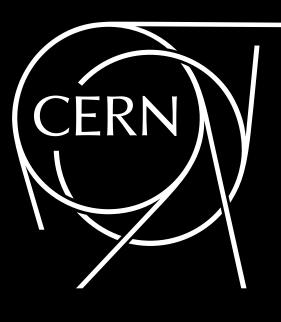
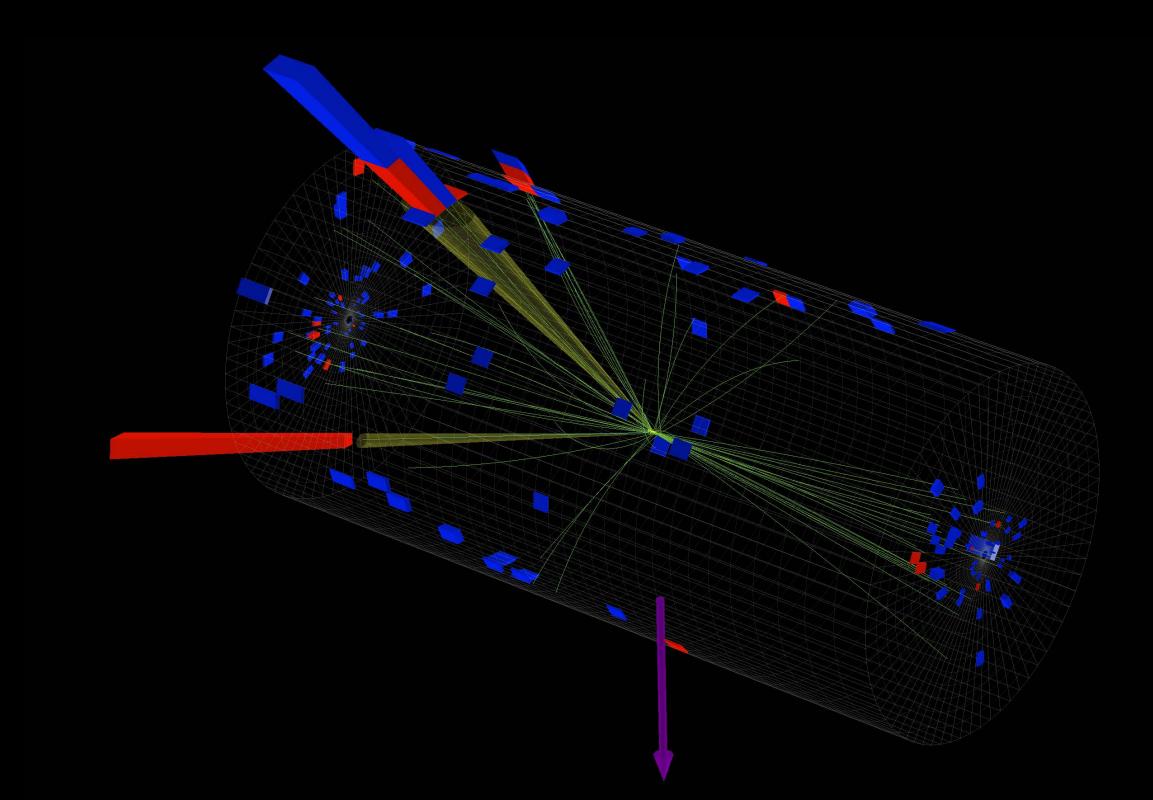
Graph Neural Networks for Particle Physics

Huilin Qu (CERN)

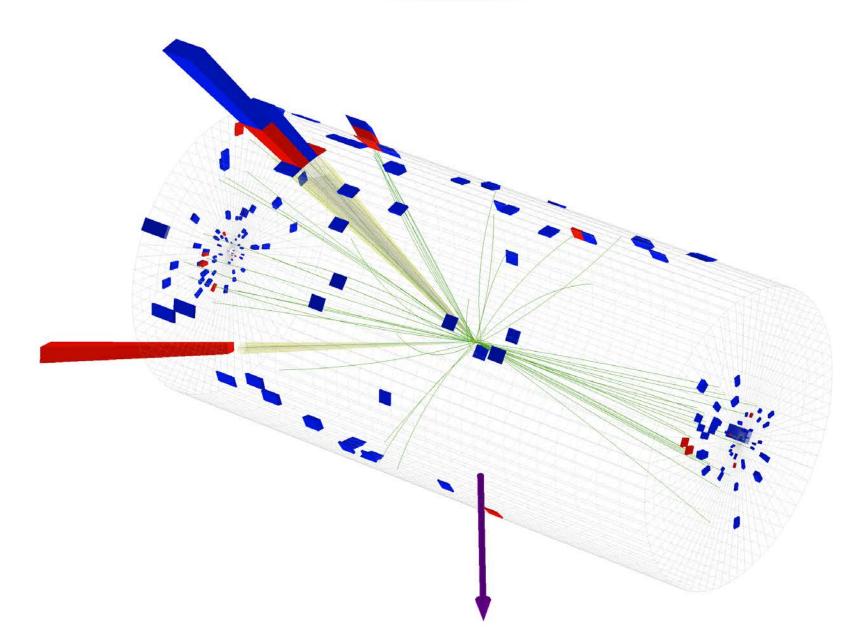
IAS Program on High Energy Physics (HEP 2023) February 12, 2023





