CEPC ToF Detector R&D Using LGAD

IAS Program on High Energy Physics (HEP)

Yunyun Fan

2023.02.12

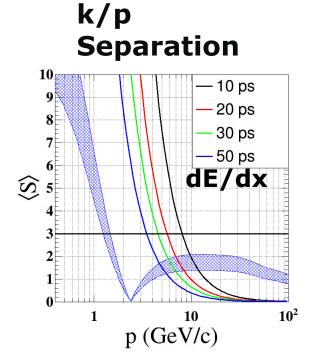
Outline

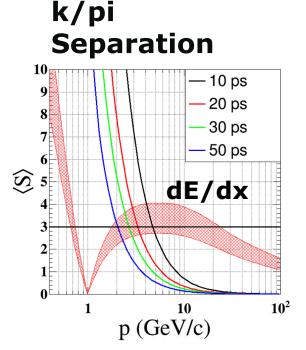
- I. Motivation
- II. AC-LGAD in IHEP
- **III.LGAD** in IHEP

Motivation

Particle separation problems for CEPC flavor physics: k/pi、k/p

- dE/dx or dN/dx detector : bad performance around 2GeV
- ToF improves the separation ability in the low-energy range

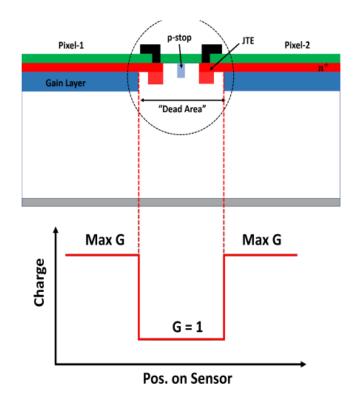

Application of time flight detector: 50 ps-> 30ps-> 20 ps-> 10 ps, extend the capabilities of particle separation of particles below 5 GeV

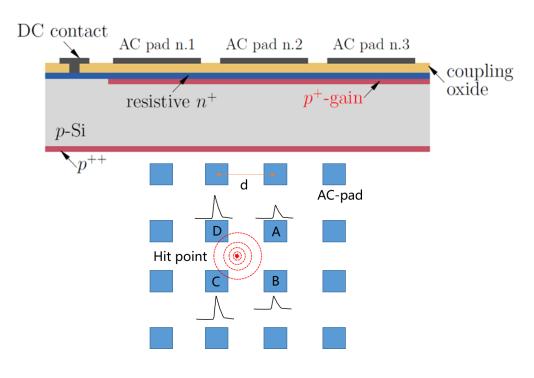

0.8 0.6 0.4 0.2 0.2 0.15 20

p (GeV/c)

particles

Distribution of CEPC




Candidate of ToF for CEPC

Candidate of ToF for CEPC

- LGAD: high timing resolution (30 ps), low gain, high S/N
- AC-LGAD: 4 dimension detection (spatial and 30-40 ps

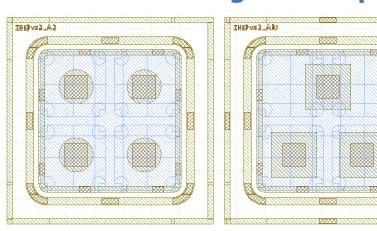
time resolution), no dead region

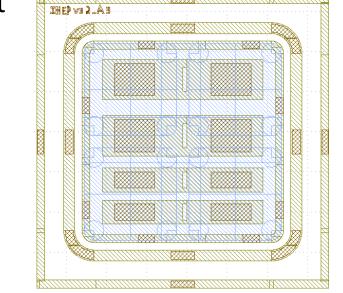
Outline

- I. Motivation
- II. AC-LGAD in IHEP
- **III.LGAD** in IHEP

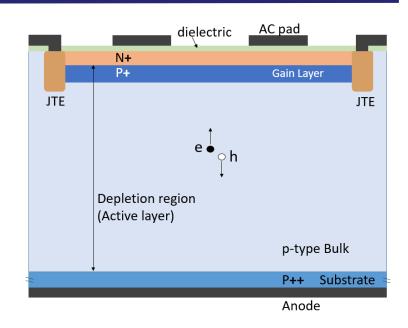
Design of AC-LGAD

Different designs of AC-LGAD in IHEP


Geometric shape:


- ✓ Different arrange of pads: different signal path
- ✓ Pixels AC-LGAD
- ✓ Strip AC-LGAD

