

High Density Glass & Its Application at Future Collider

Sen QIAN,

qians@ihep.ac.cn; On Behalf of the GS R&D Group

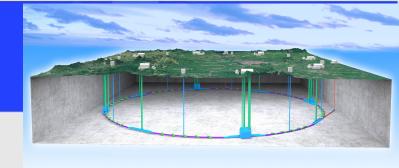
The Institute of High Energy Physics, CAS 2023. Feb. 12th

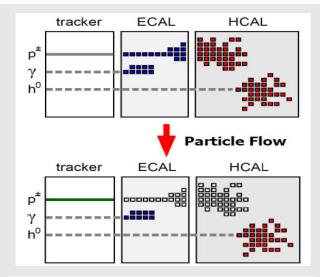
Outline

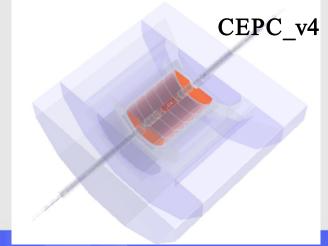
- 1. The Motivation and Design;
- 2. The Test Facilities for GS;
- 3. The Progress of GS;
- 4. Summary and Next plan;

1.1 The GS-HCAL of CEPC

Future electron-position colliders (e.g. CEPC)

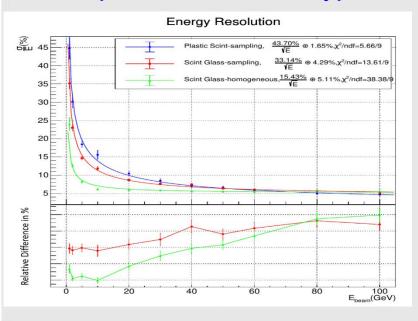

- Main physical goals: precision measurements of the Higgs and Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\%/\sqrt{E(GeV)}$

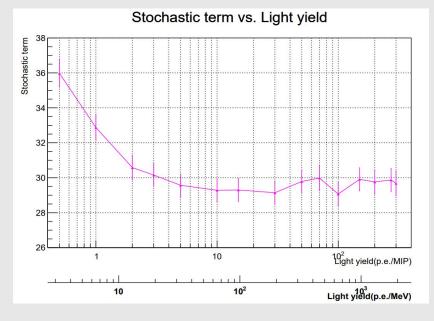

CEPC detector: highly granular calorimeter + tracker


- Boson Mass Resolution (BMR) ~4% has been realized in this baseline design
- Further performance goal: BMR $4\% \rightarrow 3\%$
- Dominant factors in BMR: charged hadron fragments & HCAL resolution

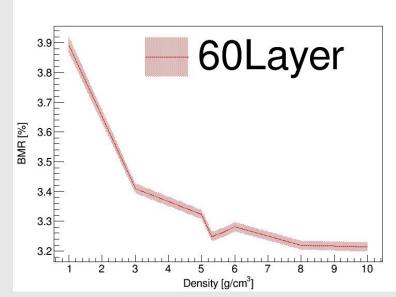
New Option: Glass Scintillator HCAL (GS-HCAL)

- Higher density provides higher energy sampling fraction
- Doping with neutron-sensitive elements: improve hadronic response (Gd)
- More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)



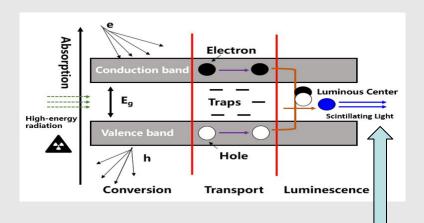

1.2 The Simulation for GS-HCAL

How to achieve the optimized energy resolution (Boson Mass Resolution, BMR)


