Observation of new structures in the J/ ψ J/ ψ mass spectrum at CMS

Zhen Hu

IAS PROGRAM **High Energy Physics** February 12 – 16, 2023

Conference: February 14 – 16, 2023

the Compact Solenoid detector

Lead tungstate

E/M Calorimeter (ECAL)

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

the Compact Solenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

•

____η coverage (track & muon): [-2.5,2.5]

HCAL

ECAL

Hadron

Bectromagneti

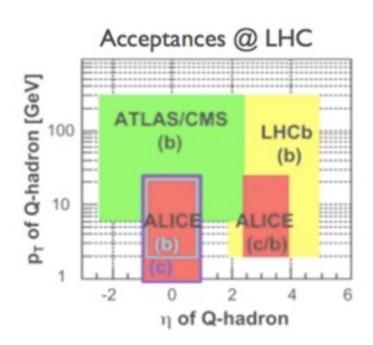
Lead tungstate E/M Calorimeter (ECAL) Floctron

Charged Hadron (e.g. Pion)

Neutral Hadron (e.g. Neutron)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

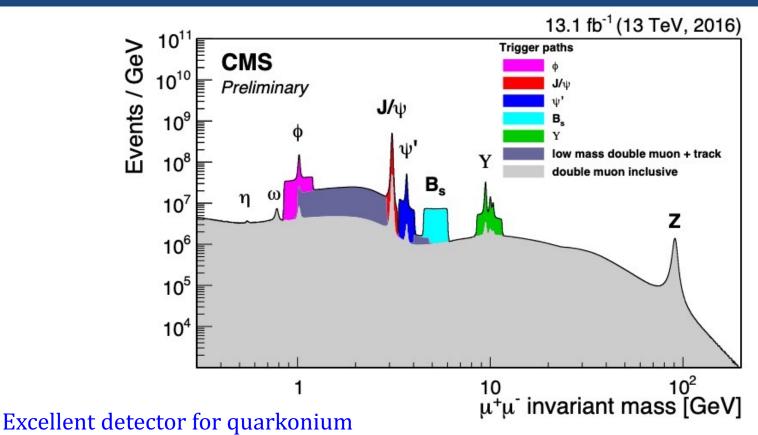


B physics at CMS

- vs RHIC
 - better resolution
 - CMS' 1st Y(1S,2S,3S) measurements in HI
 - additional detector capability
 - CMS' 1st secondary vertex meas. in HI (eg $b \rightarrow J/\psi$)
- vs ALICE
 - complementary acceptance (ALICE access low-pt)
 - CMS better resolution
- vs Tevatron experiments
 - extend kinematic (p_T,y) acceptance
- vs ATLAS
 - more flexible trigger, lower p_T threshold
- vs LHCb

Zhen Hu

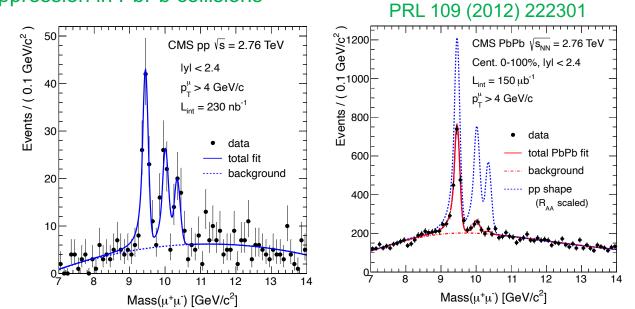
- complementary acceptance, LHCb great particle ID
- higher luminosity



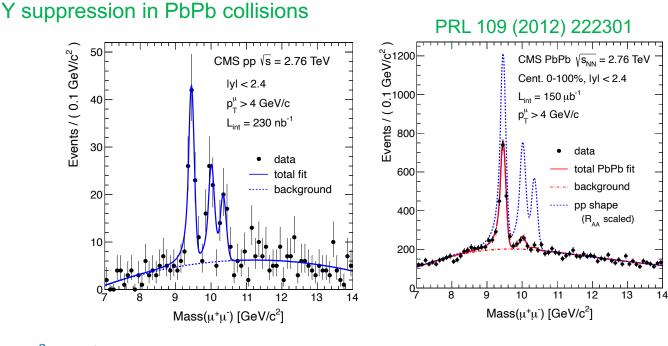
(μ dominated final states for B physics)