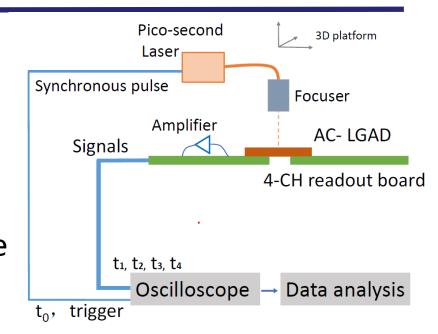
Different doping:

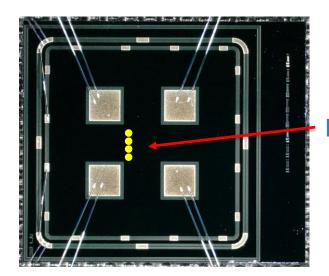

√ N+dose: attenuation effect

Different arrange of the pads

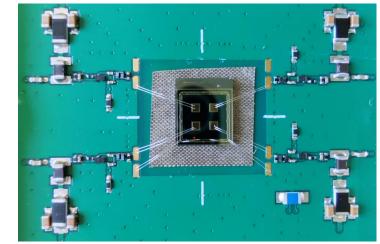
Different widths of the pads

Different N+ dose


Sensors	N+ dose	AC-pad size [μm]	Pitch size [µm]
W7Q1	10.0 P	1000	2000
W5Q1	5.0 P	1000	2000
W5Q2	1.0 P	1000	2000
W5Q3	0.5 P	1000	2000
W5Q4	0.2 P	1000	2000

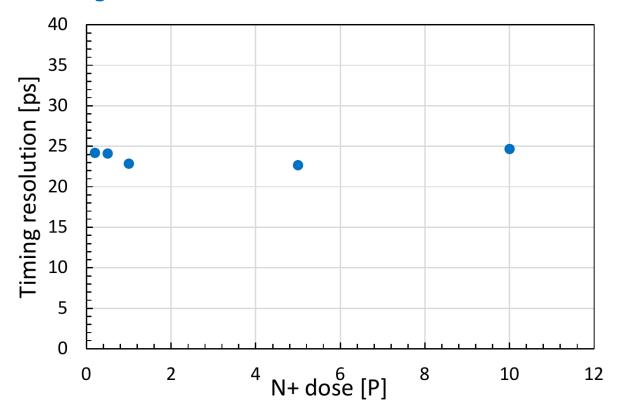

Yunyun Fan

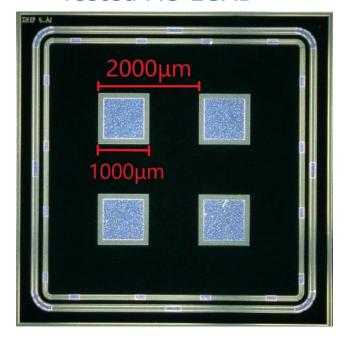
Performance Test Setup of AC-LGAD


- Timing and spatial resolution test of AC-LGAD
- Transient current technique (TCT)
- Picosecond Laser: 1065 nm , spot size10 μm (3σ)
- 4 channels readout board designed by IHEP
 - -470Ω Broadband inverting trans-impedance amplifie
 - Reference of 1 channel board designed by UCSC

Laser spot

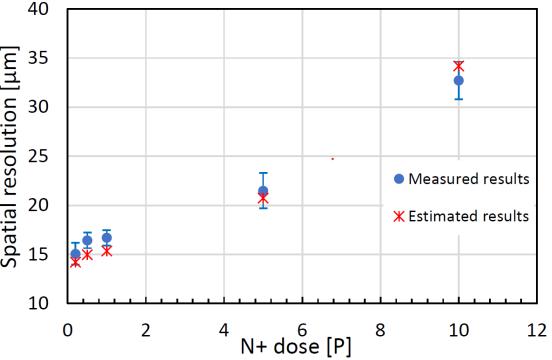
4 channels readout board designed by IHEP




Timing resolution of AC-LGAD

- Timing resolution of AC-LGAD with different N+ dose
 - 22~25ps
 - N+ very slightly affects the time performance

Timing resolution of AC-LGAD with different N+ dose



Spatial resolution of AC-LGAD

Spatial resolution Vs N+ dose

- 10 P \rightarrow 0.2 P, spatial resolution 15 µm (minimum)
- Estimated laser point positions fit the measured well
- Better than the FBK design even with 2 times larger pitch

	Pitch size	Spatial resolution	Time resolution
Sensors	[µm]	[µm]	[ps]
IHEP AC-LGAD	2000	15	22 (laser)
FBK AC-LGAD	500	11	32 (laser)
BNL AC-LGAD	100	-	45 (beta source)