> Impact of Scintillator type

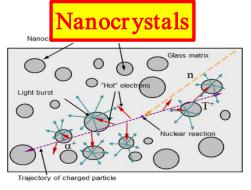
Impact of Light Yield

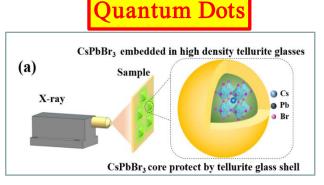
> Impact of Density


Plastic Scintillator vs Glass Scintillator: GS has better hadronic energy resolution in low energy region (<30GeV) A light yield of 100 p.e./MIP or 1000p.e./MeV seems to be good enough for better BMR;

Glass density ~ 6 g/cm3 is a relatively reasonable target, which can guarante a good BMR ($\sim 3.3\%$) and feasibility in R&D

1.3 Target of Glass Scintillator


Key parameters	Value	Remarks			
> Tile size	$\sim 30 \times 30 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels			
➤ Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response			
> Density	5-7 g/cm ³	More compact HCAL structure with higher density			
> Intrinsic light yield	1000-2000 ph/MeV	Higher intrinsic LY can tolerate lower transmittance			
> Transmittance	~75%				
➤ MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM-glass coupling			
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold			
Scintillation decay time	~100 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)			
> Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra			


1.4 The Design of the Glass Scintillator

- > Scintillation mechanism---- Luminescence Center
- ➤ Conversion—photoelectric effect and Compton scattering effect;
- > Transport—electrons and holes migrate;
- > Luminescence—captured by the luminescent center ions

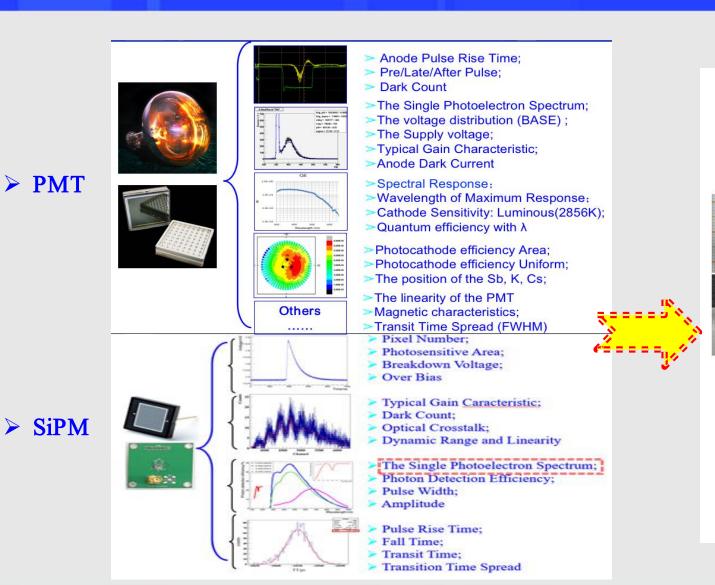
IEEE TNS 60 (2) 2013

Optics Letters 46(14) 3448-3451 (2021)

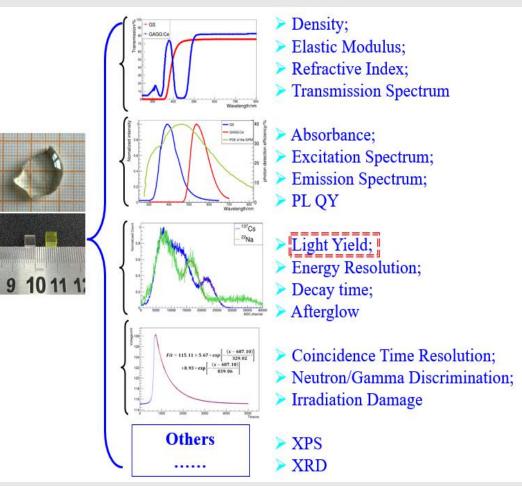
Vol. 9, No. 12 / 2021 / Photonics Research

- High Light Yield: Lanthanide for the Luminescence Center: Cerium (Ce);
- High Density and Low radioactivity background: Gadolinium (Gd);

