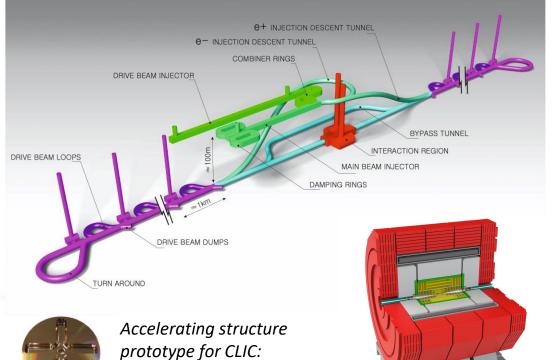


The Compact Linear Collider (CLIC)

Outline

- CLIC project overview
- CLIC at 380 GeV
- Optimisation studies
- Applications
- Summary


IAS HKUST 14-16 Feb 2023

The Compact Linear Collider (CLIC)

prototype for CLIC: 12 GHz (L~25 cm)

- Timeline: Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- **Expandable:** Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.
- Cost: 5.9 BCHF for 380 GeV (stable wrt 2012)
- **Power:** 168 MW at 380 GeV (reduced wrt 2012), corresponding to 60% of CERN's energy consumption today
- Comprehensive Detector and Physics studies

IAS HKUST - 2023

Collaborations

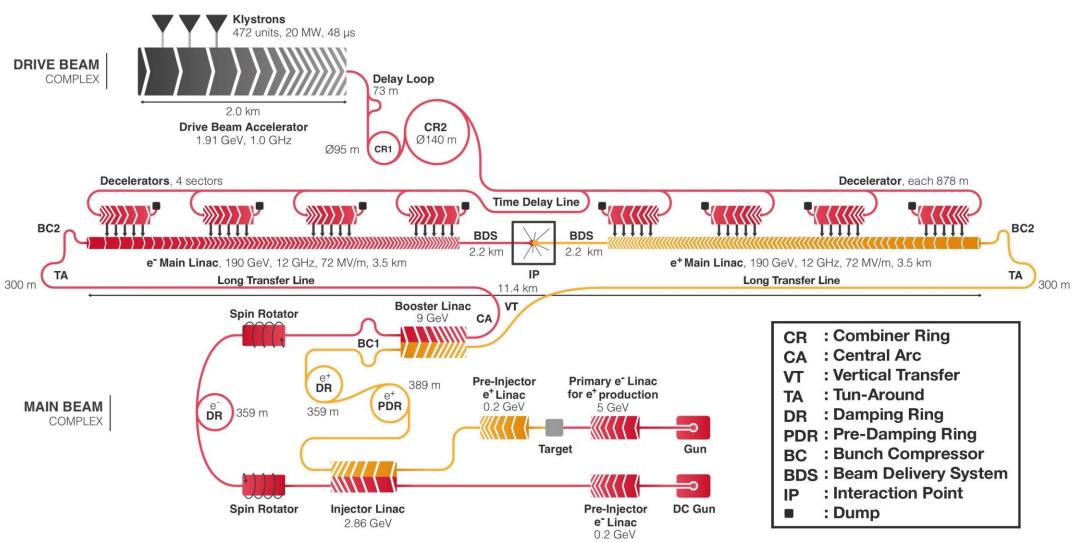
CLIC accelerator

- \sim 50 institutes from 28 countries*
- CLIC accelerator studies
- CLIC accelerator design and development
- Construction and operation of CLIC Test Facility, CTF3

CLIC detector and physics (CLICdp)

- 30 institutes from 18 countries
- Physics prospects & simulations studies
- Detector optimisation + R&D for CLIC

*Canada missing on map


CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb ⁻¹	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10^{9}	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	900/20	660/20	660/20
Final RMS energy spread		%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

CLIC Layout 380 GeV

CERN

CLIC Luminosity Performance

Luminosity Targets

• The luminosity that can be achieved with a perfect machine is:

 $\mathscr{L} = 4.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- Luminosity predictions including static and dynamic imperfections can be made by simulating a larger emittance through a perfect machine.
 - With static imperfections ($\varepsilon_X = 770 \text{ nm}$, $\varepsilon_V = 17 \text{ nm}$ from DR):

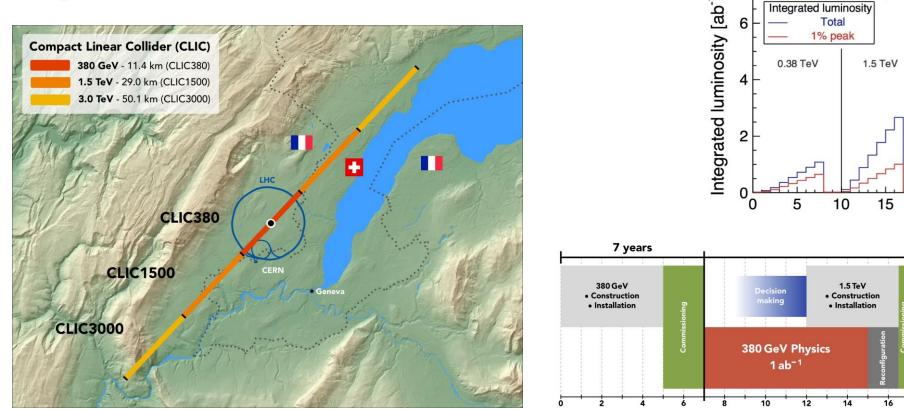
 $\mathcal{L} = 2.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

• With static and dynamic imperfections ($\epsilon_x = 860 \text{ nm}, \epsilon_y = 29 \text{ nm}$ from DR):

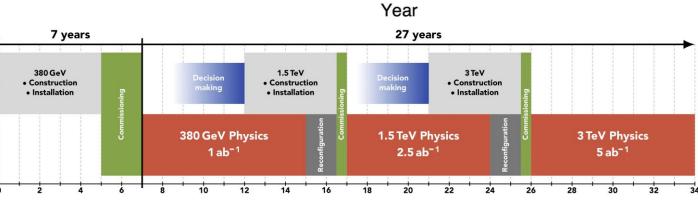
$$\mathscr{L} = 1.55 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

Section	$\epsilon_x \; [\mathrm{nm}]$	$\Delta \epsilon_x \; [ext{nm}]$		$\epsilon_y \; [\mathrm{nm}]$		$\Delta \epsilon_y \; [m nm]$		
		Design	Static	Dynamic		Design	Static	Dynamic
DR	700	-	-	-	5	-	-	-
RTML	850	100	20	30	10	1	2	2
ML	900	0	25	25	20	0	5	5
BDS	950	0	25	25	30	0	5	5

Table 3.1: Targeted horizontal and vertical emittance at the end of each section and the horizontal and vertical emittance growth budgets ($\Delta \epsilon_x$ and $\Delta \epsilon_y$ respectively): design values and contributions from static and dynamic imperfections.


Result of detailed simulations

- Perfect machine luminosity is $4.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.
- Average luminosity with static imperfections is 3.4×10^{34} cm⁻²s⁻¹.
- 90% of machine achieved a luminosity above 2.7×10^{34} cm⁻²s⁻¹.



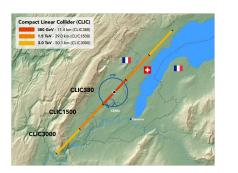
CLIC timeline

Ramp-up and up-time assumptions: arXiv:1810.13022, Bordry et al.