Outline

- I. Motivation
- II. AC-LGAD in IHEP
- **III.LGAD** in IHEP

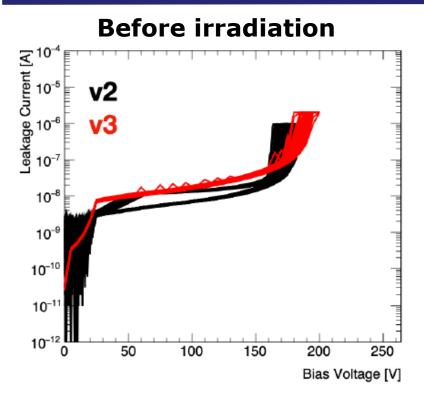
IHEP-IME LGAD: Version3 Design

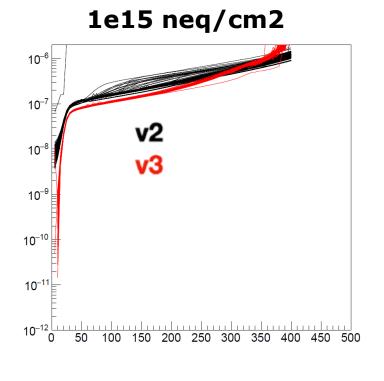
The design parameters: IHEP-IME Version3 W12 and Version2 W7Q2

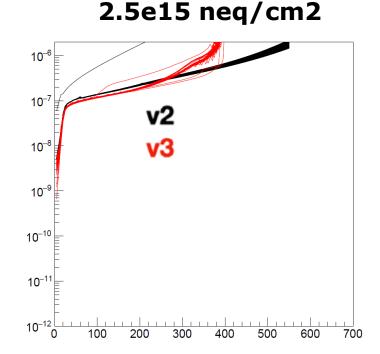
- The same designed doping
- Edge distance is different :V2(V3): 500 μ m(500 μ m)x500 μ m(300 μ m),
- $IP : V2(V3) 120 \mu m(90 \mu m)$

IHEP_IMEv2 LGAD design

Sensor		Diffuse*	C dose(a.u.)	C factor (x10^16 cm2)
W 4	Q1	CLBL	0.2	2.57
	Q2	CLBL	1	1.77
	Q3	CLBL	5	1.60
	Q4	CLBL	10	1.50
W7	Q1	CHBL	0.2	1.62 BEST
	Q2	CHBL	0.5	1.14
	Q3	CHBL	1	1.18
	Q4	CHBL	3	1.34
W 8	Q1	CHBL	6	1.30 1.32
	Q2	CHBL	8	1.32
	Q3	CHBL	10	1.23
	Q4	CHBL	20	1.29

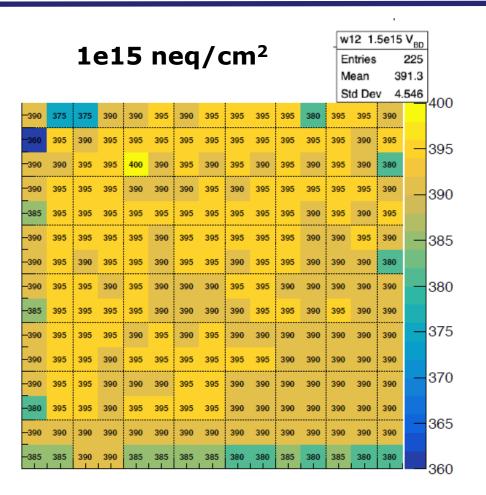

number	Туре
12	repeat v2 w7_II
13	repeat v2 w7_II
14	repeat v2 w4 II
15	change B dose, 0.5 unit C(low thermal load)
16 ,17	change C dose (high thermal load)
18	C with median thermal load
19	repeat v2 w1_I
20,21,22	high energy C implantation
23	thick EPI(65um) without C implantation
24	thick EPI(65um), 0.5 unit C(high thermal load)
25	thick EPI(80um) without C implantation
26	thick EPI(80um), 0.5 unit C(high thermal load)