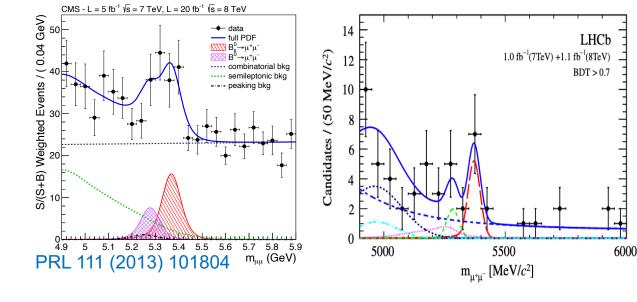
Dimuon at CMS & trigger

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

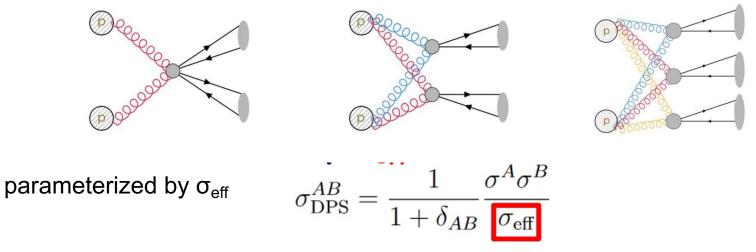

- μ p_T, (μμ) p_T, (μμ) mass, (μμ) vertex, and additional μ Zhen Hu Feb 12, 2023

Selected historical CMS contributions with low p_T dimuons

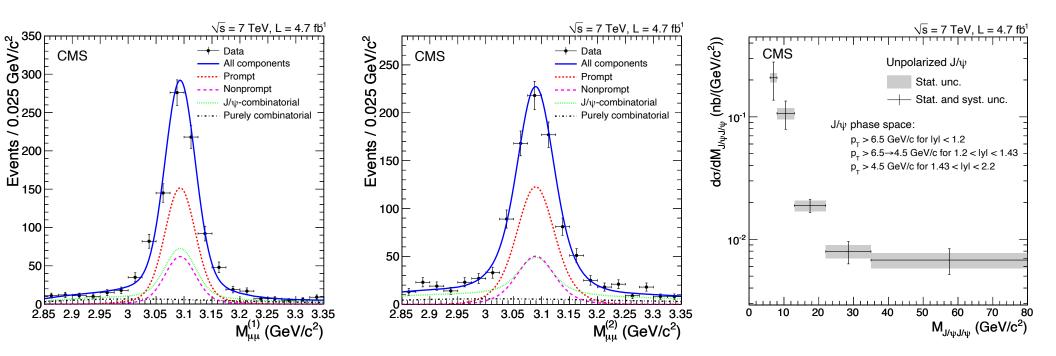




Selected historical CMS contributions with low p_T dimuons


$B_S^0 \rightarrow \mu^+ \mu^-$ rare decays

- Study interplay of soft QCD with (semi)hard QCD and EW physics
- Sensitivity to perturbative heavy flavor generation and nonperturbative initial and final state effects
 - Initial state: e.g. sensitivity to the concepts of single (SPS), double (DPS) and triple (TPS) parton scattering

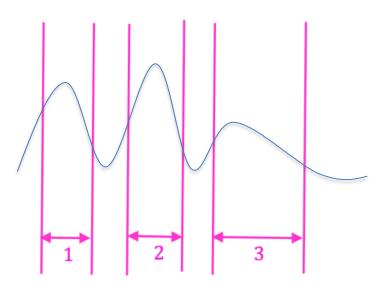

• Final state: e.g. sensitivity to heavy flavour hadron formation (colour singlet vs. colour octet), sensitivity to resonant multi-heavy-flavor states

$J/\psi J/\psi$ cross section at 7 TeV

J. High Energy Phys. 09 (2014) 094

Total cross section, assuming unpolarized prompt $J/\psi J/\psi$ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.


Feb 12, 2023

We saw hints at Run I data (7 TeV & 8 TeV) Proposed three signal regions for Run II data

Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Blinded mass windows for Run II:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result (13 TeV, 2020)

- Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Data: 135 *f b*⁻¹, taken in 2016, 2017 and 2018 LHC runs
- Signal MC samples:
 - $J^P = 0^+$ resonance
 - -- Generator: Pythia8, JHUGen
- Background MC samples:
 - Nonresonant single-parton scattering (NRSPS)

Generator: Pythia8, HelacOnia (next-to-next-to-leading order), Cascade (next-to-leading order)

- Nonresonant double-parton scattering (NRDPS)
 - Generator: Pythia8

Event selections

Muon selection

- $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
- $|\eta(\mu^{\pm})| < 2.4$
- All muons are <u>soft</u>
 - For 2017-18 years: $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$ for at least one $\mu^+\mu^-$ pair, which has $vtxprob(\mu^+\mu^-) > 0.5\%$ and 2.95 $< m_{\mu^+\mu^-} < 3.25 \text{ GeV}$

