooling of the superconducting ILC final focus magnets will be performed using 2K superfluid helium to realize superconducting magnets with high oscillation stability.
- Quantitative evaluation of the vibration generated by the 2K cooling system located on the side of the final focus magnets has not been completed.
- We will measure and evaluate the vibration generated by the 2K cooling system by using the prototype.

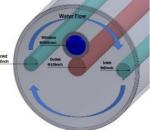

Vibration measurement system for SuperKEKB final focus magnet (KEK)

Prototype of ILC service cryostat (2K cooling system; BNL)



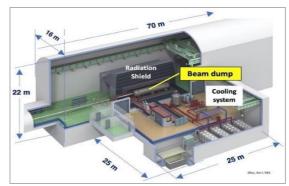
WP-prime 17: Beam Dump

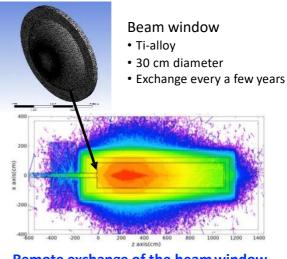

Finalize the engineering design of the main beam dump system


- Vortex water flow in the dump vessel
- Cooling water circulation and heat exchange
- Remote exchange of the beam window
- Countermeasure for failures / safety system

SLAC 2.2MW water dump (precedent) as a reference

2023/2/15



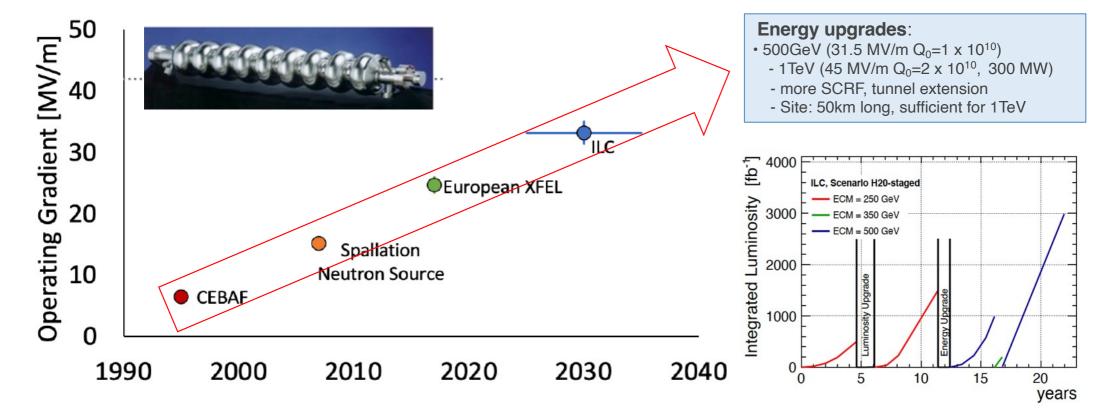

Vortex water flow
17 MW at 500 GeV beam

1 MPa to prevent boiling

JLAB has long experience in operating the water dump.

Imaginary view of the main dump section

Remote exchange of the beam window under high radiation dose 16

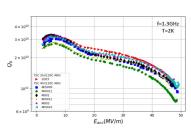

33

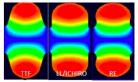
JLAB meeting (Dec.5,2022)

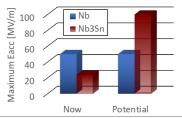
Outline

- Introduction:
 - Progress in Accelerator Technology
- ILC Technical Network (ITN) for Global Acc. R&D Programs
- Future Prospect in Technology Advances