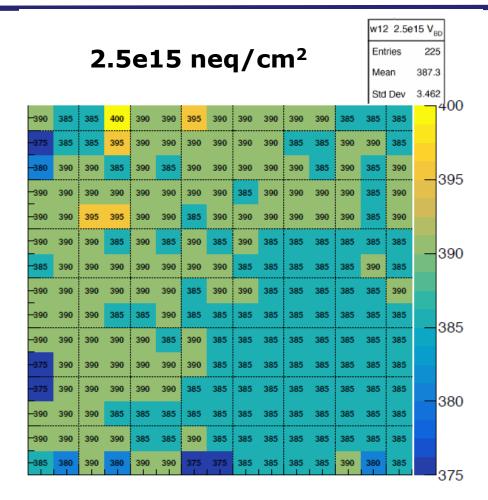




Yunyun Fan

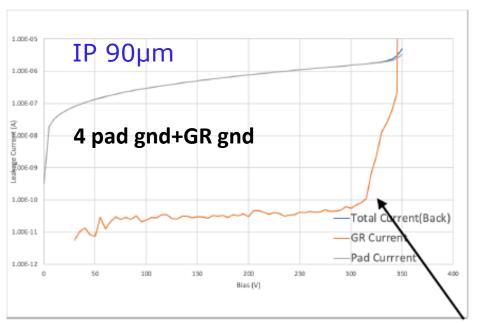
Consistency of the 15x15 sensor for IHEP

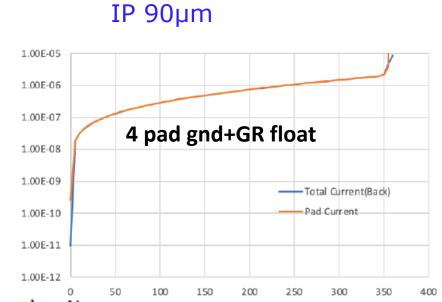




- Good consistency of IV for the 15x15 sensors
- Before irradiation, smaller leakage current in V3
 - may caused by differences in fluence/accepter removal coefficients of V3 is larger than v2.

Breakdown Voltage of the IME version3 15 x 15


- After irradiation, uniformity becomes better: std 4.5V -> 3.4V
- breakdown voltage decrease: 391V -> 387 V



IV for Version3 W12 2x2

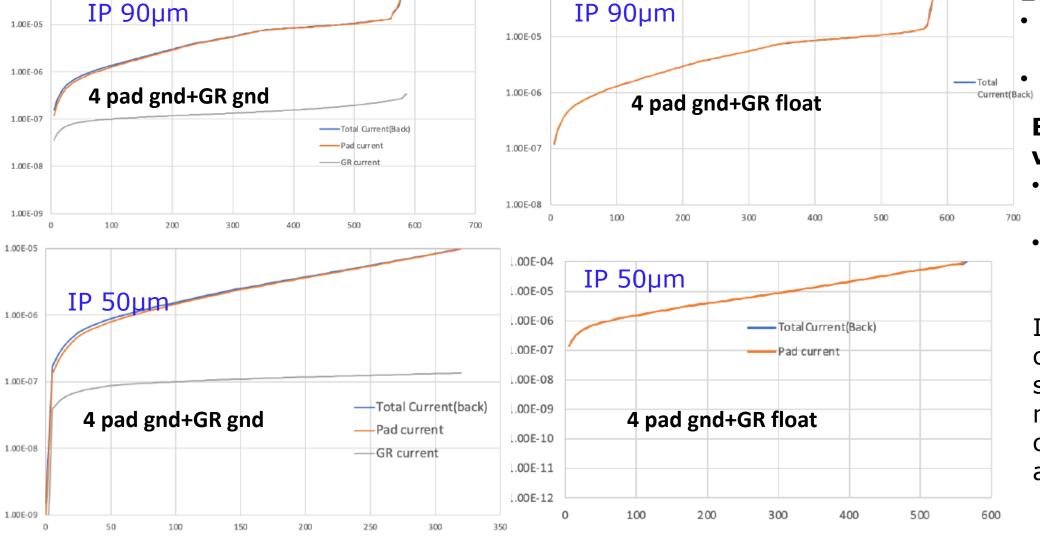
IV before irradiation for IP 90 µm

GR breakdown earier than pads. Vbd around 340V

In these 2 configurations, the guard ring is gnd or float:

GR ground could reduce the breakdown voltage

Vbd: 4 pad gnd+GR gnd (~340 V) < 4 pad gnd+GR float (~351 V)



1.00E-04

IV for V3 W12 2x2 with different IPs

IV after 2.5e15 neq/cm2 irradiation

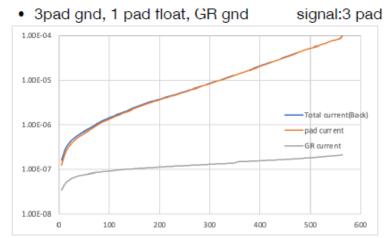
Leakage current:

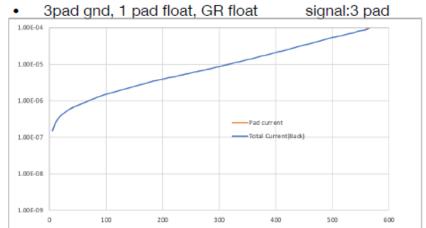
- increase about 10 times
 - IP 50 > IP 90

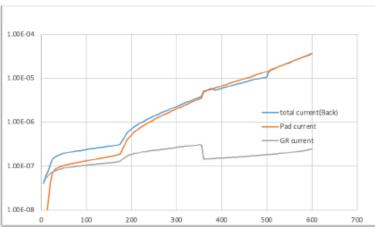
Breakdown voltage increase:

- IP 90:340 V-> 570 V
- IP 50: No obvious breakdown

In these 2 configurations, sensors breakdown near 570V. GR connections don't affect the Vbd.