MOTIVATION

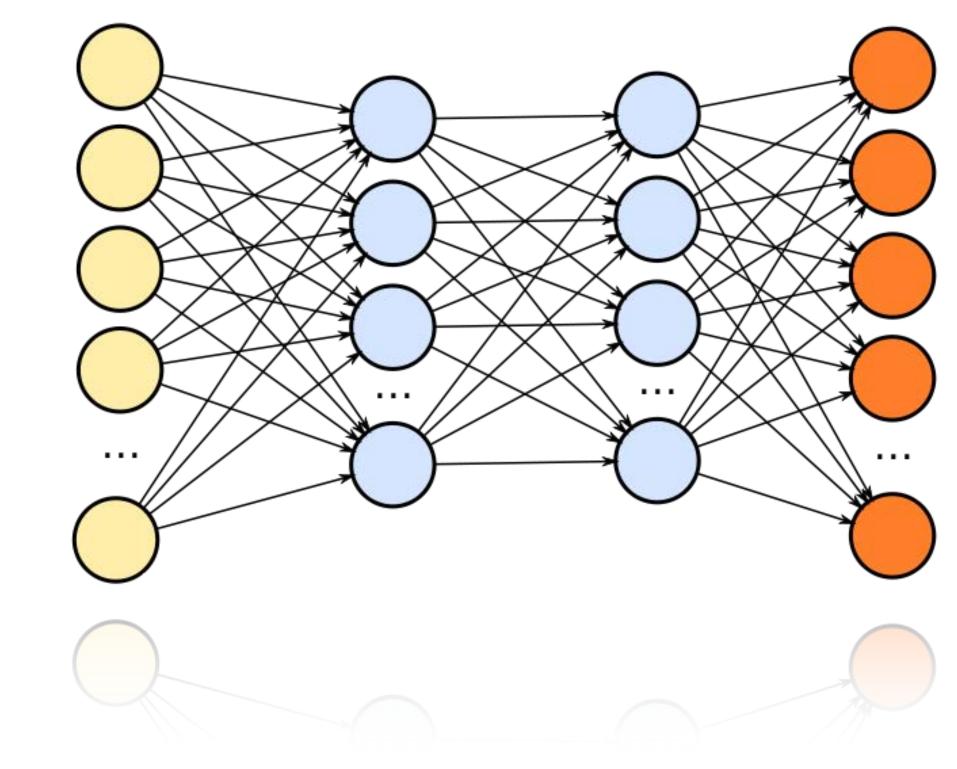
HEP



Collision events, hadronic jets, tracker/calorimeter hits,...

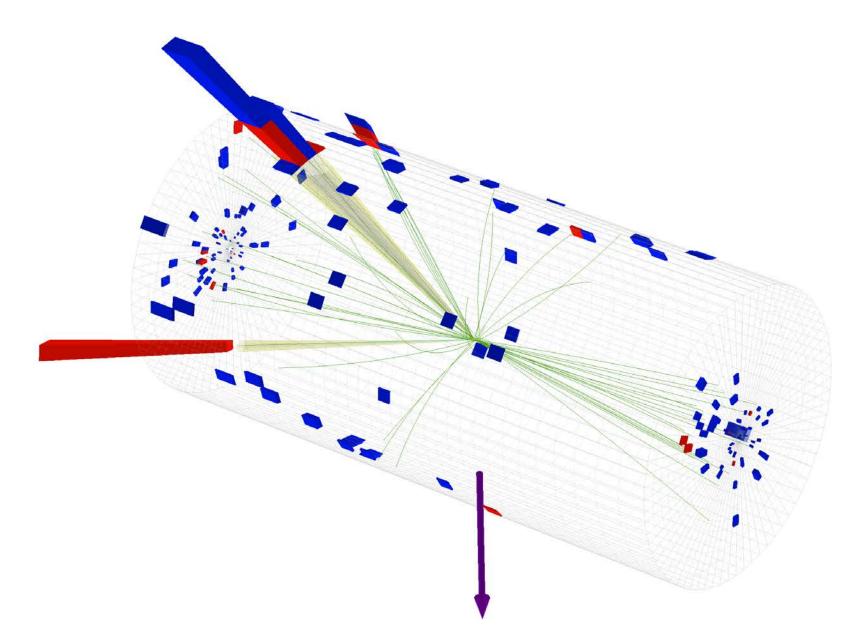
First and foremost: How to represent the data?