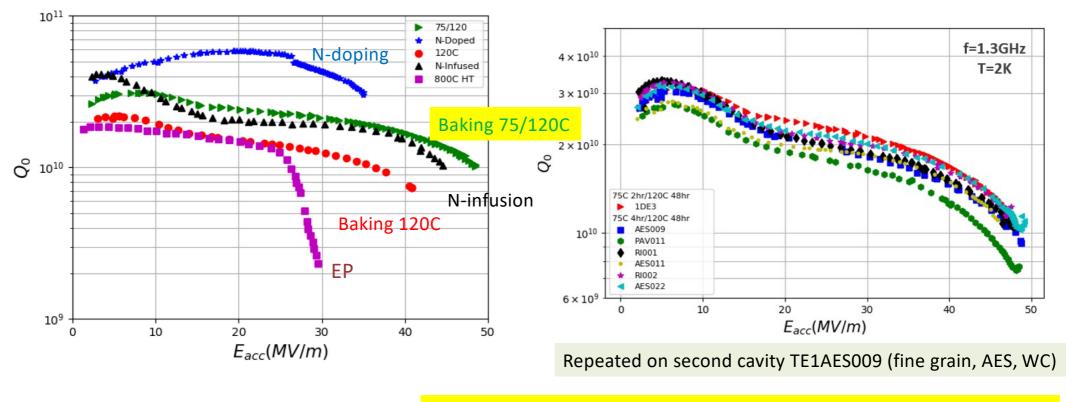
SRF Higher Performance toward Energy Upgrade




Beyond Present Limits of SRF

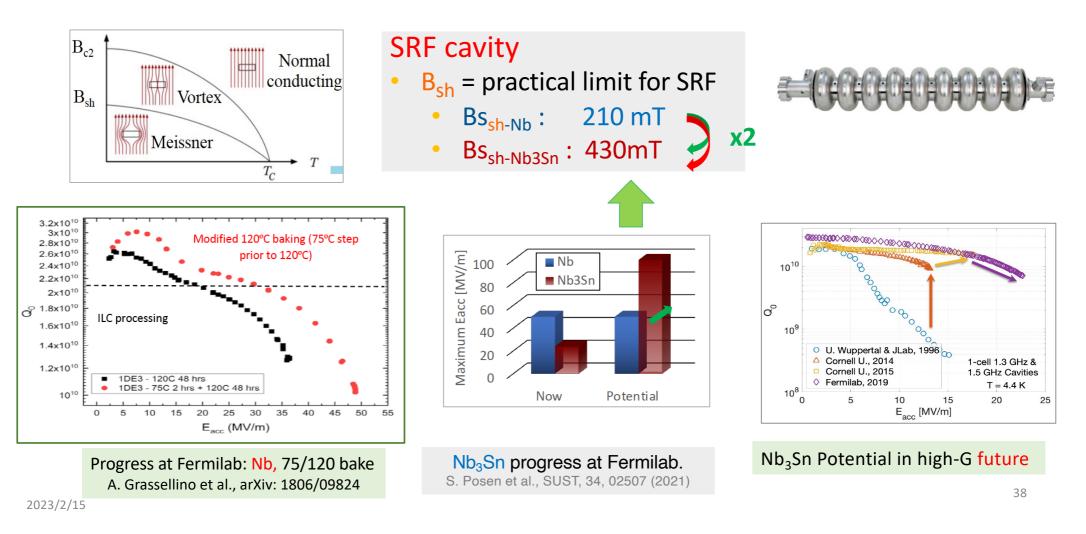

- Nb-based Standing Wave (SW) TESLA type structure is
 - limited to a gradient of ~ 50 MV/m by B_{sh} ~ 200 210 mT.
- Advanced shape cavities will be limited by ~ 60 MV/m
 - Re-entrant, Low-Loss, Ichiro, Low Surface Field
 - Aiming at lower Hpk/Eacc (10-20%), but raise Epk/Eacc (15-20%)
- Advances material such as Nb₃Sn-based
 - Nb₃Sn, expecting Gradient limit up to ~ 80 MV/m, at Bsh ~ 430 mT
- Explore the option of Nb-based Traveling Wave (TW) structures
 - Expecting Effective Gradient to be ~ 70 MV/m or higher

"ILC: The International Linear Collider -- Report to Snowmass 2021", Aryshev *et al.*, arXiv:2203.07622 (15 March, 2022)



Courtesy: Anna Grassellino - TTC Meeting, TRIUMF, Feb., 2019

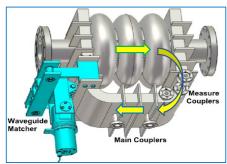
Advances in SRF Technology High-Q and High-G (1.3 GHz, 2K)

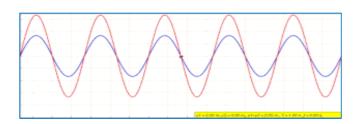


https://arxiv.org/abs/1806.09824

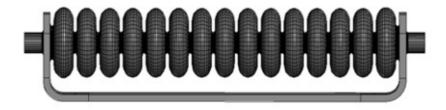
• Performance at Fermilab confirmed by Cornell, DESY, and JLab.