Yunyun Fan


Yunyun Fan


IV for V3 W12 2x2 with different IPs

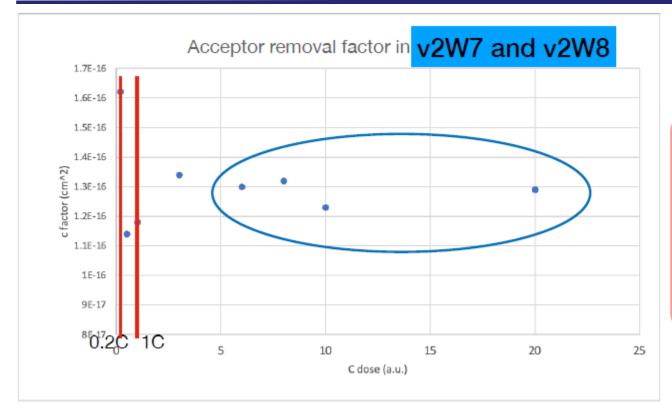
IHEP-IME Version 3 W12: IP 50 μm after 2.5e15 neq/cm2 irradiation

3pad float, 1 pad gnd, GR gnd signal:1 pad

- 3pad float, 1 pad gnd, GR float signal:1 pad
- 1.00E-04

 1.00E-05

 1.00E-06


 1.00E-07

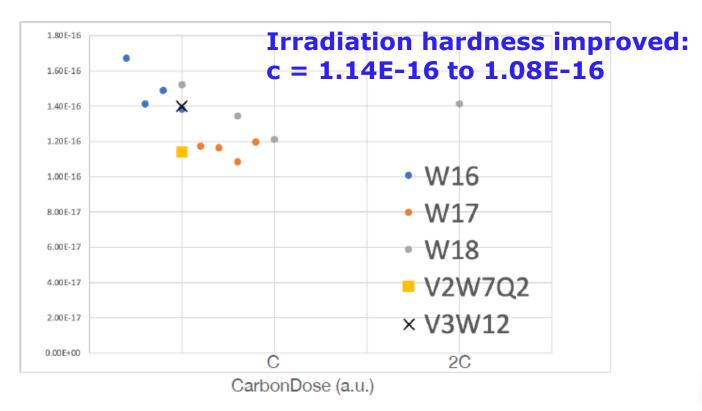
 1.00E-08

 1.00E-09
- In the upper 2 conditions, sensors don't breakdown, similar to the last page when all 4 pads are GND.
- Soft breakdown was observed in the lower 2 conditions, when testing 1 pad with 3 pads floating.
- In the 3rd condition,
 both GR and pad current
 have a bump near 200V.

Acceptor removal factors of version3 with different carbon doses 17

IHEP_IMEv3 LGAD NEW deigns				
Sensor		Diffuse	C dose(a.u.)	
W15		CLBL	0.5	Different B dose
	W16Q1	CHBL	0.2	Interpolate v2w7 to minimize the C factor.
	W16Q2		0.3	
W16 W17	W16Q3		0.4	
	W16Q4		0.5	
	W17Q1		0.6	
	W17Q2		0.7	
	W17Q3		0.8	
	W17Q4		0.9	
W18		CMBL	0.5, 0.8, 1, 2	Change c thermal load

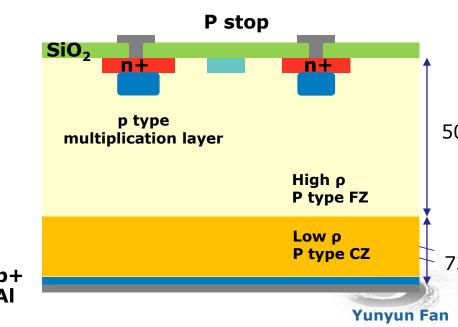
- The minima will probably show up between 0.2 c to 1 c.
- For large dose (in W8), the c factor converges, the carbon distribution in these devices become similar.