1.5 The GS R&D Collaboration Group

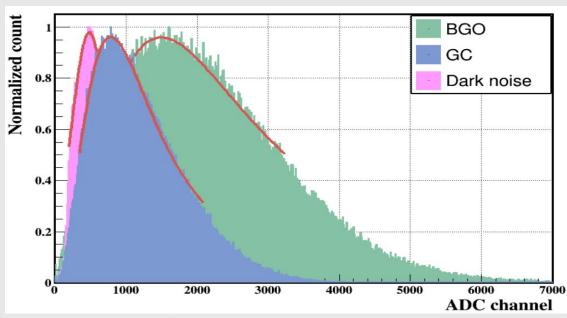


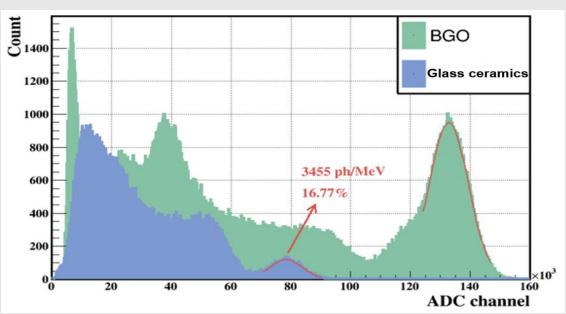
- -- The Glass Scintillator Collaboration Group established in Oct.2021;
- -- The Experts of the GS in the University, Institute and Industry are still welcomed to join us (qians@ihep.ac.cn).


Outline

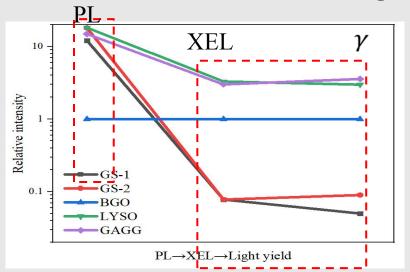
- 1. The Motivation and Design;
- 2. The Test Facilities for GS;
- 3. The Progress of GS;
- 4. Summary and Next plan;

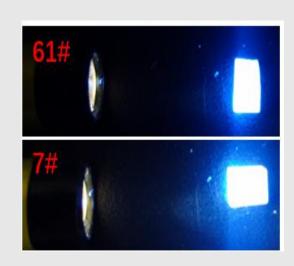
2.1 Test Facilities -- the PMT Lab in IHEP