20

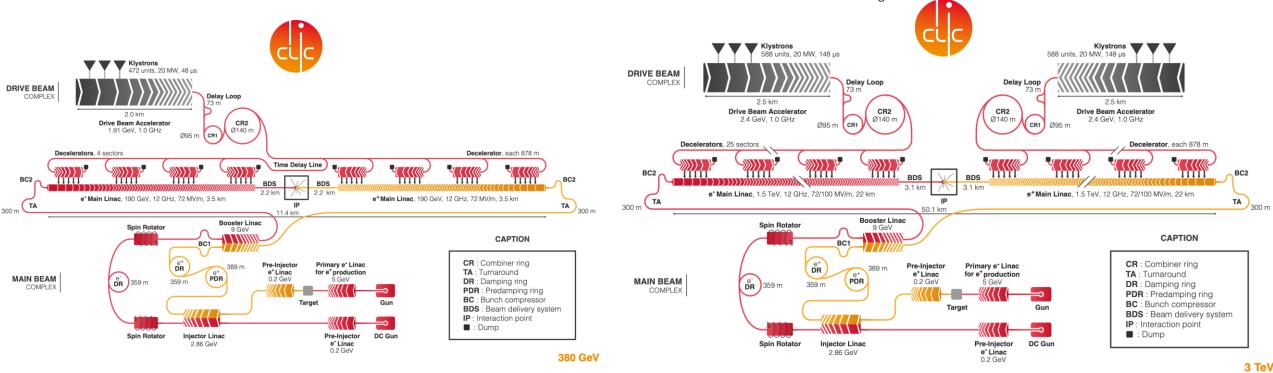
25

3 TeV


Technology Driven Schedule from start of construction shown above.

A preparation phase of ~5 years is needed before (estimated resource need for this phase is ~4% of overall project costs)

What are the critical elements:


- Physics
- Gradient and power efficiency
- Costs

- 1. Drive beam accelerated to ~2 GeV using conventional klystrons
- 2. Intensity increased using a series of delay loops and combiner rings
- 3. Drive beam decelerated and produces high-RF
- 4. Feed high-RF to the less intense main beam using waveguides

Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

IAS HKUST - 2023

CLIC Update Compact Lines

Resources

Available at: clic.cern/european-strategy

3-volume CDR 2012

Updated Staging Baseline 2016

4 CERN Yellow Reports 2018

Details about the accelerator, detector R&D, physics studies for Higgs/top and BSM

Two formal submissions to the ESPPU 2018

Several LoIs have been submitted on behalf of CLIC and CLICdp to the Snowmass process:

The CLIC accelerator study: <u>Link</u> Beam-dynamics focused on very high energies: <u>Link</u> The physics potential: <u>Link</u> The detector: Link

IAS HKUST - 2023

CLIC is a mature design/study

The CLIC accelerator studies are mature:

Optimised design for cost and power

Many tests in CTF3, FELs, lightsources and test-stands

Technical developments of "all" key elements

Recent updates

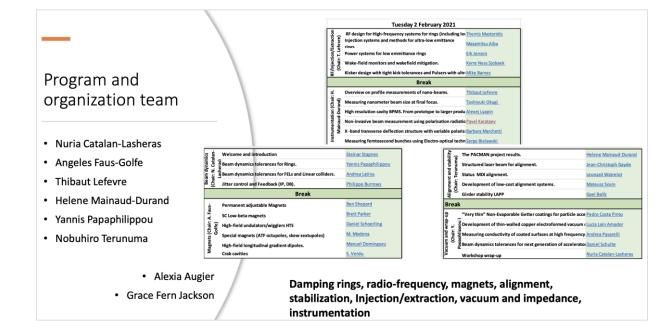
- After the European Strategy for Particle Physics Update (ESPPU)
 - Immediate study of luminosity performance margins, gamma-gamma and Z-pole operation
 - Timeline for further studies changed (slower implementation)

Accelerator

- Resources too limited to move into TDR "proper"
- External projects using X-band technology very important and much increased
- Prioritize R&D type of studies and development of core technologies (will show later)

Physics and Detector:

 Less resources for dedicated CLIC studies, more "Higgs-factory" approach (i.e., CLIC, ILC, FCC-ee, CEPC) and continue linking to detector R&D collaborations

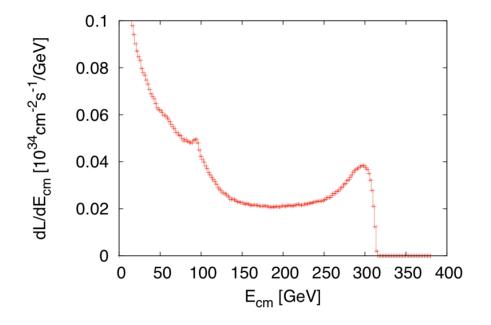

CLIC acc. studies – luminosities

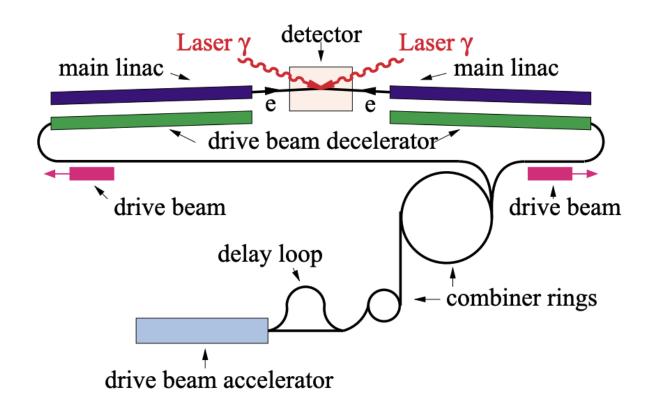
Further work on luminosity performance, possible improvements and margins, operation at the Z-pole and gamma-gamma

Luminosity margins and increases:

- Z pole performance, $2.3 \times 10^{32} 0.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- The latter number when accelerator configured for Z running (e.g., early or end of first stage)
- Baseline includes estimates static and dynamic degradations from damping ring to IP: $1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, a "perfect" machine will give : $4.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, so significant upside
- In addition: doubling the frequency (50 Hz to 100 Hz) would double the luminosity, at a cost of +50 MW and \sim 5% cost increase
- <u>CLIC note</u> and <u>paper</u> about all these studies

Nanobeam workshop (summary by Nuria Catalan): LINK

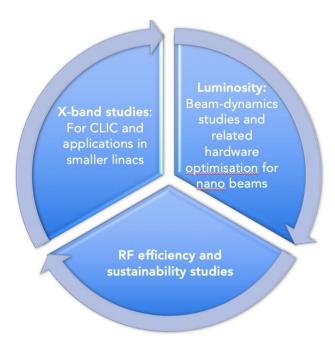



CLIC acc. studies – luminosities

Further work on luminosity performance, possible improvements and margins, gamma-gamma collider

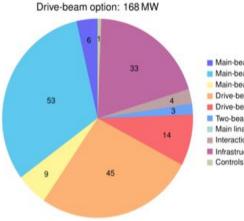
• Gamma – Gamma spectrum (example)

Parameter	Unit	e ⁻ e ⁻	eγ	γγ
Total Lumi. (L)	[10 ³³ cm ⁻² s ⁻¹]	0.7	1.1	1.73
Peak Lumi. (L _{peak})	[10 ³³ cm ⁻² s ⁻¹]	0.3	-	0.9


CLIC Project Readiness 2025-26

Project Readiness Report as a step toward a TDR – for next ESPP Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

Focusing on:


- The X-band technology readiness for the 380 GeV CLIC initial phase
- Optimizing the luminosity at 380 GeV
- Improving the power efficiency for both the initial phase and at high energies

Goals for these studies by \sim 2025:

- Improved 380 GeV parameters/performance/project plan
- Push multi-TeV options/parameters

Power and Energy

Main-beam injectors
 Main-beam damping rings
 Main-beam booster and transport
 Drive-beam injectors
 Drive-beam frequency multiplication a
 Two-beam acceleration
 Main linacs (klystron)
 Interaction region
 Infrastructure and services
 Controls and operations

Power estimate bottom up (concentrating on 380 GeV systems)

• Very large reductions since CDR, better estimates of nominal settings, much more optimised drivebeam complex and more efficient klystrons, injectors more optimized, etc

Further savings possible, main target damping ring RF significantly reduced, L-band klystrons (target 110-130 MW)

Energy consumption \sim 0.8 TWh yearly (target 0.6) CERN is currently (when) running at 1.2 TWh (\sim 90% in accelerators)

Design Optimisation:

The designs of CLIC, including key performance parameters as accelerating gradients, pulse lengths, bunch-charges and luminosities, have been optimised for cost but also increasingly focussing on reducing power consumption.

Technical Developments:

Technical developments targeting reduced power consumptions at system level high efficiency klystrons, and super conducting and permanents magnets for damping rings and linacs.

Running when energy is cheap:

CLIC is normal conduction, single pass, can change off-on-off quickly, at low power when not pulsed. Specify state-change (off-standby-on) times and power uses for each – see if clever scheduling using low-cost periods, can reduce the energy bill

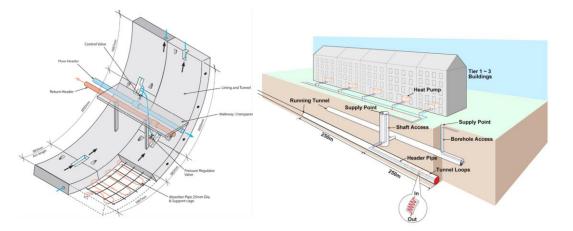
Renewable energy (carbon footprint):

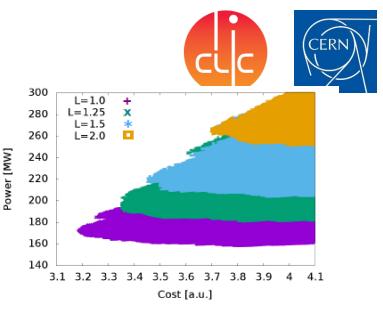
Is it possible to fully supply the annual electricity demand of the CLIC-380 by installing local wind and PV generators (this could be e.g., achieved by 330 MW-peak PV and 220 MW-peak wind generators, at a cost of slightly more than 10% of the CLIC 380 GeV cost)

Optimisations – examples

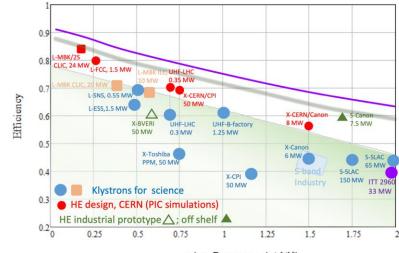
Design Optimisation:

All projects aim to optimize – most often energy reach, luminosities and cost. Examples from all Higgs factories mentioned above. Power is becoming at least as important, maybe even compromising ultimate


performance for power saving.

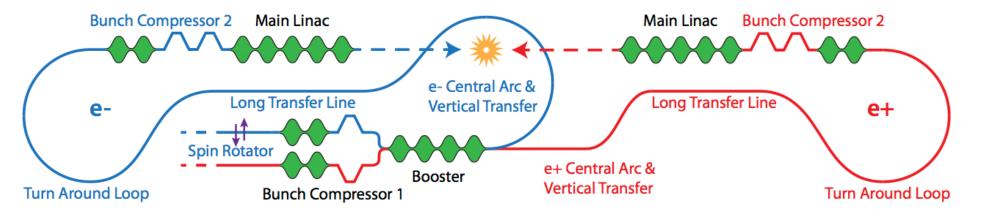

Technical Developments:

Technical developments targeting reduced power consumptions at system level high efficiency klystrons and RF systems generally, and super conducting (traditional SC, and HTS in particular) including cryo, and permanents magnets.

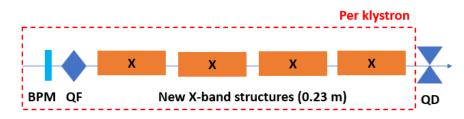

Heat recovery:

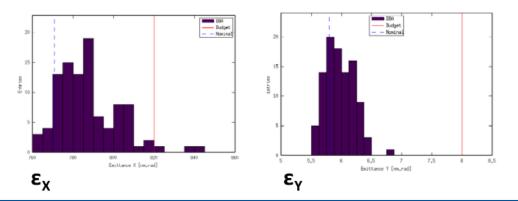
Already implemented in point 8 for LHC Tunnel heat recovery study by ARUP in 2022

The designs of CLIC, including key performance parameters as accelerating gradients, pulse lengths, bunch-charges and luminosities, have been optimised for cost and power


micro Perveance (µA/V^{1.5})

IAS HKUST - 2023

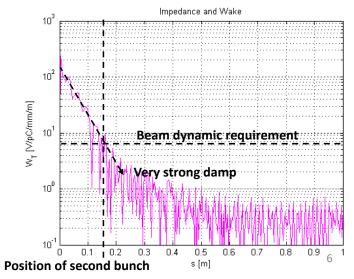


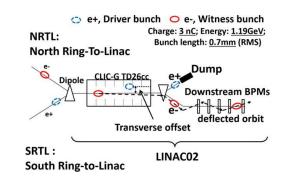

Rings to Main Linac optimisation

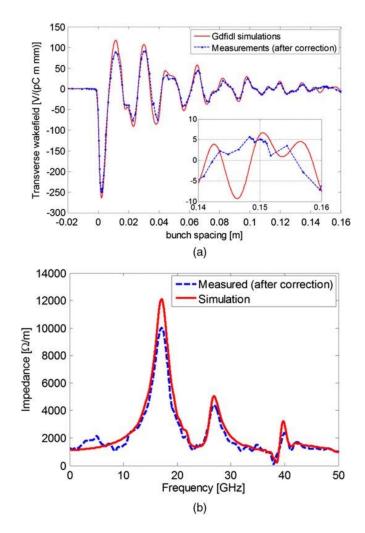
BC2 RF new optimisation for cost and power consumption

Beam parameter	neter Symbol Unit RTML entrance		ntrance	RTML exit		
Collision energy	E_cm		380 GeV	3 TeV	380 GeV	3 TeV
Beam energy	E	GeV	2.86	2.86	9	9
Bunch charge	q	nC	0.832	0.592	0.832	0.592
No. of particles per bunch	N_p	10 ⁹	5.2	3.7	5.2	3.7
No. of bunches per pulse	N_b		352	312	352	312
Bunch length (rms)	σ_z	μm	1800	1800	~70	~42
Energy spread (rms)	σ_E	%	~0.12	~0.12	< 1.7	< 1.7
Normalised emittances	ε_n_x	nm	700	700	< 800	< 800
(w/o imperfections)	εny	nm	5	5	< 6	< 6

	Initial		Final emittance ^(\star)					
	Initial	by Design	with Static Imperfections	with Dynamic Imperfections				
$\epsilon_x [\mathrm{nm}]$	700	< 800	< 820	< 850				
$\epsilon_y \; [nm]$	5	< 6	< 8	< 10				

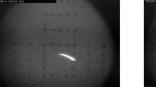

 (\star) 90th percentile.