Acceptor removal factors of version3 with different carbon doses 18

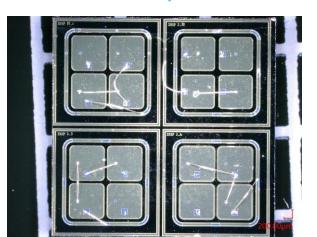
- V3 W16 W17: high carbon thermal load, shallow carbon penetration depth (same as V2W7 V2W8)
- **V3 W18**: median carbon thermal load, shallow carbon penetration depth
- Comparison: V3 W12, V3 W16 Q4 and V2W7Q2 (same design)

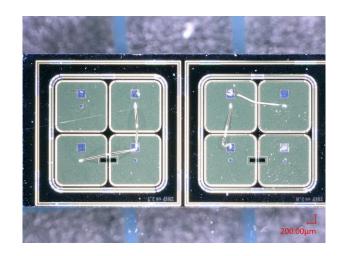
Carbon dose	type	C value
0.2C	W16_I	1.67E-16
0.3C	W16_II	1.41E-16
0.4C	W16_III	1.49E-16
0.5C	W16_IV	1.38E-16
0.6C	W17_I	1.17E-16
0.7C	W17_II	1.17E-16
0.8C	W17_III	1.08E-16
0.9C	W17_IV	1.20E-16
0.5C	W18_I	1.52E-16
0.8C	W18_II	1.34E-16
С	W18_III	1.21E-16
2C	W18_IV	1.41E-16



Total Ionization Dose of LGAD

Study the TID damage of LGAD :


- optimize the design of LGAD surface properties such as the inter-pad distance and the gap between the active edge and the edge
- Maximum the fill factor
- Total ionizing dose experiment to study the TID: 2MGy
 - surface damage at the SiO2 and the Si SiO2 interface by inducing oxide charges and interface traps
 - Points defects in silicon sensors by Compton
 electrons and photoelectrons

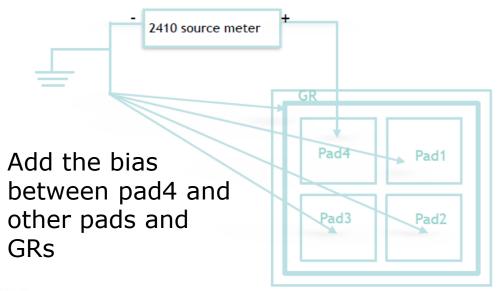

TID study of IHEP-IME version3/2 sensors

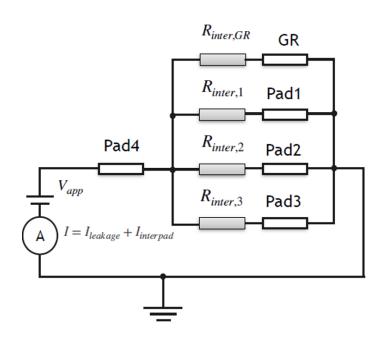
- Quad LGADS with Shallow carbon were produced with six different inter-pad spacings (50 μm – 100 μm)
 - IMEV3_2-5 < IMEV3_2-6 < IMEV3_2-7 < IMEV3_2-8 < IMEV3_2-9 < IMEV3_2-10
- Co60 irradiated up to 2 MGy

IMEv2 W7 Q2 (most radiation hardness)

IMEv3 W12

Cylinder Co60 source

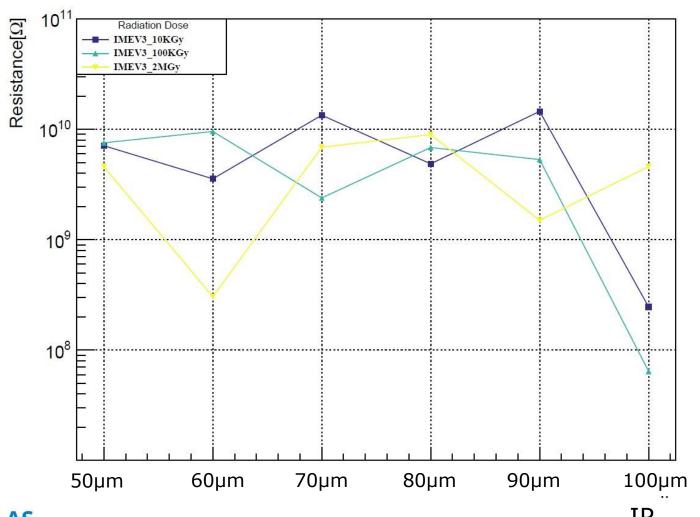

Inter-pad R Measurement


Apply the extra bias voltage (ΔU_i) between the tested pads (pad4) and the other pads and GR while the sensor is biased on the backside with a bias voltage (U).

$$R_I \approx \frac{\Delta U_i}{\Delta I}$$

 Δ I: $I_{Ui} - I_{Ui=0}$ the increase of the leakage current on pad4 while the bias voltage increase, ΔU_i : the change of biased voltage on pad4.