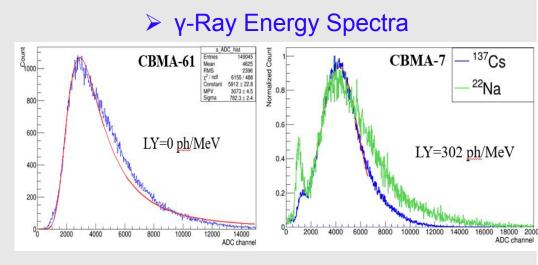

> The Scintillator Test System


2.2 The Light Yield Test (1) -- Energy Spectra

Light Yield @gamma-ray VS @ X-ray

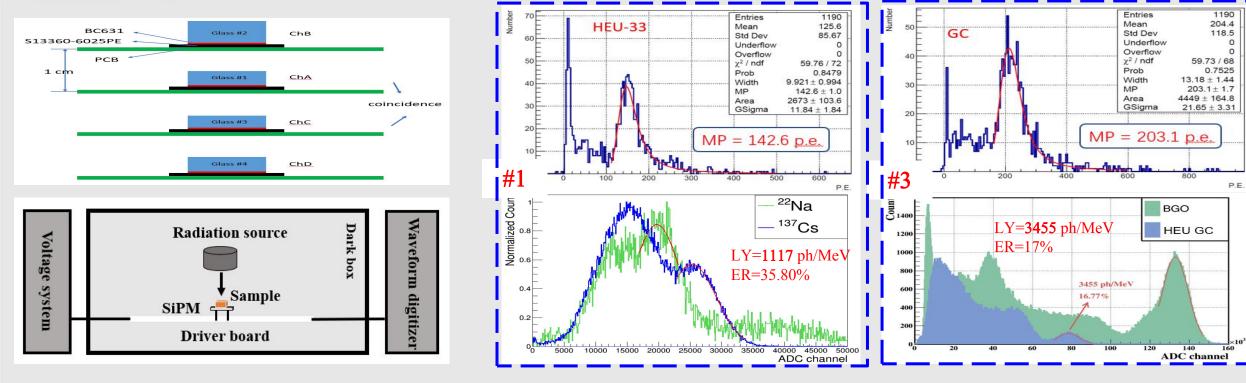

> 137Cs γ-Ray Energy Spectra




- Under X-ray, the photon number of the Gass Ceramic detected by SiPM is about 32% of BGO crystal;
- Under ¹³⁷Cs, the photon number of the Gass Ceramic detected is about 59% of BGO crystal;
- \blacksquare Therefore, the relative light yield of glass scintillator under X rays is not equal to γ rays.

2.2 The Light Yield Test (2) -- Emission Spectra

Light Yield @gamma-ray VS @ PL

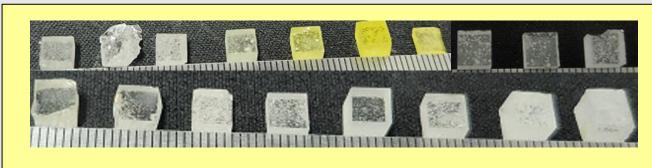


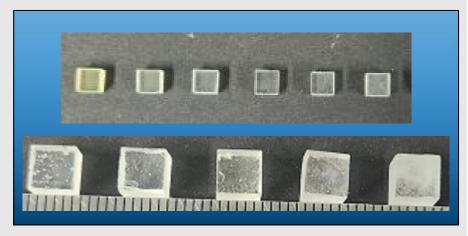
- In a crystal, the XEL intensity is equal to light yield under γ -ray. But its not the case with glass scintillators due to defects and broken bonds.
- Photoluminescence(PL) is not related to its scintillation properties;
- We can obtain high yield glass scintillator in fast, avoid the wrong direction of research, only test the light yield@gamma-ray.

2.2 The Light Yield Test (3) -- Cosmic Ray Test

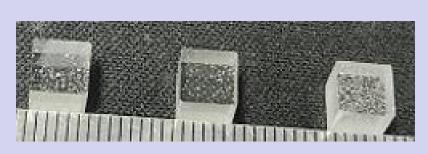

Considering the density and thickness of the glasses, the MIP response by the cosmic ray is consistent with the light yield of the glass scintillator by gamma ray.

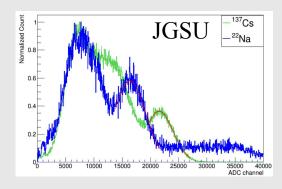
	MIP (p.e.)	LY (ph/MeV)	Thicknes (mm)	Density (g/cm ³)	mip/(Thi*Den)	LY/MIP
#1	143	1117	2.6	5.4	10.2	110
#3 (GC)	203	3455	2	3.3	30.6	113

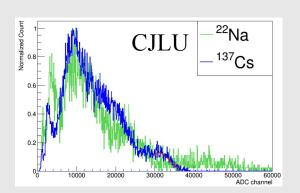

Outline


- 1. The Motivation and Design;
- 2. The Test Facilities for GS;
- 3. The Progress of GS;
- 4. Summary and Next plan;

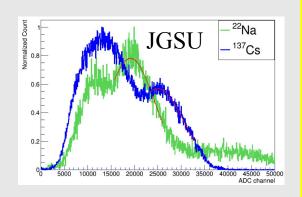
3.1 The GS Samples produced in one year (>200)