Main Linac



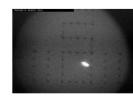
Long-range wakefields suppression

Experiment at FACET (SLAC)




Full Tuning Procedure

- Each section was tuned in order:
 - RTML:
 - 121, DFS, Sextupole tuning (simplex).
 - · Minimises emittance.
 - The corresponding beams at the end of the RTML were used to tune the ML:
 - 121, DFS, RF realignment.
 - · Minimises emittance.
 - Beams at the end of the ML were used to tune the BDS collimation section:
 - 121, DFS, Sextupole tuning (simplex).
 - · Minimises emittance.
 - Beams at the end of the collimation section were used to tune the FFS:
 - 121, DFS, Sextupole tuning (random walk and knobs).
 - Maximises luminosity.


Tests of Beam-based orbit correction at FACET

Before correction

After 1 iteration

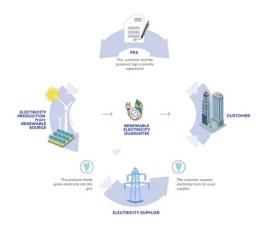
After 3 iterations

IAS HKUST - 2023

Running on renewables and when electricity is cheap


Main states

Transition state

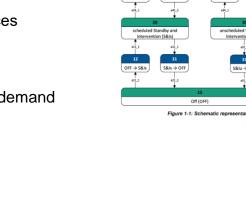

ransition states: XY rom X to Y) .g. 12: from 10 to 2

Full Operation (OP)

- Two studies in 2017:
- Supply the annual electricity demand of the CLIC-380 by installing local wind and PV generators (this could be e.g. achieved by 330 MW-peak PV and 220 MW-peak wind generators) at a cost of slightly more than 10% of the CLIC 380 GeV cost.
 - Study done for 200 MW, in reality only ~110 MW are needed
- Self-sufficiency during all times can not be reached but 54% of the time CLIC could run independently from public electricity supply with the portfolio simulated.
 - Can one run an accelerator as CLIC in a mode where one turn "on" and "off" depending prices (fluctuating with weather, demand, etc) ?
 - Specify transition times (relatively fast for a LC) and the annual luminosity goal
 - Significant savings but the largest saving is the obvious one, not running in the winter.
 - Flexibility to adjust the power demand is expected to become increasingly important and in demand by energy companies.
- More information (link)

Physical off-site PPA

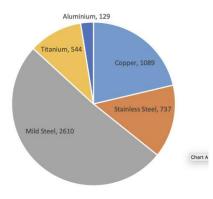
A real implementation:

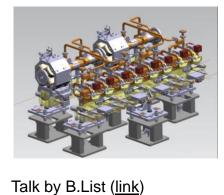

A physical power purchase agreement (PPA) is a long-term contract for the supply of electricity at a defined, fixed price at the start and then indexed every year, negotiated between a producer of renewable electricity and a consumer for a defined period (generally 15 to 20 years).

Being considered for CERN initially at limited scale.

Advantages: price, price stability, green, renewable.

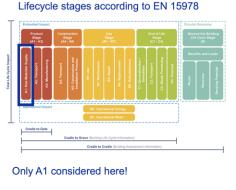
Nuclear energy remains very important, on the timescale of a future CERN facility: SMEs


Must be a goal to run future accelerator at CERN primarily on green and more renewable energy with very low carbon footprint. However, energy costs will remain a concern



Sustainable Construction – some elements

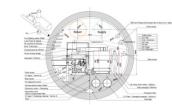
Material (incl. Scrap) GWP [kg CO2-eq]



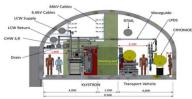
Copper Stainless Steel Mild Steel Titanium Aluminium

Tunnel GWP (CO2 Impact) from Materials

Quantity	DB	Klys.
Inner Diameter [m]	5.6	10
Tunnel Cross Section [m ²]	25	79
Lining / Grouting [cm]	30 / 10	45 / 15
Concrete Area [m ²]	12.4	44.8
Lining&Floor Area [m ²]	8.2	19.7
Concrete per m [t/m]	31	129
Steel per m [t/m]	0.95	2.3
Concrete GWP [t CO2-eq/m]	3.1	12.9
Steel GWP [t CO2-eq/m]	1.6	3.8
Material GWP [t CO2-eq/m]	5	17
Total GWP (25% overhead)	6	21


Similar CO2 estimates made for the FCC tunnel in the framework of Snowmass.

Assume a small tunnel (~5.6m diameter) and that the equipment in the tunnel has the same carbon footprint as the tunnel itself, 20km acc. incl. tunnel corresponds to 240 kton. This is equivalent to 50-60 TWh of nuclear power.


Goal and Scope

- Goal: Reduce embodied and construction environmental impacts
- LCA for 3 tunnel options (tunnels, caverns & access shafts)
- System boundaries: Embodied and construction. *Excluding operation, use and end of life.*

1. CLIC Drive Beam tunnel, 5.6m internal diameter 2. CLIC Klystron tunnel, 10m internal diameter 3. ILC Japan tunnel, arched 9.5m span

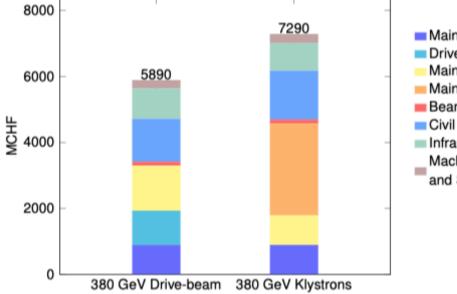
Carbon Cost/Life Cycle Assessment LCA study 2023

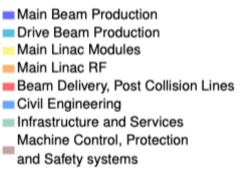
Two final comments:

The work on-going for the FCC to "integrate" into the areas near CERN, including getting rid of spoil, is obviously also a crucial element on the way to a environmentally integrated collider.

Responsible purchasing – and understanding the impact on our supply chain, costs and potential for changes – will be essentials for future projects (information from E.Cennini)

IAS HKUST - 2023


Cost - I



Machine has been re-costed bottom-up in 2017-18

- Methods and costings validated at review on 7 November 2018

 similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated

Domain	Sub-Domain	Cost [M	CHF]
Domain	Sub-Domain	Drive-Beam	Klystron
	Injectors	175	175
Main Beam Production	Damping Rings	309	309
	Beam Transport	409	409
	Injectors	584	
Drive Beam Production	Frequency Multiplication	379	
	Beam Transport	76	
Main Linac Modules	Main Linac Modules	1329	895
Main Linac Modules	Post decelerators	37	
Main Linac RF	Main Linac Xband RF		2788
Room Dolivour and	Beam Delivery Systems	52	52
Beam Delivery and Post Collision Lines	Final focus, Exp. Area	22	22
Post Collision Lines	Post-collision lines/dumps	47	47
Civil Engineering	Civil Engineering	1300	1479
	Electrical distribution	243	243
Infrastructure and Services	Survey and Alignment	194	147
infrastructure and Services	Cooling and ventilation	443	410
	Transport / installation	38	36
	Safety system	72	114
Machine Control, Protection	Machine Control Infrastructure	146	131
and Safety systems	Machine Protection	14	8
	Access Safety & Control System	23	23
Total (rounded)		5890	7290

CLIC 380 GeV Drive-Beam based: 5890^{+1470}_{-1270} MCHF;

CLIC 380 GeV Klystron based:

Other cost estimates:

Construction:

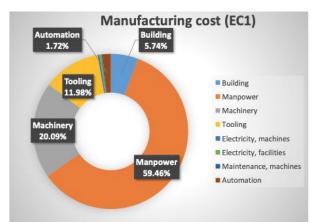
- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML)
- Labour estimate: ~ 11500 FTE for the 380 GeV construction

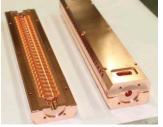
Operation:

- 116 MCHF (see assumptions in box below)
- Energy costs

- 1% for accelerator hardware parts (e.g. modules).
- 3% for the RF systems, taking the limited lifetime of these parts into account.
- 5% for cooling, ventilation and electrical infrastructures etc. (includes contract labour and consumables)

These replacement/operation costs represent $116\,{\rm MCHF}$ per year.