 J/ψ selection

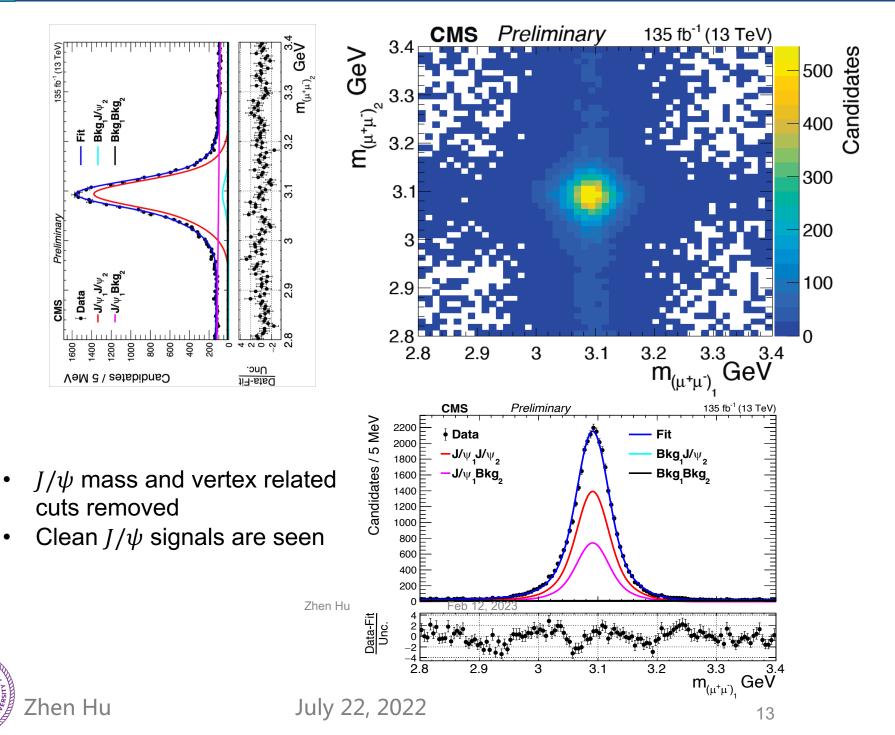
- •2.95 < $m_{J/\psi}$ < 3.25 GeV
- • $p_T(J/\psi) > 3.5 \text{ GeV/c}$
- • $vtxprob(J/\psi) > 0.5\%$
- •Constrained $vtxprob(J/\psi) > 0.1\%$

 $\frac{J/\psi J/\psi \text{ selection}}{vtxprob(4\mu) > 0.5\%}$ $\frac{vtxprob(J/\psi J/\psi) > 0.1\%}{Proper HLT is fired in event}$

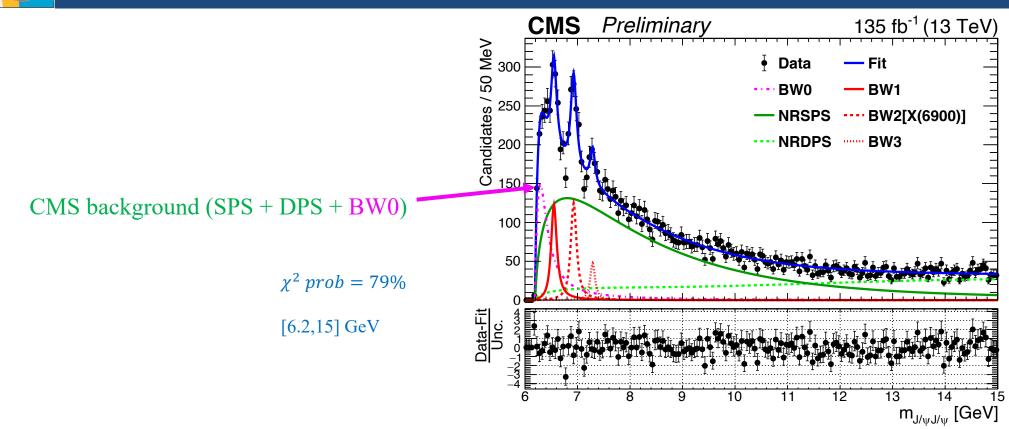
Multiple candidates

•Choose the best candidate with minimum $\left(\frac{M(J/\psi_1) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_1))}\right)^2 + \left(\frac{M(J/\psi_2) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_2))}\right)^2$ value if there are 4 muons in event, but more than one candidate (~0.2%) •Keep all candidates if there are more then 4 muons in event (~0.2%)