X



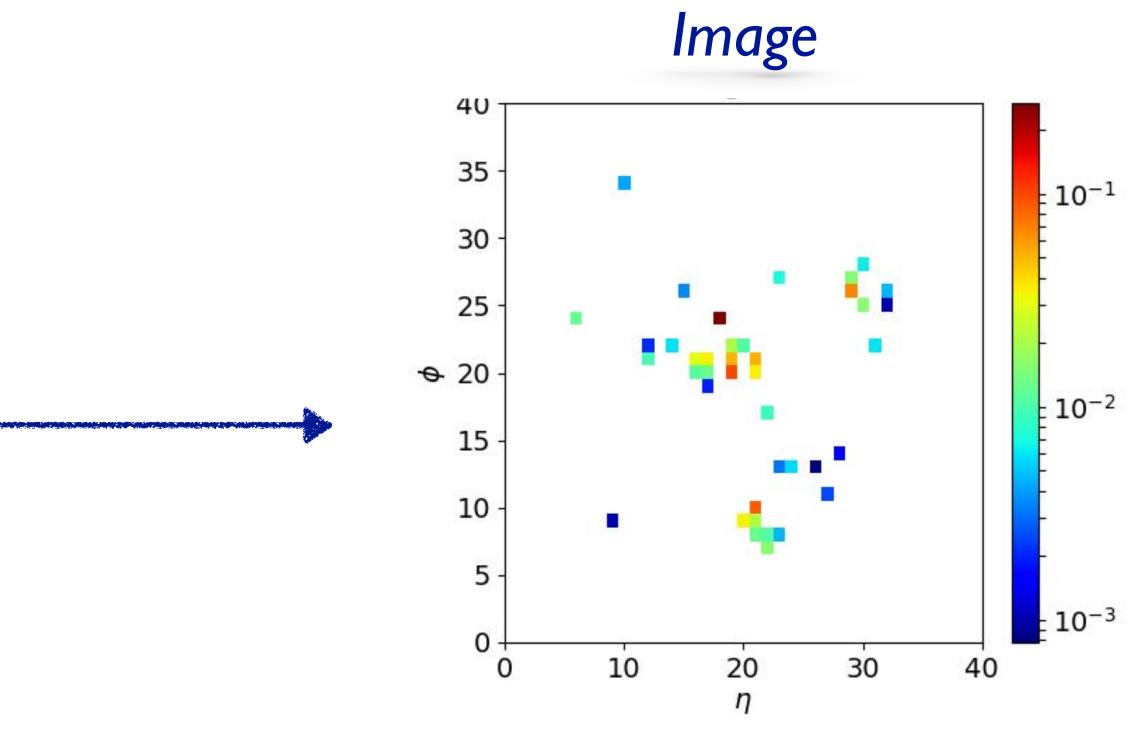
DATA REPRESENTATION: IMAGE

HEP



Collision events, hadronic jets, tracker/calorimeter hits,...

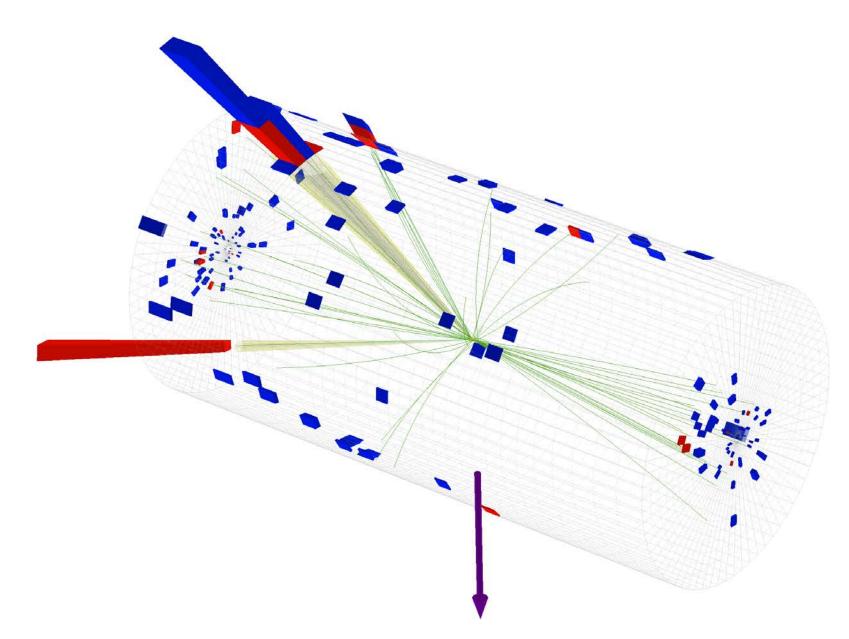
- Convert to 2D/3D image => Computer vision
 - then use convolutional neural networks (CNNs)
 - but:
 - inhomogeneous geometry, high sparsity, ...