N. Catalan



S-box (3GHz) also being set up again to test KT structure, PROBE and the new injector

Industrial questionnaire:

Based on the companies feedback, the preparation phase to the mass production could take about five years. Capacity clearly available.

Structures and components production programme to study designs, operation/conditioning, manufacturing, industry qualification/experience

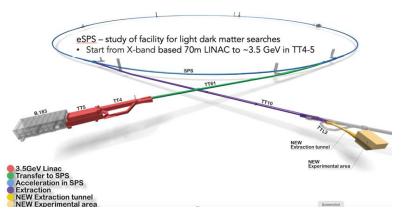
EU projects: ARIES, I-FAST, new TNA

Use in smaller linacs (C- and X-band)

SwissFEL: C-band linac

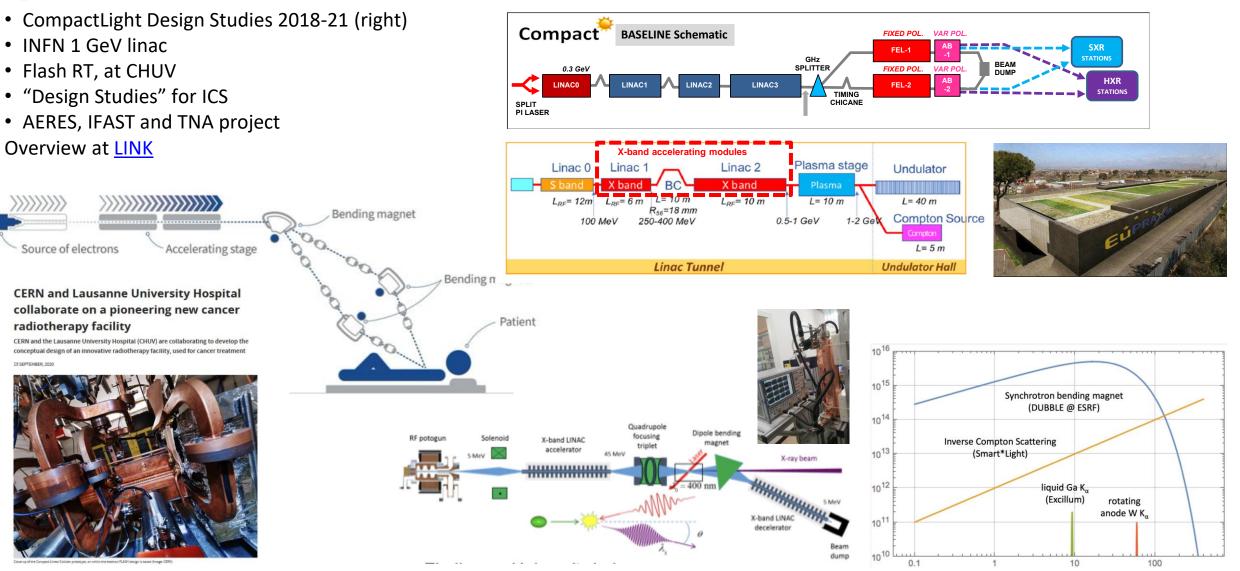
Photo: SwissFEL/PS

- 104 x 2 m-long C-band (5.7 GHz) structures (beam up to 6 GeV at 100 Hz)
- Similar μ m-level tolerance
- Length ~ 800 CLIC structures
- Being commissioned
- X-band structures from PSI perform well



26 academic and industrial partners: <u>http://www.compactligh</u> <u>t.eu/Main/HomePage</u>

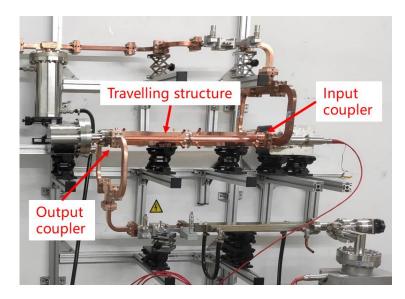
CompactLight Design Study 2018-21 (<u>link</u>) Compact FEL based on X-band technologies


CERN: eSPS study (3.5 GeV X-band linac)

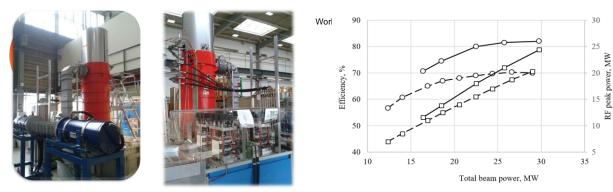
IAS HKUST - 2023

Applications – injector, X-band modules, RF

Source of electrons


15 SEPTEMBER 20

Beam Facilities using X-band technology


- TU Eindhoven: SMART*LIGHT, ICS
- Tsinghua: VIGAS, ICS
- CERN: AWAKE electron injector
- INFN Frascati: EuPRAXIA@SPARC_LAB, accelerator
- DESY: SINBAD/ARES, deflector
- CHUV/CERN: DEFT, medical accelerator
- Daresbury: CLARA, linearizer
- Trieste: FERMI energy upgrade

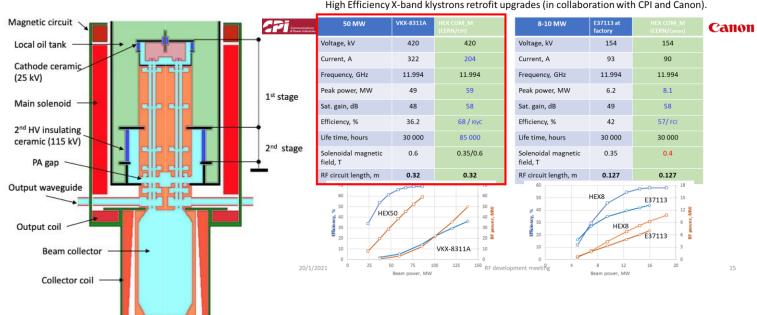
VIGAS

Location: CERN Bldg: 112

Drivebeam klystron: The klystron efficiency (circles) and the peak RF power (squares) simulated for the CLIC TS MBK (solid lines) and measured for the Canon MBK E37503 (dashed lines) vs total beam power.