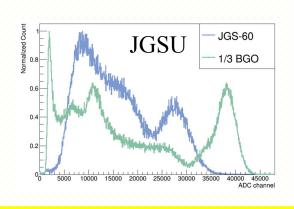




3.2 Borosilicate Glass (Gd-Al-B-Si-Ce3+)


- Density~4.5 g/cm³
- LY=802 ph/MeV
- ER=26.77%

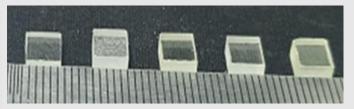
- Density~4.0 g/cm³
- LY>1200 ph/MeV
- ER=23.22%

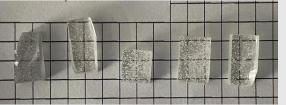

- Density~6.0 g/cm³
- LY>1000 ph/MeV
- ER=49.55%

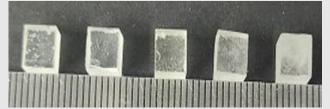
Density~6.0 g/cm³

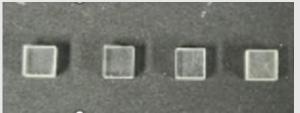
■ LY>1200 ph/MeV

ER=27.12%

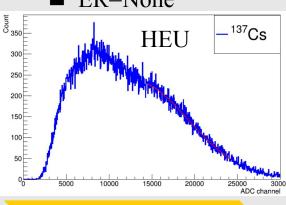



2021.11


2022.06


2022.11

2023.02

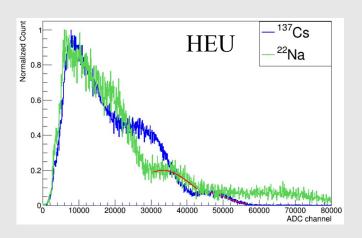


(2022.05)Opt. Mater. 2022(130): 112585

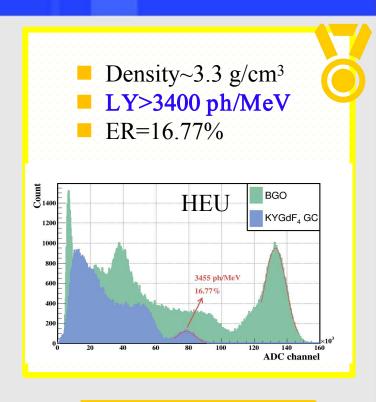
3.3 Glass Ceramic (Gd-Y-K-Si-Ce3+)

About Glass Ceramic could be seen in these Ref. (2021.07) Opt. Lett. (2021), 46(14), 3448; (2021.11) J. Mater. Chem. C, 2021, 9, 17504; (2022.11) J. Eur. Ceram. Soc., 2022;

- Density~ 3.3 g/cm³
- LY=519 ph/MeV
- ER=None



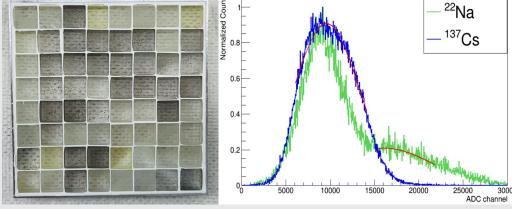
2022.04


(2022.10) J. Mater. Chem. C, 2021, 9, 17504

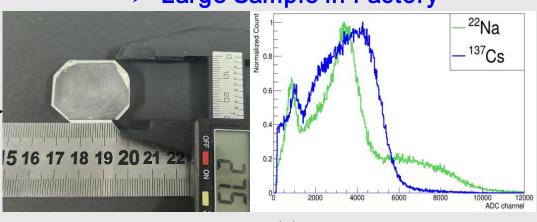
- Density~ 3.3 g/cm³
- LY>1600 ph/MeV
- ER=27.27%