e.g., review in Kagan, arXiv:2012.09719

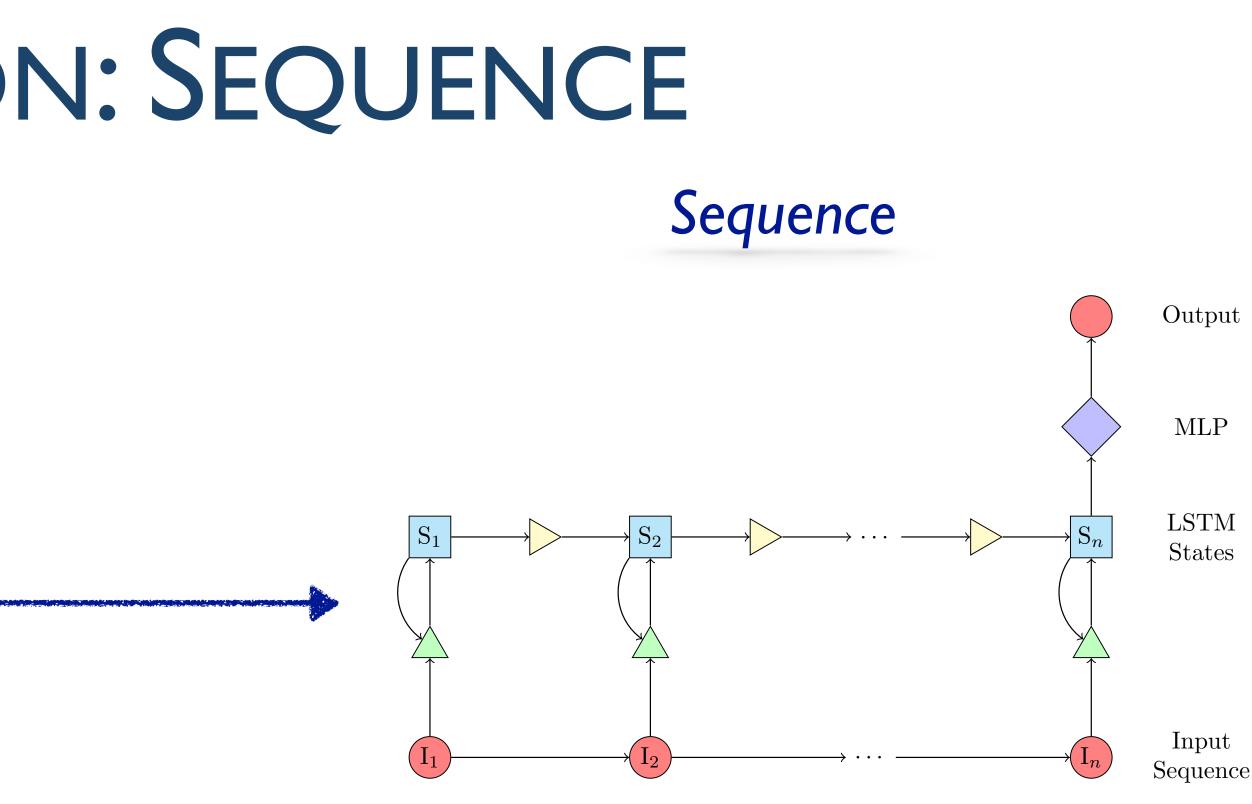
DATA REPRESENTATION: SEQUENCE

HEP



Collision events, hadronic jets, tracker/calorimeter hits,...

- Convert to a sequence => Natural language processing (NLP)
 - recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.
 - but:
 - must impose an *ordering* on the particles/hits, which can limit the learning performance