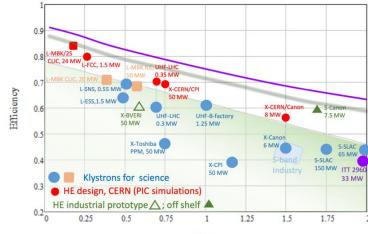
Publication: https://ieeexplore.ieee.org/document/9115885

High Eff. Klystrons



L-band, X-band (for

applications/collaborators and test-stands


High Efficiency implementations:

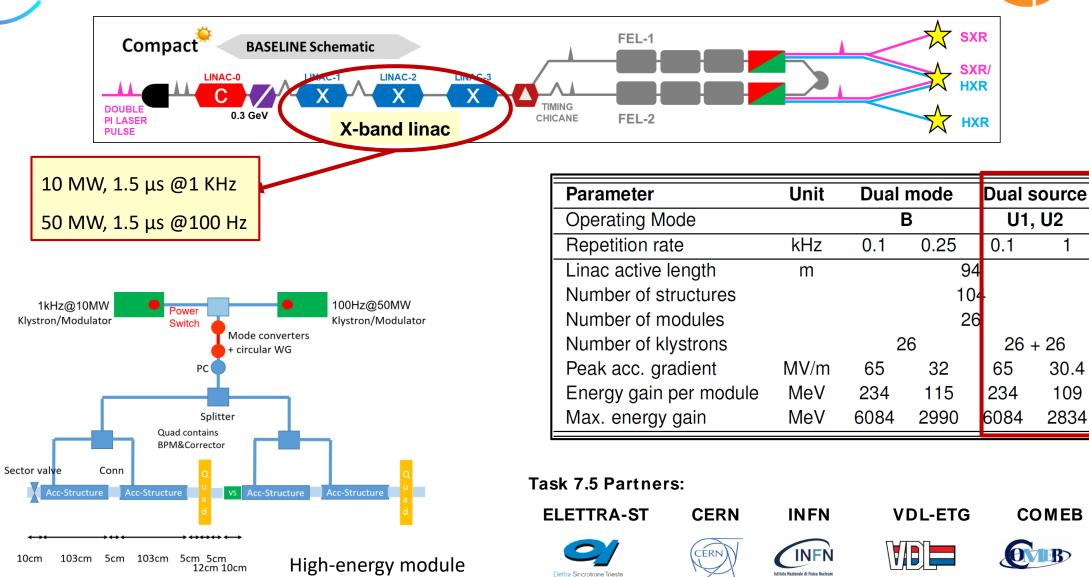
- New small X-band klystron, ordered
- Large with CPI, work with INFN
- L-band two stage, design done, prototyping for FCC

High Efficiency X-band klystrons retrofit upgrades (in collaboration with CPI and Canon).

Canon Also important, redesign of damping ring RF system (well underway) – no klystron development foreseen

micro Perveance (µA/V1.5)

IAS HKUST - 2023


İFAST

I-FAST – CompactLight Structure

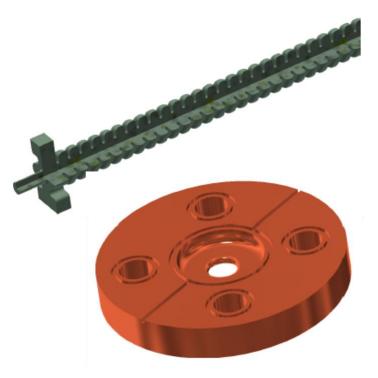
30.4

109

IAS HKUST - 2023

CLIC Update

28

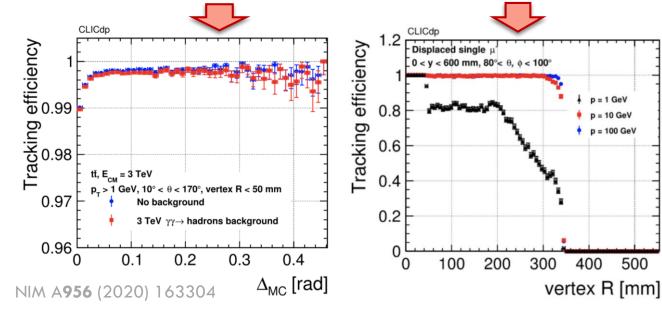

TMD

TMD

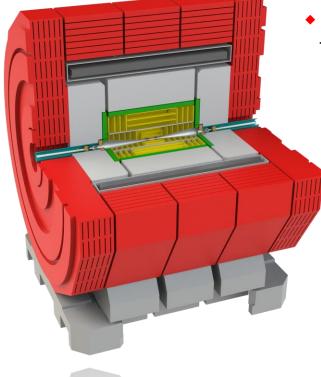
Accelerating structure RF operating parameters

IFAST	clc	CÉRN

Parameter	Units		Value	
Frequency	GHz	(11.994	4
Peak klystron power (100 - 250 Hz)	MW		50	
Peak klystron power (1000 Hz)	MW		10	
RF pulse length (250 Hz)	μs	-	1.5 (0.1	5)
Waveguide power attenuation	%		≈ 10	
Average iris radius a	mm		3.5	
Iris radius a	mm		4.3-2.	7
Iris thickness t	mm		2.0-2.2	24
Structure length L _s	m		0.9	
Unloaded SLED Q-factor Q_0			18000	0
External SLED Q-factor Q_E			23300)
Shunt impedance R	$M\Omega/m$		85-11	1
Peak modified Poynting vector	$W/\mu m^2$		3.4	
Group velocity v_g/c	%		4.7-0.9	9
Filling time t _f	ns		146	
Repetition rate	Hz	100	250	1000
SLED		ON OFF ON		ON
Required klystron power	MW	44	44	9
Average accelerating gradient	MV/m	65	30	30



Two structures being manufactured


CLIC Detector

- **CLICdet:** High-performing detector optimized for CLIC beam environment
 - Full GEANT-based simulation, including beam-induced backgrounds, available for optimization and physics studies
 - Mature reconstruction chain allows detailed performance characterisation
 - e.g. for tracking: effect of busy environment; displaced track reconstruction

Software framework:

- Originally in iLCSoft, the simulation/reconstruction is now fully embedded in the
- **Key4HEP** ecosystem -> a common target for all future collider options
- existing reconstruction algorithms "wrappered" for the new framework

Detector R&D for CLICdet

Calorimeter R&D => within CALICE and FCAL

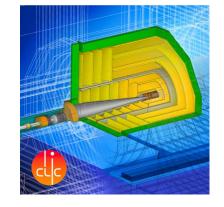
Silicon vertex/tracker R&D:

- Working Group within CLICdp and strong collaboration with DESY + AIDAinnova
- Now integrated in the <u>CERN EP detector R&D programme</u>

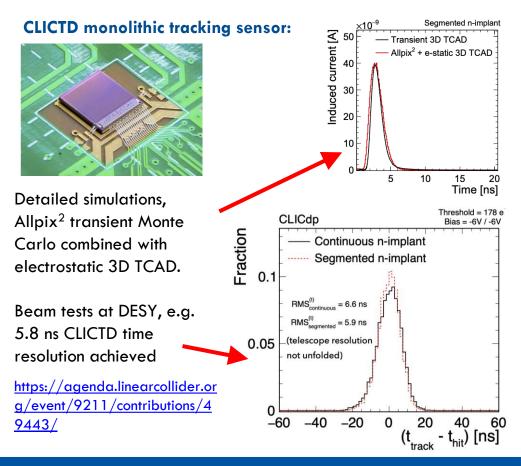
A few examples:

Hybrid assemblies:

• Development of **bump bonding** process for **CLICpix2** hybrid assemblies with 25 μm pitch <u>https://cds.cern.ch/record/2766510</u>



Successful sensor+ASIC bonding using
 Anisotropic Conductive Film (ACF), e.g.,
 with CLICpix2, Timepix3 ASICs.
 ACF now also used for module integration
 with monolithic sensors.
 https://agenda.linearcollider.org/event/9211/contri