Baseline mass variable – invariant mass of two constrained J/ ψ candidates

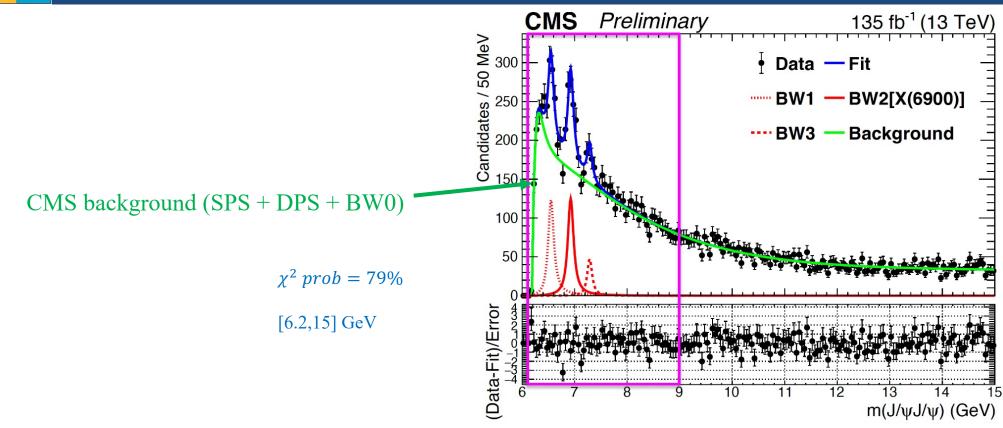


Feb 12, 2023



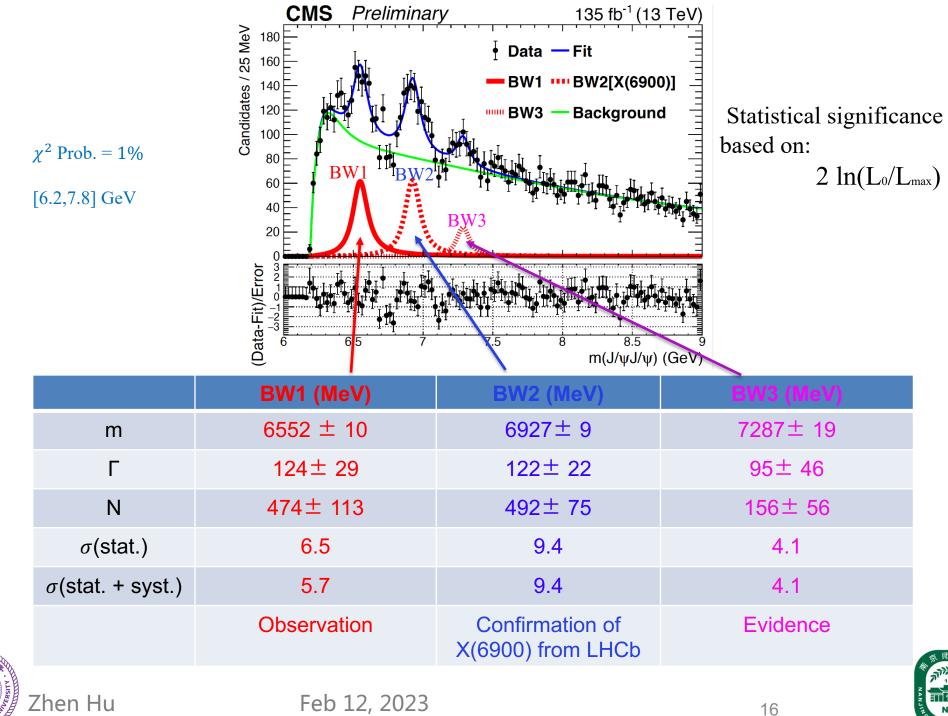
J/ψ candidates at 13 TeV

CMS background (SPS + DPS + BW0)



- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...

CMS background (SPS + DPS + BW0)


- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- SPS+DPS+BW0 as our background

Feb 12, 2023

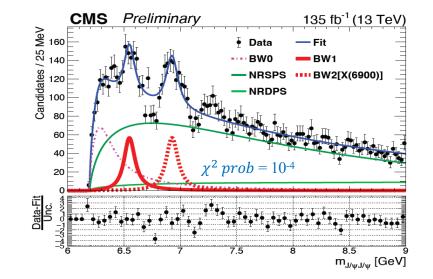
CMS model: 3 BWs + Background

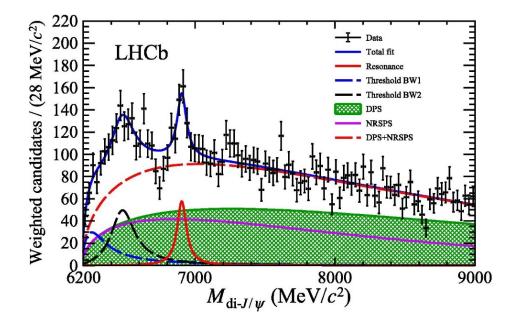
Significance with systematics

Table 2. Systemati	Table 2. Systematic uncertainties on masses and widths, in Mev.								
Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$			
signal shape	3	4	3	14	7	7			
NRDPS	1	< 1	< 1	3	3	4			
NRSPS	3	1	1	18	15	17			
feeddown shape	11	>1	1	25	8	6			
momentum scaling	1	3	4	-	-	-			
resolution	< 1	< 1	< 1	< 1	< 1	1			
efficiency	< 1	< 1	< 1	1	< 1	1			
combinatorial background	< 1	< 1	< 1	2	3	3			
total	12	5	5	34	19	20			

Table 2: Systematic uncertainties on masses and widths, in MeV.