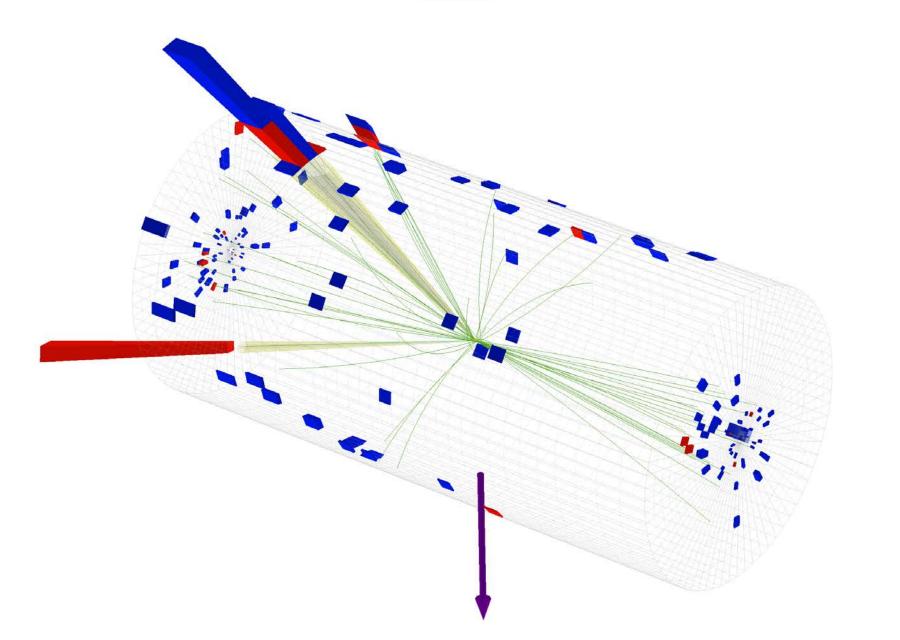
e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson arXiv: 1607.08633

Output

LSTM States

Input

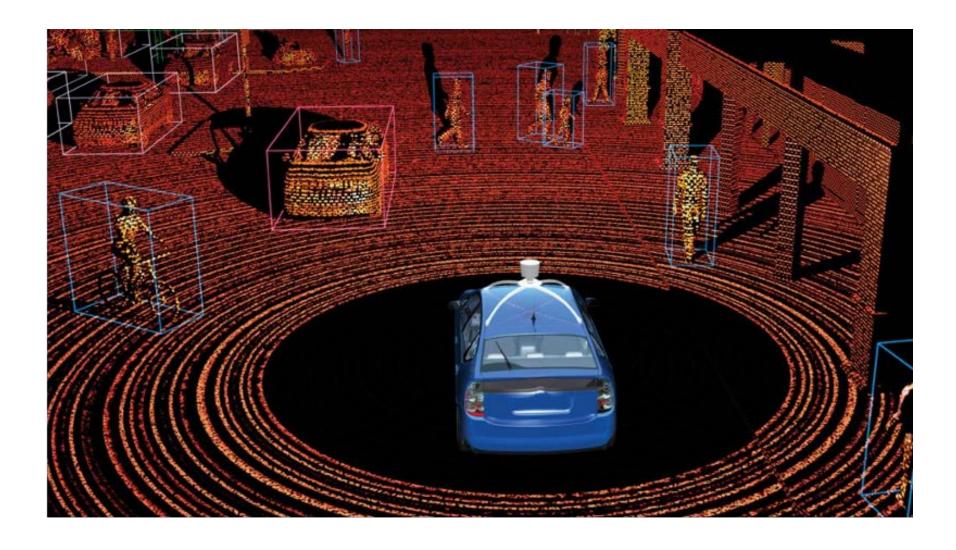
DATA REPRESENTATION: POINT CLOUD HEP Point cloud



Collision events, hadronic jets, tracker/calorimeter hits,...

HEP data as a point cloud

- each particle / hit / cell is a point in the cloud
- key feature: *permutation invariance*