Courtesy, S. Posen


Recent Progress and Future Prospect in SRF Technology

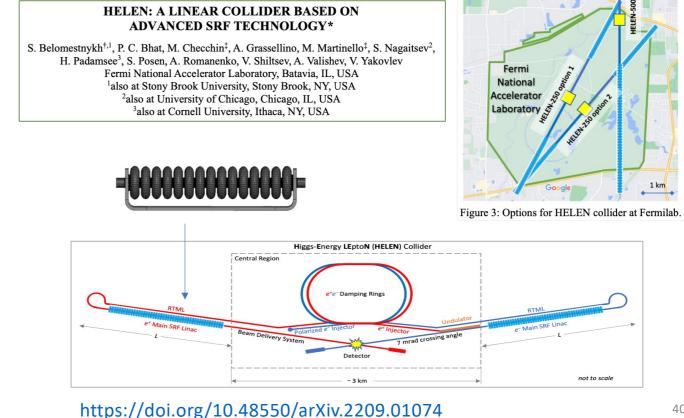

Courtesy: H. Padamsee et al., for ILC-3TeV S. Belomestnykh et al., for HELEN

A new concept for SRF proposed for ILC-3TeV and Helen: Traveling Wave (TW) SRF cavity, compared with Standing Wave


arXiv: 2208/-6-3-v1, arXiv:2209.01074v1

Prototype TW structure under test

SW: TESLA cavity (ILC baseline)


TW: proposed for ILC-3TeV, Helen

- ← Red standing wave High Peak Fields,
- ← Green (acc.) and Blue (Return) Waves are Travelling Waves Lower peak fields,
- ← Guide blue wave in a return wave-guide to avoid SW peak fields
 - attached to both ends

Traveling Wave Cavity Technology

development anticipated in cooperation with HELEN R&D program at Fermilab

Cable 1: Tentative Baseline Parameters of HELEN					
Parameter	Value				
Center of mass energy	250 GeV				
Collider length	7.5 km				
Peak luminosity	1.35×10 ³⁴ cm ⁻² s ⁻¹				
Repetition rate	5 Hz				
Bunch spacing	554 ns				
Particles per bunch	2×10 ¹⁰				
Bunches per pulse	1312				
Pulse duration	727 μs				
Pulse beam current	5.8 mA				
Bunch length, rms	0.3 mm				
Crossing angle	14 mrad				
Crossing scheme	crab crossing				
RF frequency	1300 MHz				
Accelerating gradient	70 MV/m				
Real estate gradient	55.6 MV/m				
Total site power	110 MW				

Report of the Snomass'21 Collider Implementation Task Force

Thomas Roser et al., arXiv: 2208.06030v1, [11 Aug. 2022]

≠(00000000)*≈*

(- based on standing wave SRF cavity

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
i roposai italite	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7 (28.9)	0-2	13-18	12-18	290
FCC-ee-,-		1.1 (28.9)	0-2	13-18	12-18	290
app al 2	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC ³ (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25 - 0.55)					
CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165(330)	5-10	>25	7-18	315
Linear Collider)	(0.25-1)					
ERLC ³ (ERL	0.24	90	5-10	>25	12-18	250
linear collider)	(0.25 - 0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³						

Table 1: Main parameters of the submitted Higgs factory proposals. The cost range is for the single listed energy. The superscripts next to the name of the proposal in the first column indicate (1) Facility is optimized for 2 IPs. Total peak luminosity for multiple IPs is given in parenthesis; (2) Energy calibration possible to 100 keV accuracy for M_Z and 300 keV for M_W ; (3) Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes

"ILC: The International Linear Collider -- Report to Snowmass 2021", Aryshev *et al.*, arXiv:2203.07622 (15 March, 2022) A. "HELEN: A Linear Coolider Based on Advanced SRF Technology", S.Belomestnykh *et al.*, arXiv:2209.01074v1, [2 Sept. 2022]

(- based on traveling wave SRF cavity

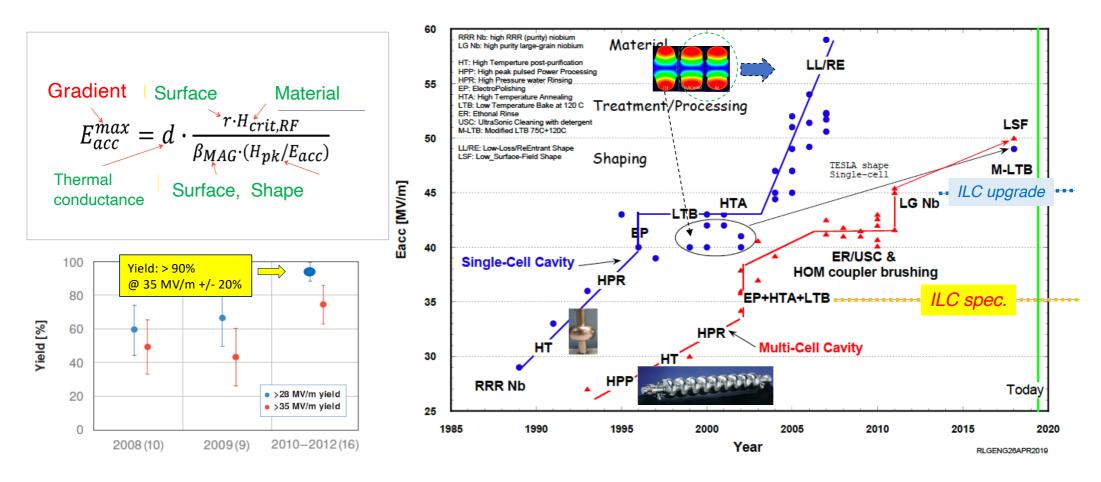
Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	TeV	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
High Energy ILC	3	6.1	5-10	19-24	18-30	~ 400
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~ 550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~ 700
	(1-3)					
High Energy ReLiC	3	47 (94)	5-10	> 25	30-50	~ 780
	(1-3)					
Muon Collider	3	2.3(4.6)	>10	19-24	7-12	~ 230
	(1.5-14)					
LWFA - LC	3	10	>10	> 25	12-80	~ 340
(Laser-driven)	(1-15)					
PWFA - LC	3	10	> 10	19-24	12-30	~ 230
(Beam-driven)	(1-15)					
Structure WFA - LC	3	10	5-10	> 25	12-30	~ 170
(Beam-driven)	(1-15)					

Table 2: Main parameters of the lepton collider proposals with CM energy higher than 1 TeV. Total peak luminosity for multiple IPs is given in parenthesis. The cost range is for the single listed energy. Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes.

Prospects for SRF Technology Advances

- SRF technology has been well matured for the realization of the ILC, including industrial participation, based on the very successful Euro-XFEL completion constructed and stable operation since 2017, and with LCLS-II being in commissioning.
- SRF technology advances with high-G and -Q highly expected for future upgrades:
 - Nb-bulk, SW: ~ 50 MV/m, for ~ 1-TeV upgrade ,
 - Nb3Sn, SW: > 50 MV/m, for > 1-TeV upgrade, and
 - Nb-bulk, TW: ~ 70 MV/m, for further upgrade to reach beyond (up to ~ 3 TeV).
- Note: Q-Value improvement will become also critically important.