2022.10

2022.11



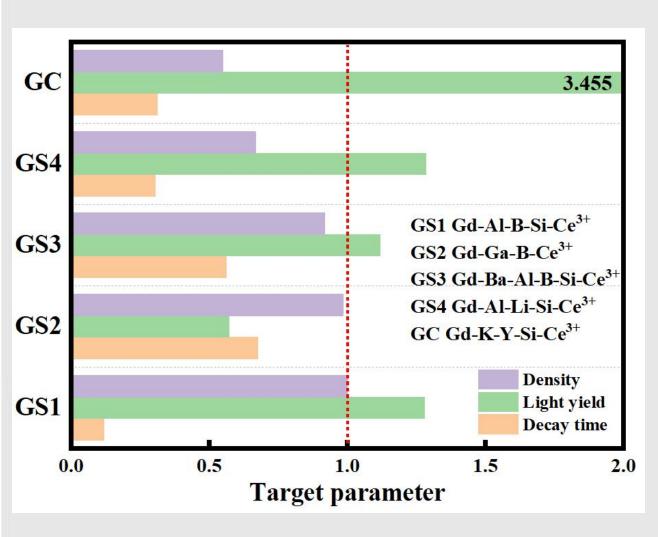
3.4 The Bottleneck


to be Large: The Repeatability?

> Sample Array in Factory

LY=346 ph/MeV

Large Sample in Factory



LY=466 ph/MeV

Outline

- 1. The Motivation and Design;
- 2. The Test Facilities for GS;
- 3. The Progress of GS;
- 4. Summary and Next plan;

4.1 Summary

Glass scintillator of good Energy Resolution, High Density and High Light Yield

- 6.0 g/cm³ & 1279 ph/MeV with 27.12% @662keV Gd-Al-B-Si-Ce³⁺ glass
 - Ultra-high density **Tellurite Glass**—6.6 g/cm³
 - High light yield **Glass Ceramic**—3500 ph/MeV
 - Fast scintillating Decay Time—100 ns
 - Large size Glass—42mm*51mm*10mm

4.2 The Scintillator data

Туру	Composition	Density (g/cm³)	Light yield (ph/MeV)	Decay time (ns)	Emission peak(nm)	Price/1 c.c (RMB)
Glass Scintillator in Paper	Ce-doped high Gadolinium glass[1]	4.37	3460	522	431	~10
	Ce-doped fluoride hafnium glass ^[2]	6.0	2400	23.4	348	150
Plastic Scintillator	BC408 ^[3]	~1.0	5120	2.1	425	60
	BC418 ^[3]	~1.0	5360	1.4	391	80
Crystal	GAGG:Ce ^[4]	6.6	50000	50	560	2400
	LYSO:Ce ^[5]	7.1	30000	40	420	1200
	BGO ^[6]	7.3	8000	300	480	800
Glass Scintillator for CEPC	?	>6	>1000	<100	350-500	~1
Stuaus of Glass Scintillator	?	>6	>1000	< 200	350-500	~?

^[1] Struebing, C. Journal of the American Ceramic Society, 101(3). [2] Zou, W. Journal of Non-Crystalline Solids, 184(1), 84-92. [3] Plastic Scintillators | Saint-Gobain Crystals. [4] Zhu, Y. Qian, S. Optical Materials, 105, 109964. [5] Ioannis, G. Nuclear Instruments & Methods in Physics Research. [6] Akapong Phunpueok, et al. Applied Mechanics and Materials, 2020,901:89-94.

4.3 Next Plan

Gd-(Ba/Al)-B-Si -Ce³⁺ glass will be the focus of future research.

- The glass scintillators were prepared repeatedly to ensure its performance stability;
- The properties of the glasses will be further improved through **raw material purification**;
- To reduce the scintillation decay time of the glasses (<100 ns);
- To produce the large size and mass preparation samples;
- Test the radiation resistance and mechanical properties of the glasses;
- Explore the structural properties of the glasses.