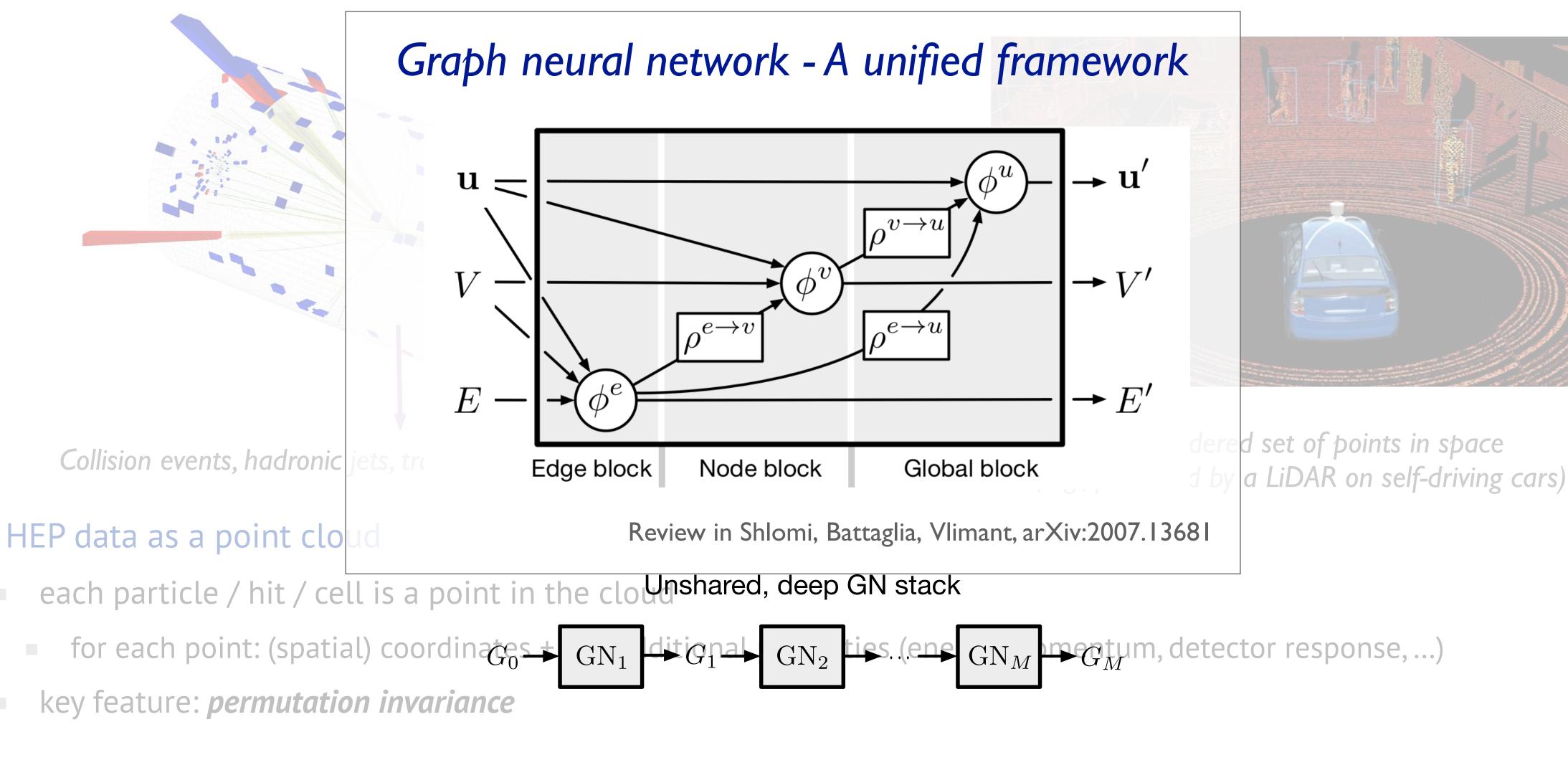


An unordered set of points in space (e.g., produced by a LiDAR on self-driving cars)

for each point: (spatial) coordinates + any additional properties (energy/momentum, detector response, ...)

LEARNING ON POINT CLOUDS

HEP



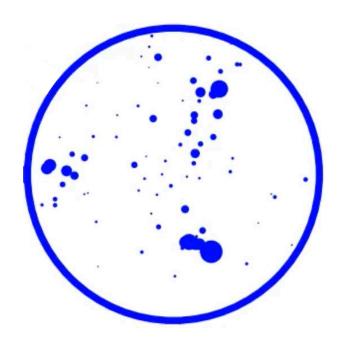
Point cloud

Shared, recurrent GN stack

CONSTRUCTING THE GRAPH

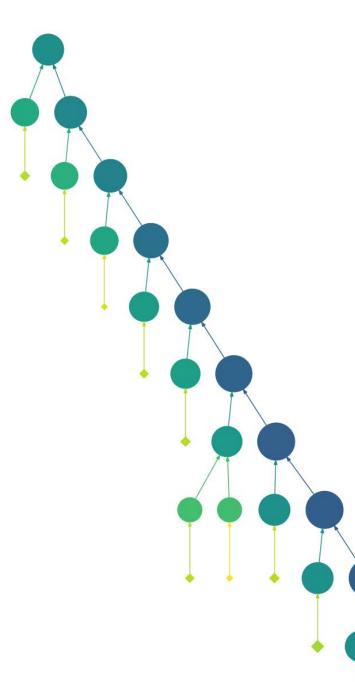
- From point clouds to graphs:
 - points (particles/hits/cells) naturally become the **nodes** of the graph
 - but how to define the *edges*?