The pad1-3 and GR are grounded.



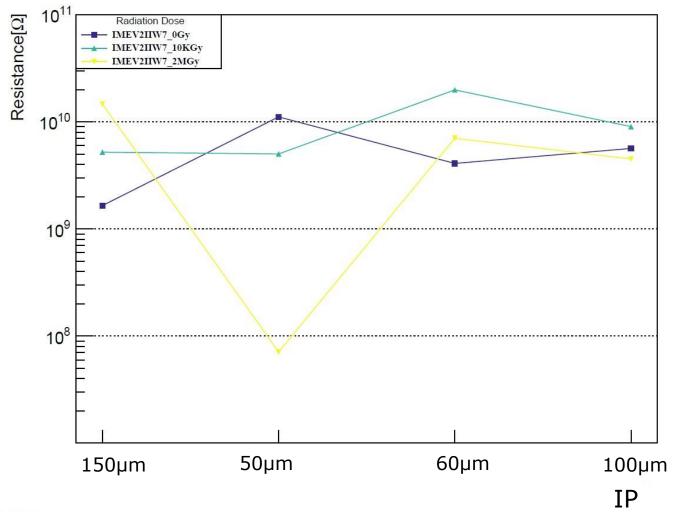
Inter-pad R

The inter-pad resistance of IHEP-IME v3 sensors when Bias = 85 V

IMEV3_2-5, IMEV3_2-6, IMEV3_2-7, IMEV3_2-8, IMEV3 2-9, IMEV3 2-10

10 $M\Omega$ < R after 2 MGyirradiation

No regular pattern was observed. Will study the reason further.

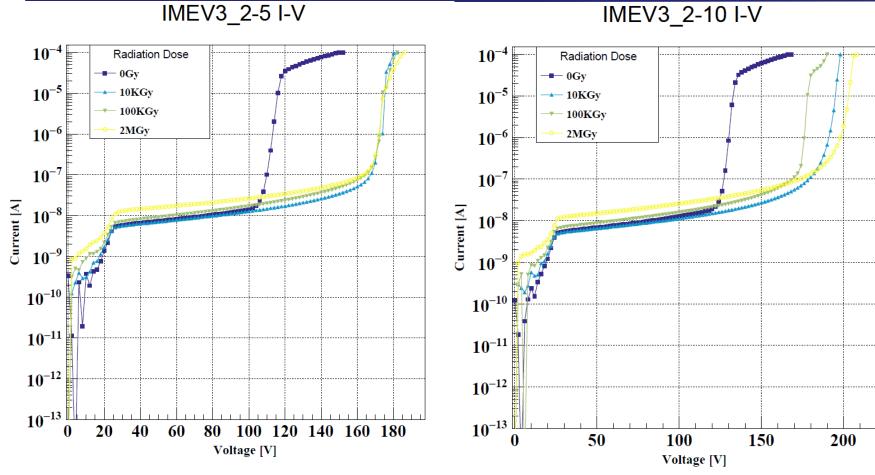


Inter-pad R

The inter-pad resistance of IHEP-IME v2 W7 sensors when Bias = 85 V

IMEV2_2-1, IMEV2_2-5 IMEV2_2-6, IMEV2_2-10

10 M\Omega < R after 2 MGy irradiation


No regular pattern was observed. Will study the reason further.

IV of IHEP-IME v3

IV test setup:1 pad gnd+3 pad

float+GR gnd

- Breakdown voltage: increase 60V-70V 1
- The leakage currents of pad4 increase slightly with the increase of the TID dose

Summary

- AC-LGAD: 23ps, 15µm (better than FBK small pitch)
- LGAD design

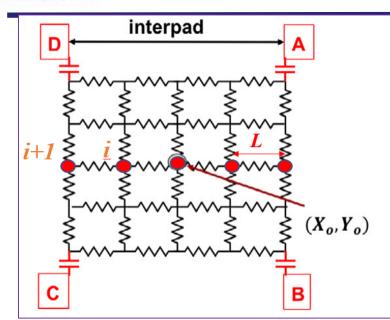
Neutron irradiation for IHEP IME version3

- IME version 3 15x15 sensors showed good consistency of IME version 2 sensors.
- Different IPs affects the neutron irradiation performance.
- Different connecting configurations of 2x2 sensors with 90/50 μm IPs shows floating pads might cause early breakdown. (need further study)
- 0.8C W17_III showed the smallest c value: 1.08E-16, which is the same condition except the carbon dose.

