

IHEP, CAS

IAS Program on High Energy Physics - Mini-workshop on Experiment/Detector

Outline

- Lepton flavour universality (LFU) and the LHCb detector
- b \rightarrow clv: R(D) and R(D*)
- b \rightarrow sll: R(K) and R(K*)
- Prospects and Conclusions

Lepton Flavour Universality in the Standard Model

 Lepton Flavour Universality: In SM, EW couplings are independent from lepton flavours

- Extensively verified in $Z \rightarrow II$, $\tau \rightarrow Ivv$, $J/\psi \rightarrow II$, $\pi \rightarrow Iv, K \rightarrow \pi Iv$
- BSM new particles can break LFU at high energy scale

Lepton flavour universality tests with B decays

- LFU tests in $b \rightarrow clv$ at LHCb
 - Large branching fraction, tree level processes
 - Missing neutrino makes it experimentally challenging
 - e.g., $R(D(*)) = B(\overline{B} \rightarrow D^{(*)}\tau^-\overline{\nu}_{\tau}) / B(\overline{B} \rightarrow D^{(*)}\mu^-\overline{\nu}_{\mu})$
- LFU tests in $b \rightarrow sll$ at LHCb
 - branching fraction ~ $O(10^{-6})$, suppressed at tree level
 - Highly sensitive to NP
 - e.g., $R(K(*)) = B(\mathcal{B}(B \to K^{(*)}\mu^+\mu^-))/(\mathcal{B}(B \to K^{(*)}e^+e^-))$

The LHCb experiment

- LHCb is dedicated for flavour physics studies, but also serve as a forward generalpurpose detector
 - forward arm spectrometer with unique coverage in pseudorapidity ($2 < \eta < 5$)
 - catching 27% of b-quarks in 4% of solid angle
 - precision measurements in beauty and charm sectors
 - momentum resolution $\Delta p / p = 0.5\%$ at < 20 GeV/c to 1.0% at 200 GeV/c
 - IP resolution (15+29/pT[GeV]) µm for high-pT tracks
 - decay time resolution 45 fs for Bs ->J/ $\psi \phi$ and Bs ->Ds π
 - Particle ID with calorimeters, muon system and Cherenkov detectors (RICH)
 - Extended physics program to QCD, EW, direct searches
 - Participation in heavy ion runs
 - Unique operation mode as fixed-target experiment

LFU tests in $b \rightarrow clv$

• $R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \overline{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c l \overline{\nu}_l)}$, where at LHCb $l = \mu$, (at B-factories $l = \mu, e$)

- $H_c = D^{*,+}, D^0, D^+, D_s^+, \Lambda_c^+, J/\psi$
- $H_b = B^0, B^+, B_s^0, B_c, \Lambda_b \dots$
- R(D*) and R(D) :
 - Studied with $\bar{B}\to D^{(*)}\tau^-\bar{\nu}_\tau$ and $\bar{B}\to D^{(*)}\mu^-\bar{\nu}_\mu$,
 - Ratio R(D(*)) = B($\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$) / B($\overline{B} \to D^{(*)}\mu^-\overline{\nu}_{\mu}$) is sensitive to e.g charged Higgs, leptoquarks

$R(D^*)$ and R(D)

Previous measurements from LHCb and b-factories are combined

Combined results: Longstanding $3.3.\sigma$ hint of a deviation from lepton universality

New study

•
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)}l \overline{\nu}_{l})}, \quad \tau^- \to \mu^- \nu_{\tau} \overline{\nu}_{\mu}, \quad D^* \to (D \to \pi K)\pi$$

- Simultaneously measure R(D) and R(D*) with Run 1 data
 - Higher branching fraction and higher efficiency due to inclusion of not fully reconstructed D*
- Experimental challenges: neutrinos 3 for $(\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu) \bar{\nu}_\tau$
 - No narrow peak to fit (in any distribution)

Results

- Simultaneous fit to 8 samples
 - Signal sample + 3 control sample,
 - for both D⁰ and D*
- R(D*)=0.281 ± 0.018 ± 0.024
- R(D)=0.441 ± 0.060 ± 0.066
- slightly lower R(D*), slightly higher R(D),
- 1.9σ above SM

LFU tests in b->sl

$$R_X = \frac{\mathcal{B}(b \to s \mu \mu)}{\mathcal{B}(b \to s e e)}$$

- Coherent pattern of tension to SM in LFU tests with b-> sll trasitions
 - Measure differential branching fraction vs dilepton invariant mass
- RX ratio extremely well predicted in SM
 - Cancelation of hadronic uncertainties at 10⁻⁴
 - O(1%) QED correction [Eur.Phys.J.C 76(2016)8]
- Any departure from unity is a clear sign of New Physics

Event reconstruction

- Electrons at LHCb
 - Emit bremmshtralung γ, high occupancy in ECAL
 - ECAL tight trigger thresholds and ID mostly from CALO
 - ε_{reco} and $\frac{\sigma_p}{p}$ worse than μ
- Muon at LHCb
 - Negligible bremmshtralung, MUON has low occupancy
 - Muon soft trigger thresholds and ID mostly from MUON
 - Excellent ε_{reco} and $\frac{\sigma_p}{p}$
- Overall, a ratio of ~ 3:1 of reconstructed muons to electrons in LHCb in Run1/2 data taking

New R(K) and R(K*) study

Full Run 1 + Run 2 data

$$R_{K^{(*)}} = \frac{\int_{q^2min}^{q^2max} \frac{d\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{dq^2} dq^2}{\int_{q^2min}^{q^2max} \frac{d\mathcal{B}(B \to K^{(*)}e^+e^-)}{dq^2} dq^2}$$

- Experimentally accessible through a double-ratio measurement
 - Use resonant-J/ ψ mode as normalization to cancel out most of ϵ systematics in e/ μ differences. Resonant-J/ ψ mode also used for ϵ calibration

Misidentified background in electron mode

By tighten the PID requirement to electrons, the R(K^(*)) measurement shifts towards 1

A new inclusive data-driven treatment of misidentified background implemented

Results

- Most precise and accurate LFU test in b -> sll trasition
- Compatible with SM with a simple χ^2 test on 4 measurement at 0.2 σ
 - Previous R(K) results superseded

LHCb upgrade(s)

- Physics programme limited by detector, NOT by LHC
- Phase I Upgrade
 - a brand new detector!
 - L_{peak} = 2x10³³ cm⁻² s⁻¹
 - $L_{int} = \sim 50 \text{ fb}^{-1} \text{ during Run 3 \& 4}$
- Phase II Upgrade
 - L_{peak} = 1.5x10³⁴ cm⁻² s⁻¹
 - $L_{int} = \sim 300 \text{ fb}^{-1} \text{ during Run 5 \& 6, Install in LS4 (2033)}$
 - Some smaller detector consolidation and enhancements in LS3 (2026)
 - Potentially the only general purpose flavour physics facility in world on this timescale

schedule updated beginning of 2022

LFU tests Prospects

 By scaling the uncertainties with luminosity, prospects on future LFU tests ability at LHCb can be obtained

Conclusions

- Lepton Flavour Universality tests are a clean probe to NP, complementing the direct researches
- R(D*) and R(D) studies:
 - 1.9.σ away from SM
 - Combined results with B-factories: 3.2σ hint of a deviation from lepton universality
- R(K) and R(K*) study:
 - Compatible with SM at 0.2σ
 - Previous R(K) results superseded
- Run III of LHCb has started, more data to come