Outline


- Introduction:
 - Progress in Accelerator Technology
- ILC Technical Network (ITN) for Global Acc. R&D Programs
- Future Prospect in Technology Advances
- Summary

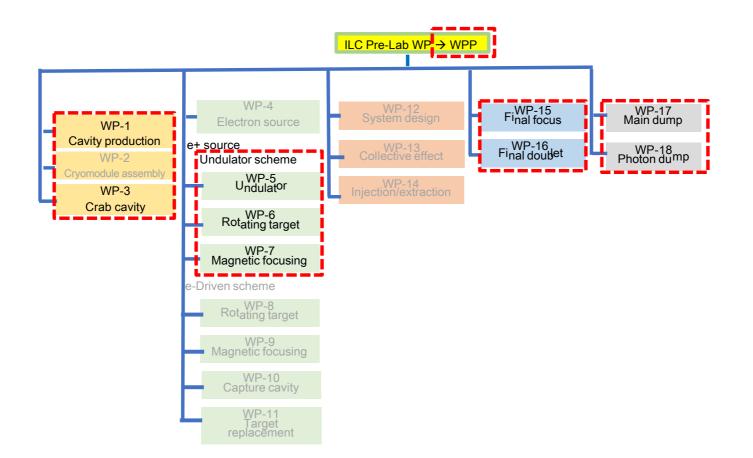
Summary

- The ILC key technologies of "SRF", and "Nano-beam"
 - Matured to be ready for an e+e- Higgs Factory based on the Linear Collider technology.
- ILC International Development Teams (IDT) is identifying and proposing:
 - Time-critical Work Package primes (WP-prime's), to explore collaboration of KEK & int'l partners,
 - ILC Technical Network (ITN), to be funded in Japan/KEK, JFY2023 ~ (April 2023 ~),
 - for enabling Japan to encourage other international partner's efforts, and
 - to prepare the phase for ILC-Prelab & Engineering Design Report (EDR) for the ILC construction,
- For the future:
 - ILC accelerator can be upgraded up to 1 TeV with continuous effort for the existing SRF technology, and beyond with new approaches expected with Nb₃Sn, and TW technology with maximizing the worldwide synergy for various R&D efforts for Higgs Factories and other wide applications.

Courtesy: R. Geng,

Advances in L-band (~ 1GHz) SRF Cavity Gradient

Advantages of TW Structures


- Travelling wave (green) structures lower BOTH *Hpk/Eacc* and *Epk/Eacc*
 - Because RF power returns (blue) not through the accelerating structure (to form a standing wave (red) with harmful peaks)
 - But power returns through a separate return Nb waveguide
- + Travelling wave structures offer 2X higher R/Q
 - lowers Cryo power and RF power and lower AC power
- By choosing the Low-Loss cell shape + reduced aperture (see below) it is possible to lower *Hpk/Eacc* by 48% over the TESLA structure!
- Opening the door to *Eacc* > 70 MV/m !!
 - *Hpk* = 200 mT, *Epk* = 120 MV/m
- Lower aperture is allowed because bunch charge for 3 TeV will about 3 X less to get acceptable IP background...
- Putting SRF on the Road to ILC 3 TeV with Nb
 - With Capital cost comparable to CLIC 3 TeV and AC power much less than CLIC 3 TeV
 - Without struggling with exotic new superconductors (sorry!)

Long-term scope in Snowmass, ILC White-Paper

Travelling Wave SRF cavity anticipated for ILC Energy-Upgrade beyond 1 TeV

		ILC 1 TeV	ILC 2 TeV	ILC 2 TeV	ILC 3 TeV	ILC 3 TeV
	units	TDR	path 1a	path 1b	path 2a	path 2b
Energy	TeV	1	2	2	3	3
Luminosity	10^{34}	4.9	7.9	7.9	6.1	6.1
AC Power	MW	< 300	345	315	400	525
Cap. Cost	B ILCU	+ 5.5	+6.0	+4.9	+11.8	+11.0
(total)		13.3	19.3	18.2	25.1	24.3
Gradient	MV/m	45	55	70	70	80
(new linac)	10					

Path 2a: 3 TeV Upgrade from 1 TeV with 70 MV/m (w/ Nb and Travelling Wave (TW)