TID for IHEP IME version3

- LGAD with shallow carbon , The interpad-R of IHEP-IME v2 W7 II is $1G\Omega < R < 10~M\Omega$, and show excellent TID radiation hardness than the uncarbonated LGAD
 - Larger IP resolution slightly affects the leakage current and the TID radiation hardness

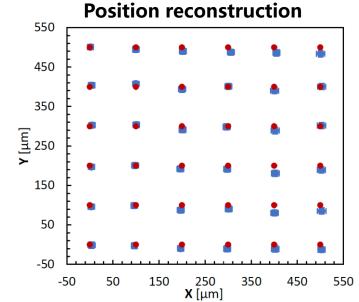
Thanks for your attention!



Back up

The calculation of the timing and spatial resolution

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D} \right) = X_0 + k_x m$$


$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D} \right) = Y_0 + k_y n$$

$$k_{x} = L \frac{\sum (m_{i+1} - m_{i})}{\sum (m_{i+1} - m_{i})^{2}} \qquad k_{y} = L \frac{\sum (n_{i+1} - n_{i})}{\sum (n_{i+1} - n_{i})^{2}}$$

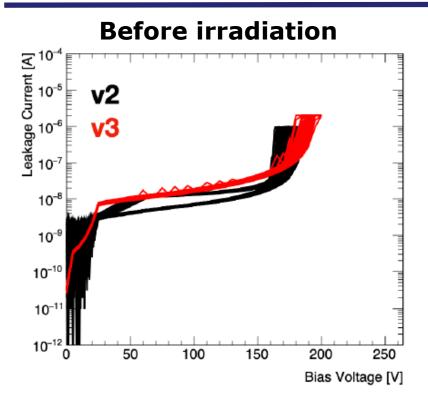
Discretized
Positioning
Circuit model
(DPC)

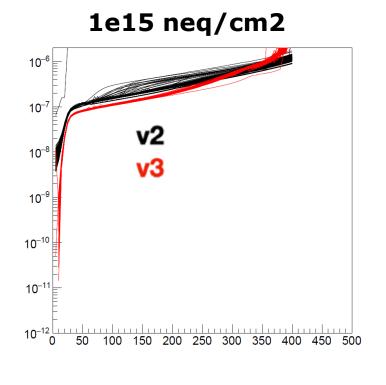
Assuming resistan

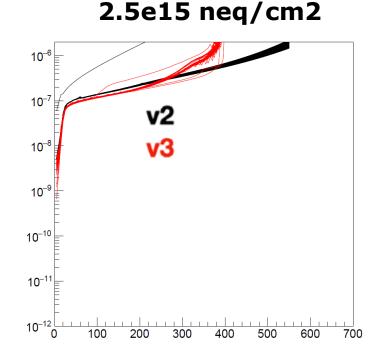
Position reconstruction with the center mass method

Spatial resolution

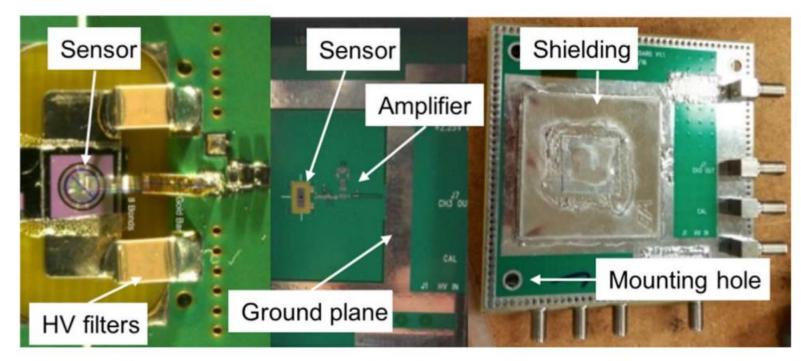
$$\sigma_{spatial}^2 = \sigma_{reconstruction}^2 - \sigma_{platform}^2$$


Timing resolution:


$$\sigma_t = \sigma_{t1+t2+t3+t4}$$



Consistency of the 15x15 sensor for IHEP



- Good consistency of IV for the 15x15 sensors
- smaller leakage current in V3
- 20 °C (before irradiation), -30 °C(after irradiation), 1 pad gnd others and GR floating

FATLAS differences in fluence/accepter removal coefficients of V3 is larger than v2.

ig. 2. Read-out board: connections to the UFSD (left), board without shielding (centre), board with shielding (right).