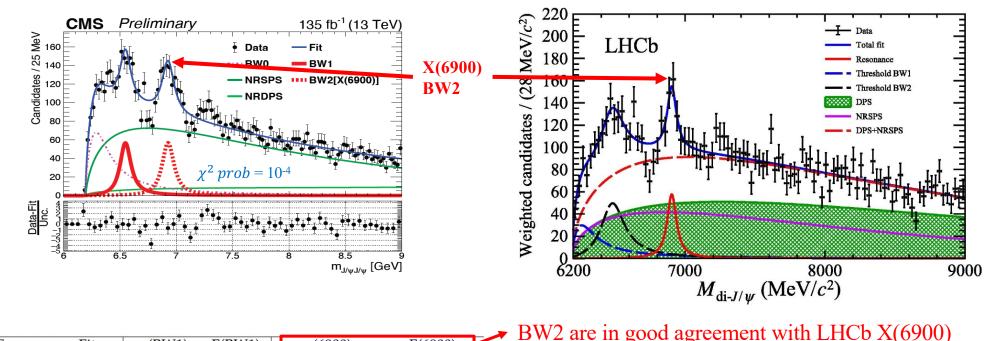
- Investigated effects of systematics on local significance by a profiling procedure
- A discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3


 $M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV} \quad \Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV} >5.7\sigma$ $M[BW2] = 6927 \pm 9 \pm 5 \text{ MeV} \quad \Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV} >9.4\sigma$ $M[BW3] = 7287 \pm 19 \pm 5 \text{ MeV} \quad \Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV} >4.1\sigma$

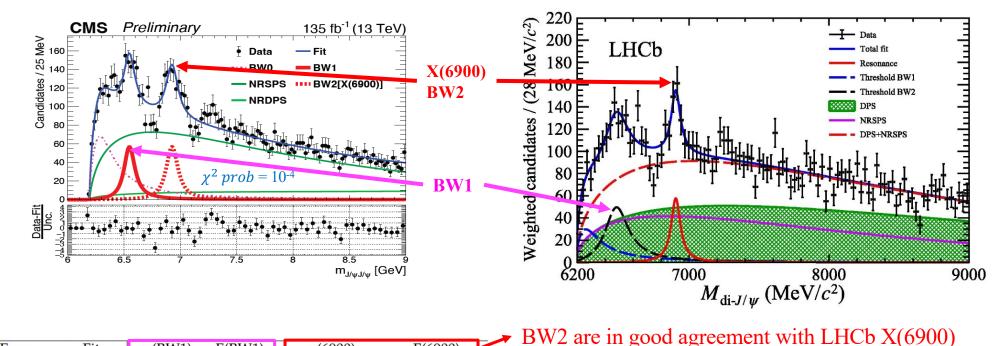


Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24



Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

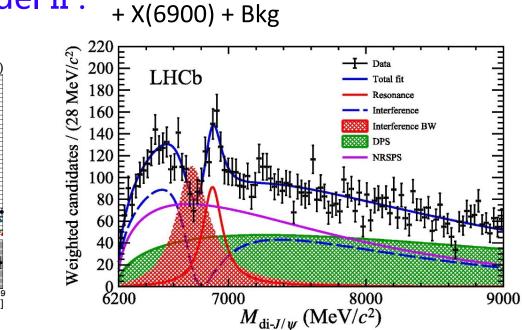

	_	BW2 are in good agreement with LHC	7h X(60
Γ(6900)		D w2 are in good agreement with Err	50 11(0)
00 1 40 1 00			

Exp.	Fit	<i>m</i> (BW1)	Γ(B W1)	Γ	m(6900)	Γ(6900)	-
LHCb [15]	Model I	unrep.	unrep.		$6905 \pm 11 \pm 7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27		6927 ± 10	117 ± 24	

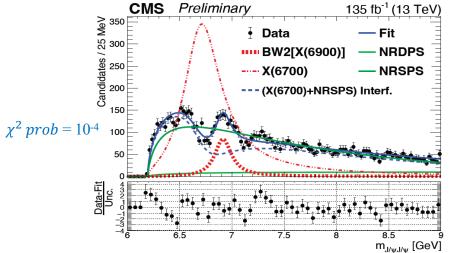
Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit		· /	m(6900)	Γ(6900)	-
LHCb [15]				$6905 \pm 11 \pm 7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	

- LHCb did not give parameters for BW1
 - CMS has a shoulder before BW1
 - helps make BW1 distinct