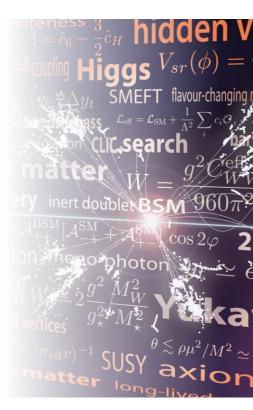

<u>butions/49469/</u>

Monolithic sensors:

- Exploring sub-nanosecond pixel timing with ATTRACT FASTPIX demonstrator in 180 nm monolithic CMOS https://agenda.linearcollider.org/event/9211 /contributions/49445/
- Now performing qualification of modified 65 nm CMOS imaging process for further improved performance

IAS HKUST - 2023

Physics Potential recent highlights 1: Initial energy stage


Ongoing studies on Higgs and top-quark precision physics potential

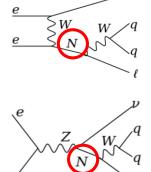
0.7 **Higgs coupling sensitivity:** Reference crossection CLICdp Mass and Yukawa 0.6 Sensitivities under different integrated luminosity scenarios to complement accelerator luminosity studies 0.5 Cross-section [pb] 0.4 Increased integrated Baseline: 380 GeV (1ab⁻¹) + luminosity at 380 GeV 1.5 TeV 0.3 $(4ab^{-1})$ 0.2 Benchmark HL-LHC HL-LHC + CLIC HL-LHC + FCC-ee 380 (1 ab⁻¹) $380(4ab^{-1})$ 365 240 0.1 $+1500(2.5ab^{-1})$ $g_{HZZ}^{\rm eff}$ [%] SMEFTND 0.5 0.3 3.6 0.3 0.2 335 345 350 340 $g_{HWW}^{\rm eff}$ [%] 0.3 0.2 0.5 0.3 SMEFTND 3.2 Energy [GeV] $\begin{array}{c} g_{H\gamma\gamma}^{\rm eff}[\%]\\ g_{H\gamma\gamma}^{\rm eff}[\%]\\ g_{Hgg}^{\rm eff}[\%]\\ g_{Hgg}^{\rm eff}[\%]\\ g_{Htt}^{\rm eff}[\%]\\ g_{Hcc}^{\rm eff}[\%] \end{array}$ SMEFTND 3.6 1.3 1.3 1.3 1.2 SMEFTND 9.8 11. 9.3 4.6 9.3 **Top-quark threshold scan** 0.9 1.0 0.8 SMEFTND 2.3 1.0 • Optimisation of scan points including beam 3.5 3.1 2.2 3.1 3.1 SMEFTND spectrum; here optimising on mass and Yukawa SMEFTND 1.8 1.4 1.2 2.1 _ geff [% SMEFTND 5.3 0.6 0.4 0.7 0.6 coupling. $g_{H\tau\tau}^{\rm eff}$ [%] SMEFTND 3.4 1.0 0.9 0.7 0.6 • Expected top-quark mass precision of $g_{H\mu\mu}^{\rm eff}$ [%] 3.8 SMEFTND 5.5 4.3 4.1 4. 25MeV can be improved by 25% without $\delta g_{1Z}[\times 10^2]$ SMEFTND 0.027 0.013 0.085 0.036 0.66 losing precision on width or Yukawa. $\delta \kappa_{\gamma} [\times 10^2]$ SMEFTND 0.049 3.2 0.032 0.044 0.086 https://arxiv.org/abs/2103.00522 $\lambda_{z}[\times 10^{2}]$ 3.2 0.022 0.005 SMEFTND 0.1 0.051

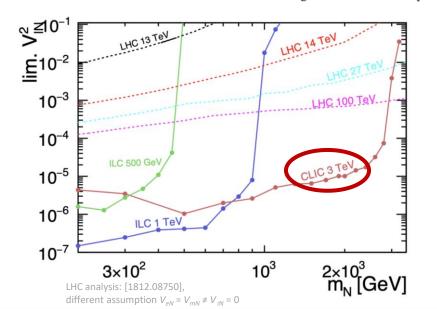
https://arxiv.org/abs/2001.05278

IAS HKUST - 2023

other sensitivities from Briefing Book https://arxiv.org/abs/1910.11775

355

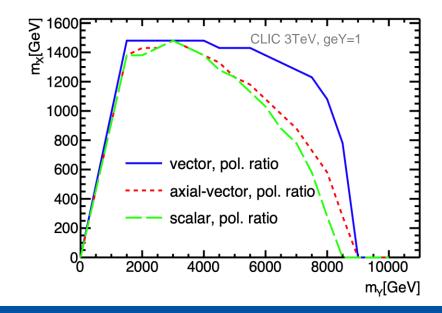

Physics Potential recent highlights 2: Multi-TeV stages

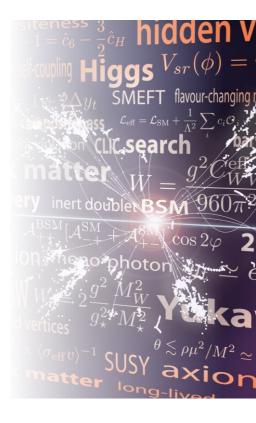


Ongoing studies on new physics searches

Search for heavy neutrinos

- ◆ e+e- -> Nv -> qqlv signature allows full reconstruction of N
- BDT separates signal from SM; beam backgrounds included.
- cross-section limits converted to mass (m_N) coupling (V_{IN}) plane



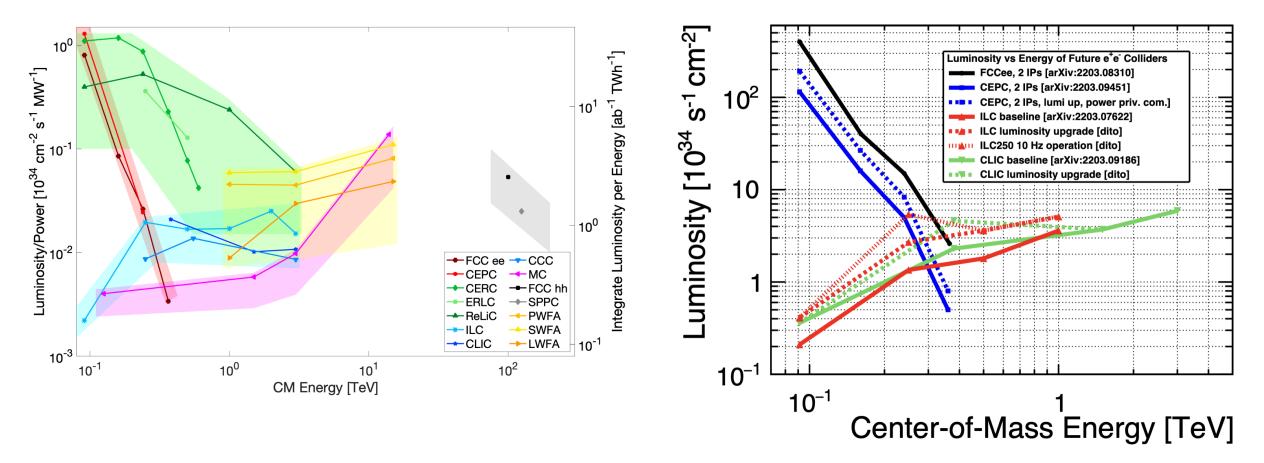


Dark matter using mono-photon signature at 3TeV, $e+e{-} \rightarrow XX\gamma$

- New study using ratio of electron beam polarisations to reduce systematics
- Exclusions for simplified model with mediator Y and DM particle X
- For benchmark mediator of 3.5TeV, photon energy spectrum discriminates different DM mediators & allows 1TeV DM particle mass measurement to $\sim 1\%$

https://arxiv.org/abs/2103.06006

Summary and thanks



- CLIC studies focused on core technologies, X-band and nanobeam, for next ESU, well underway.
- Keep focus on both 380 GeV and multi-TeV performance and R&D
- Greatly helped by studies of smaller linacs and systems using X-band technology
- Detector and physics studies continue at lower pace, also in many areas integrated or connected with "Higgs-factory" studies, and wider Detector R&D efforts