Set: no edges



Hierarchical trees:

- decay chain
- jet clustering history

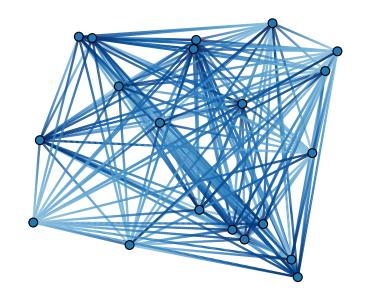


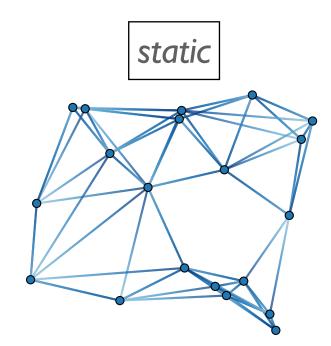
Fully connected graph

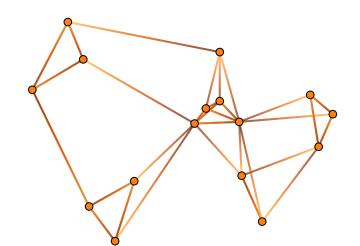
- i.e., connect each node to all other nodes

Locally connected graph

- *i.e., connect each node* only to neighbor nodes
 - k-nearest neighbors
 - fixed radius







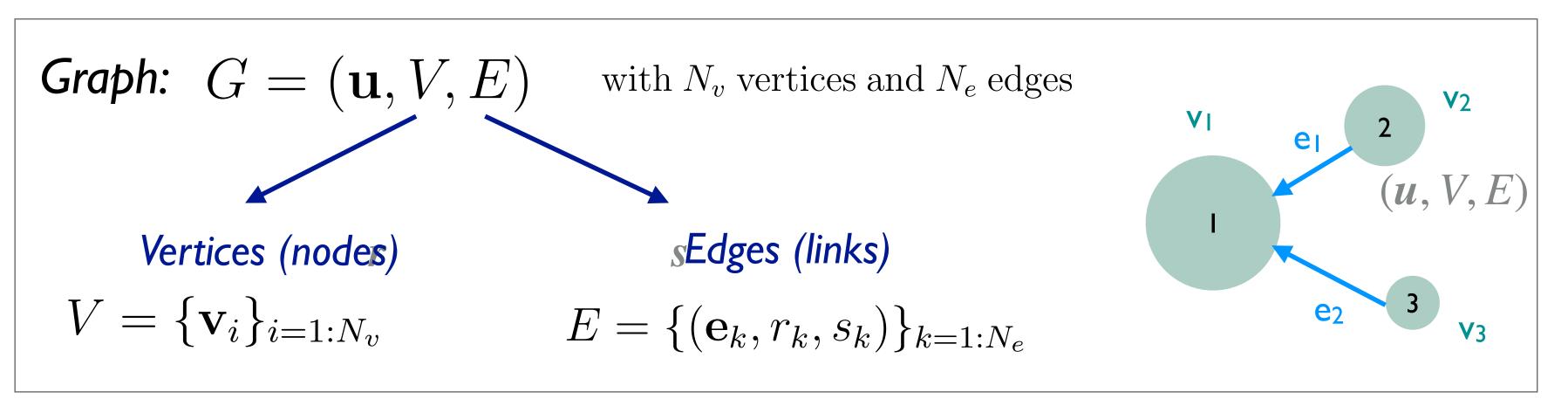
(dynamically) learned

CONSTRUCTING THE GRAPH

- From point clouds to graphs:
 - points (particles/hits/cells) naturally become the **nodes** of the graph
 - but how to define the *edges*?
- Why we need the edges?
 - edges <==> interactions
 - edges control **information flows** in the graph
 - (e.g., ΔR between particles, invariant mass of the particle pair, etc.)
 - latent edge features store **learned relational information** crucial for the ML task

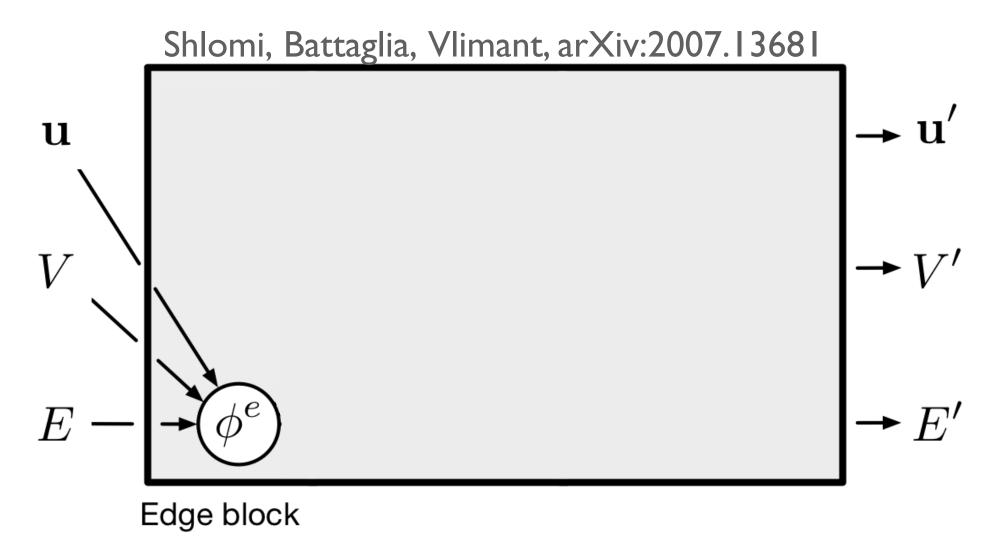
input edge features can encode inter-relationship between nodes and can incorporate physics motivated variables