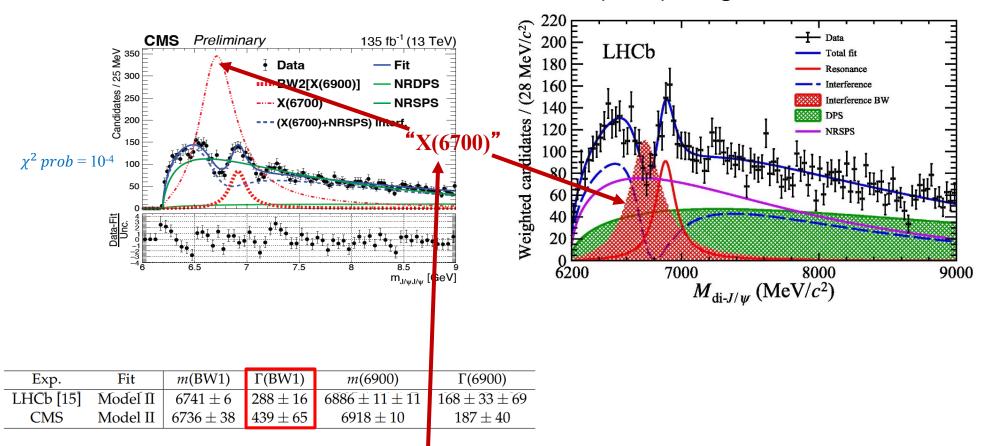
• Does not describe 2 dips well


Feb 12, 2023

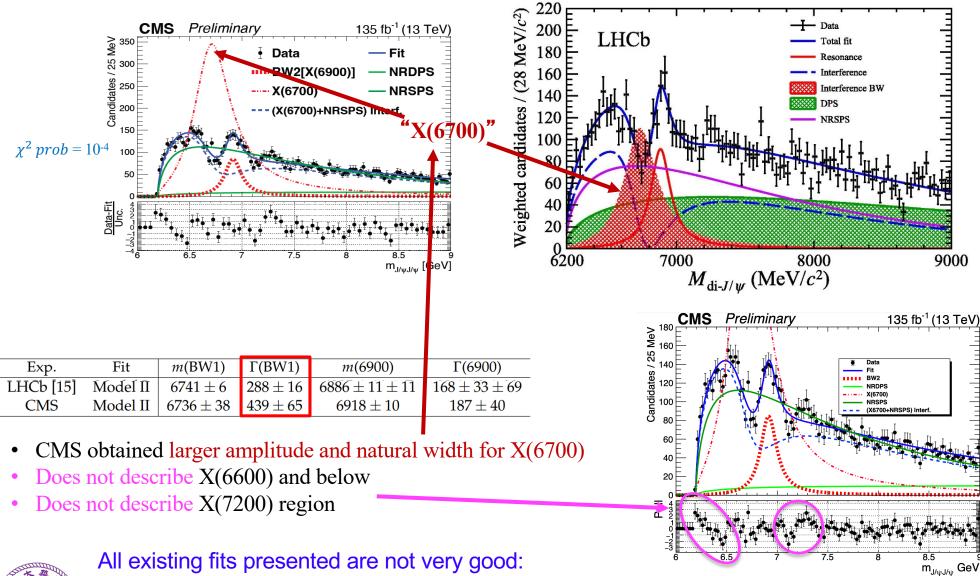
Fit CMS data with LHCb model II :

"X(6700)" interferes with NRSPS

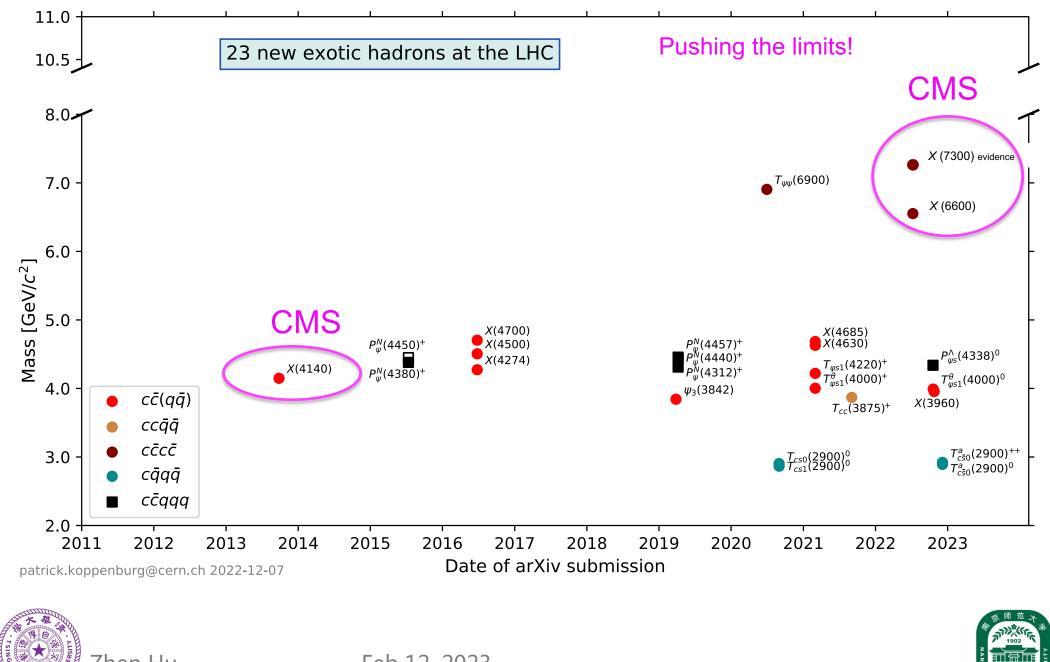
Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 1\overline{1}$	$168\pm33\pm69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40