• Thanks to Steinar Stapnes and to many CLIC accelerator colleagues for slides and inputs, and to Aidan Robson for the CLICdp slides

Luminosity of future colliders

Personnel estimate and cost – and Higgs factories

Project Cost

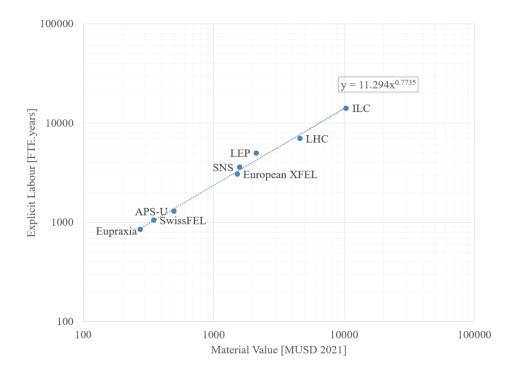


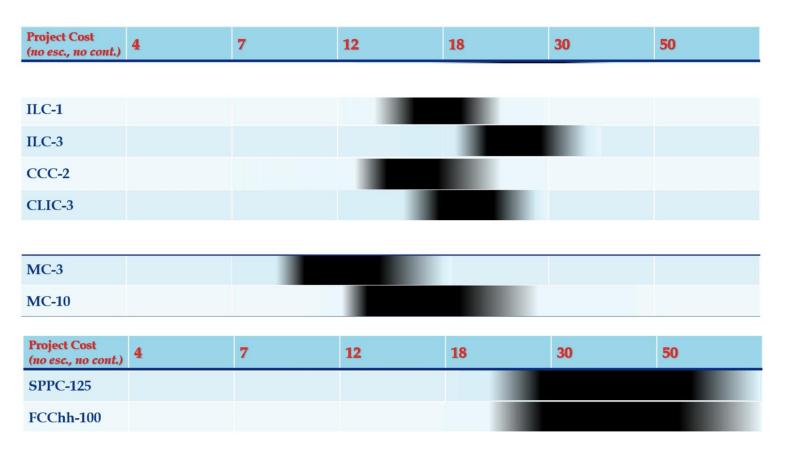
Figure 5: Explicit labor for several large accelerator projects vs. project value. One FTEy estimated to 200kUS\$

(no esc., no cont.)		 **	
FCCee-0.24			
FCCee-0.37			
ILC-0.25			
ILC-0.5			
CLIC-0.38			
CCC-0.25			
CCC-0.55			

12

18

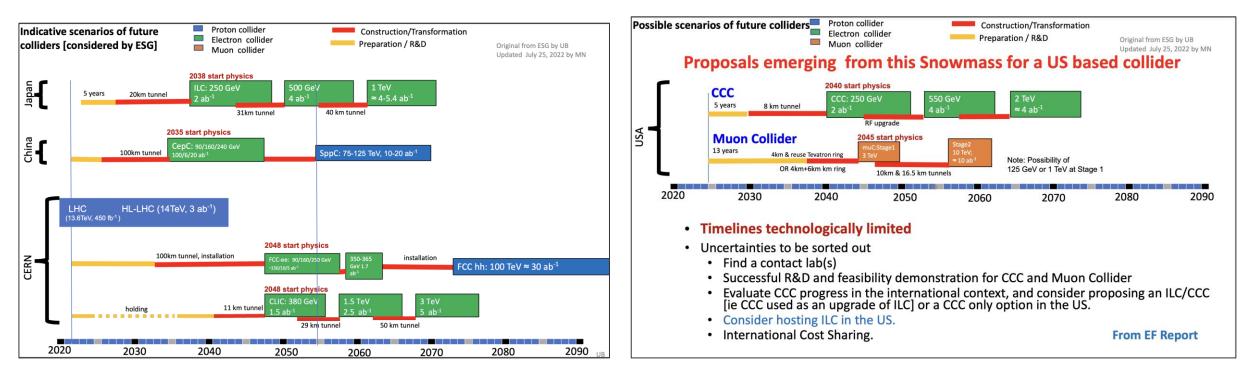
30


50

7

Figure 8: The ITF cost model for the EW/Higgs factory proposals. Horizontal scale is approximately logarithmic for the project total cost in 2021 B\$ without contingency and escalation. Black horizontal bars with smeared ends indicate the cost estimate range for each machine.

IAS HKUST - 2023


Higher energy projects – and costs

CERN

Timelines in Snowmass Energy Frontier summary

Comments:

- Timelines are technologically limited except the CERN projects that are linked to completion of the HL-LHC
- CEPC and ILC schedules are mature, but the projects need to pass approval processes in the near future to maintain these schedules
- CCC and MC are less well defined but R&D and project development on the shown timescales is reasonable, CCC can also upgrade ILC
- · A clear wish to develop options for future US-sited EF colliders
- US put emphasis on "fast" access to a Higgs factory
- From Meenakshi Narain EF summary Snowmass

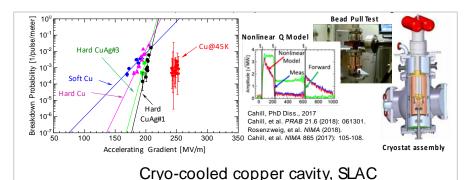
IAS HKUST - 2023

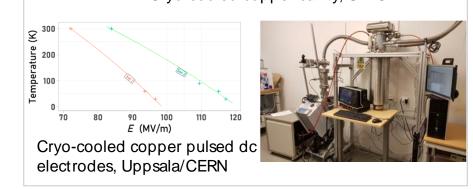
Pushing the acc. technology – R&D

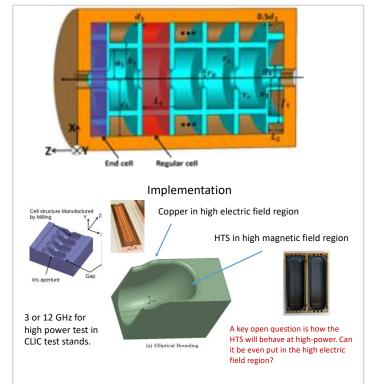
CLIC core studies:

Normal conducting accelerating structures are limited in gradient by three main effects (setting aside input power):

- Field emission
- Vacuum arcing (breakdown)
- Fatigue due to pulsed surface heating


Studying these processes gives important input into:


- RF design Optimizing structures also coupled with beam dynamics
- Technology Material choice, process optimization
- Operation Conditioning and recovery from breakdown


Designs for CLIC steadily improving, but also RFQ, Muon collider, XFEL, ICS, etc Important experimental support

Multi-TeV energies:

High gradient, high wall-plug to beam efficiency, nanobeam parameters increasingly demanding

Cryogenic systems extended: Combining high-gradients in cryo-copper and hightemperature superconductors for highefficiency and reduced peak RF power requirements.