Fit CMS data with LHCb model II :


• CMS obtained larger amplitude and natural width for X(6700)

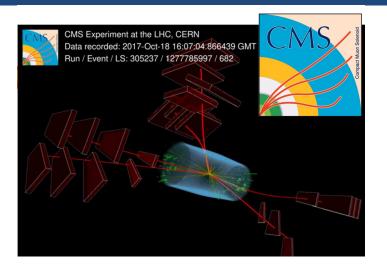
Fit CMS data with LHCb model II :

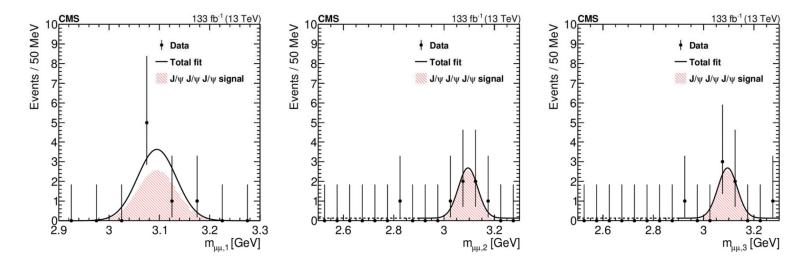

All existing fits presented are not very good: ...other interference scenarios are under study in CMS

Zhen Hu

New exotic hadrons at LHC

Zhen Hu


NNU


First observation of triple J/ ψ production

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

 $\sigma(pp \rightarrow J/\psi J/\psi X)$ = 272 +141-104 (stat) ± 17 (syst) fb

Nature Physics 2023

"6c" search in future?

Summary

- Successful achievement of quarkonium measurements in the past ~10 years @ CMS
- Recently, CMS found 3 significant structures in double J/ψ mass spectrum
 - X(6900) consistent with LHCb
 - Two new structures f, provisionally named as X(6600), X(7300)
 - A family of structures which are candidates for all-charm tetra-quarks!
 - Dips in data show possible interference effects under study
 - More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer a system easier to understand
 - A new window to understand strong interaction
- Triple J/ ψ production has also been observed for the first time by CMS

Backup

Significance with systematics

- To include systematics, alternative resonance/background shapes applied in the fit.
- Calculate signal- and null-hypothesis *NLL_syst* including systematic using:

 $NLL_(syst-sig) = Min\{NLL_(nom-sig), NLL_(alt-i-sig)+0.5+0.5\cdot\Delta dof\}$

- □ *NLL_(nom-sig*): the NLL of nominal 'signal hypothesis' fit.
- \square *NLL_(alt-i-sig)*: the NLL of i-th alternative fit of 'signal hypothesis'
- $NLL_(syst-null) = Min\{NLL_(nom-null), NLL_(alt-j-null)+0.5+0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from *NLL_(syst-null)-NLL_(syst-sig)*

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

July 22, 2022

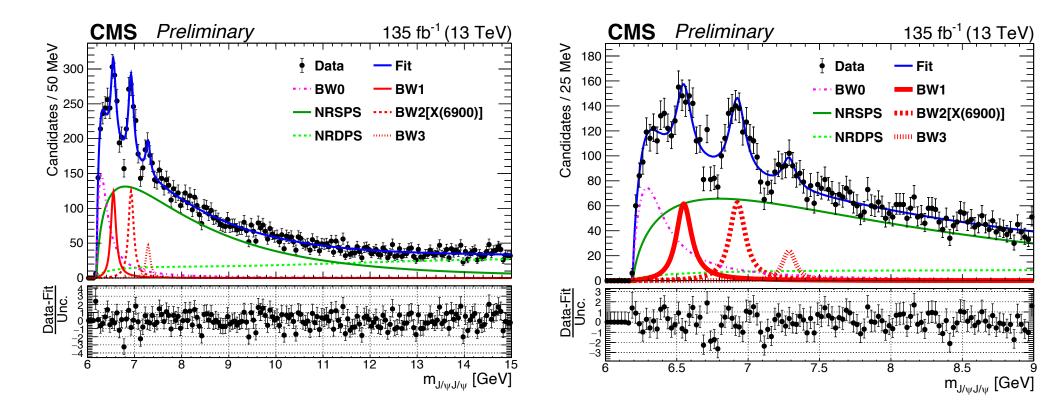
Line shape

• S-wave relativistic Breit-Wigner (used in default fit):

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}, \text{ where } \Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m},$$


q is the momentum of a daughter in the mother particle rest frame; q_0 means the value at peak position ($m = m_0$).

• NRSPS and NRDPS:


 $f_{NRSPS}(x, x_0, \alpha, p_1, p_2, p_3)$

$$= (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp\left(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}}\right),$$

$$f_{NRDPS}(x, a, p_0, p_1, p_2) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2),$$

where $x_0 = 2m_{J/\psi}, x_t = x - x_0$

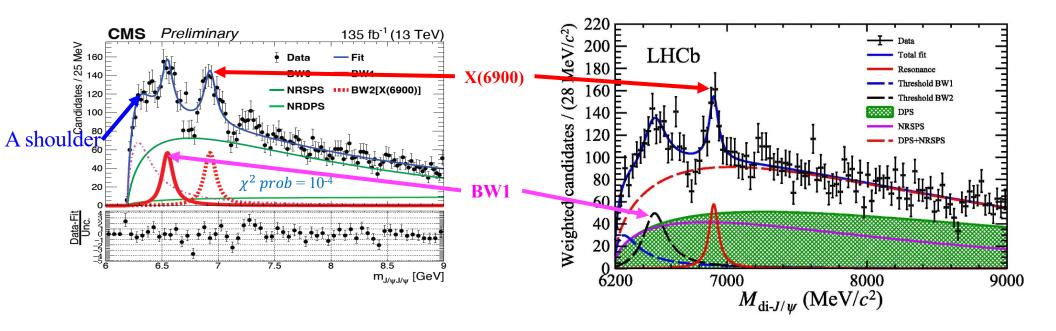
CMS result with BW0 explicitly shown

Significance with systematics

Table 2: Systemati	c uncertai	nties on m	asses and	wiaths, i	n Mev.	
Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta \Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11	>1	1	25	8	6
momentum scaling	1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20
combinatorial background	< 1	< 1	< 1	1 2 34	3	1 3 20

Table 2: Systematic uncertainties on masses and widths, in MeV.

- Investigated effects of systematics on local significance by a profiling procedure a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to >5.7σ
 - No relative significance changes for BW2 and BW3



Significance with systematics

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	Γ	m(6900)	Γ(6900)
LHCb [15]					$6905 \pm 11 \pm 7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27		6927 ± 10	117 ± 24

- LHCb did not give parameters for BW1
 - CMS has a shoulder before BW1
 - helps make BW1 distinct

Does not describe 2 dips well

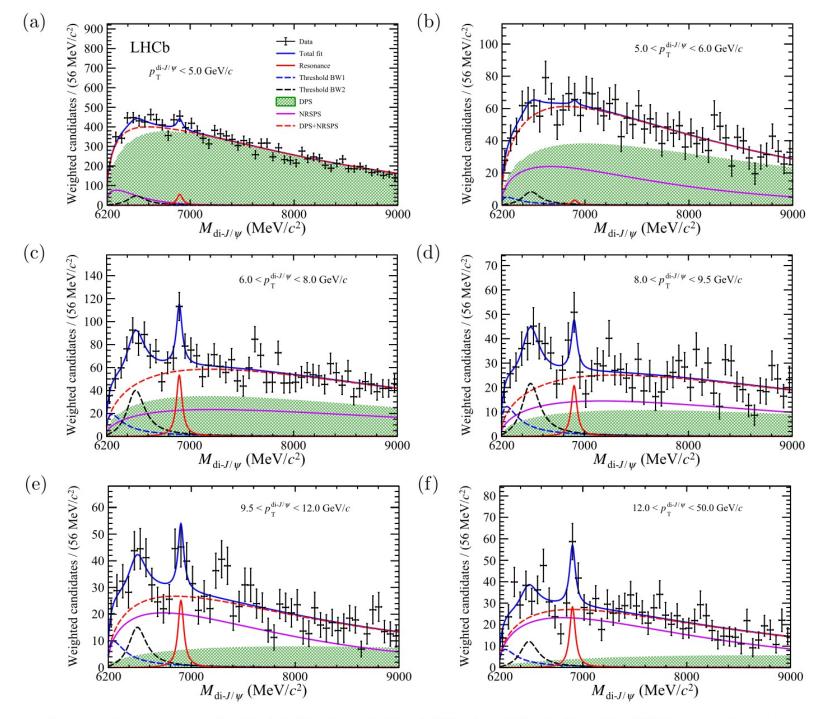
Zhen Hu

CMS vs LHCb comparisons

- CMS has more data
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range)
- Similar number of final events, but CMS has less DPS bkgd

X(6900) parameters are in good agreement with LHCb

- CMS has higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
- DPS background suppressed by higher p_T
- Feb 12, 2023


32

Zhen Hu

1911-

Fig. 4. Invariant mass spectra of weighted di- J/ψ candidates in bins of $p_T^{\text{di-}J/\psi}$ and overlaid projections of the $p_T^{\text{di-}J/\psi}$ -binned fit with model I.

Feb 12, 2023