Typical GNN architectures can be described in the "Message Passing" framework

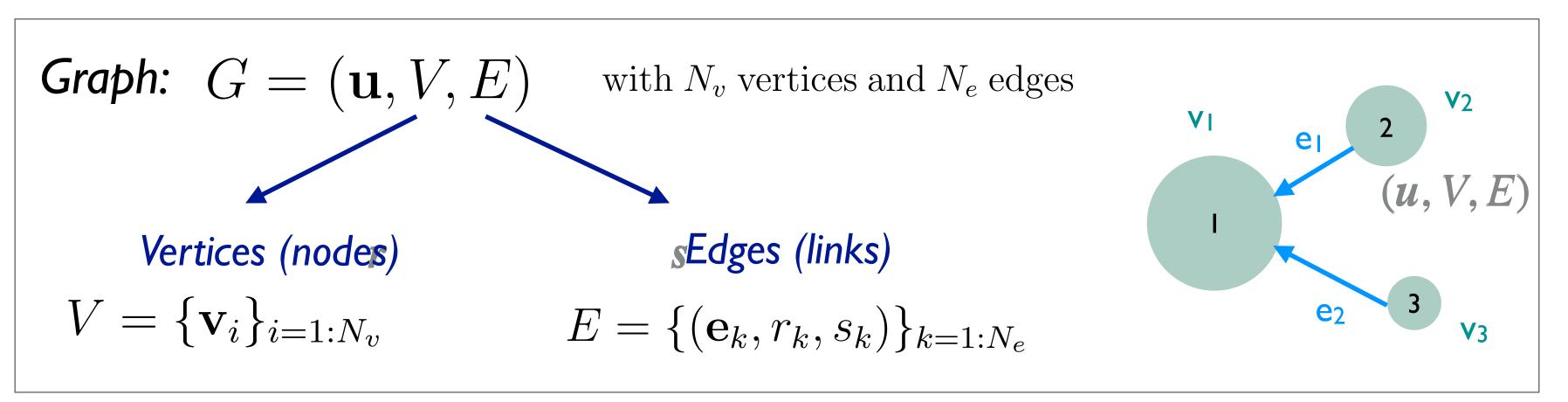


 e'_k : message computed for edge k connecting nodes r_k , s_k

$$\boldsymbol{e}_{k}^{\prime} = \boldsymbol{\phi}^{e}(\mathbf{e}_{k}, \boldsymbol{v}_{r_{k}}, \boldsymbol{v}_{s_{k}}, \mathbf{u})$$



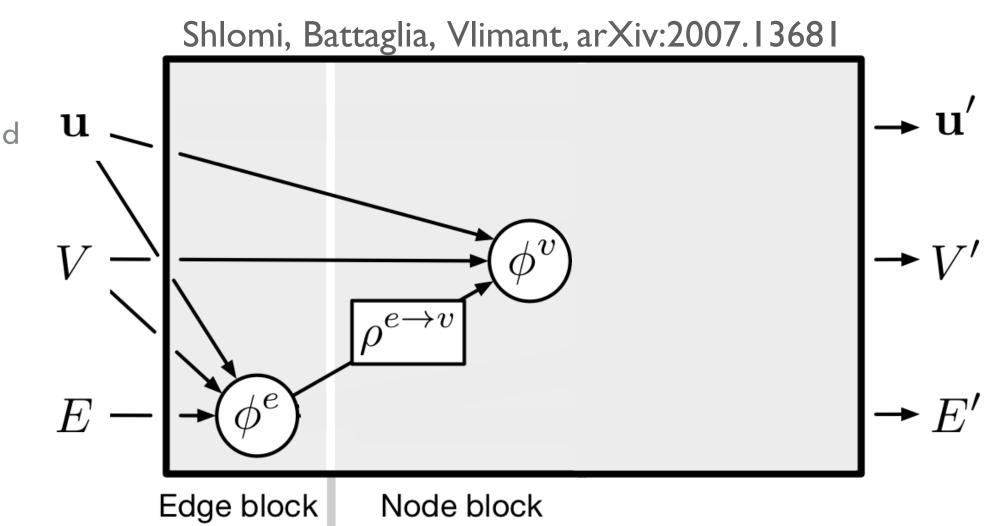
Typical GNN architectures can be described in the "Message Passing" framework



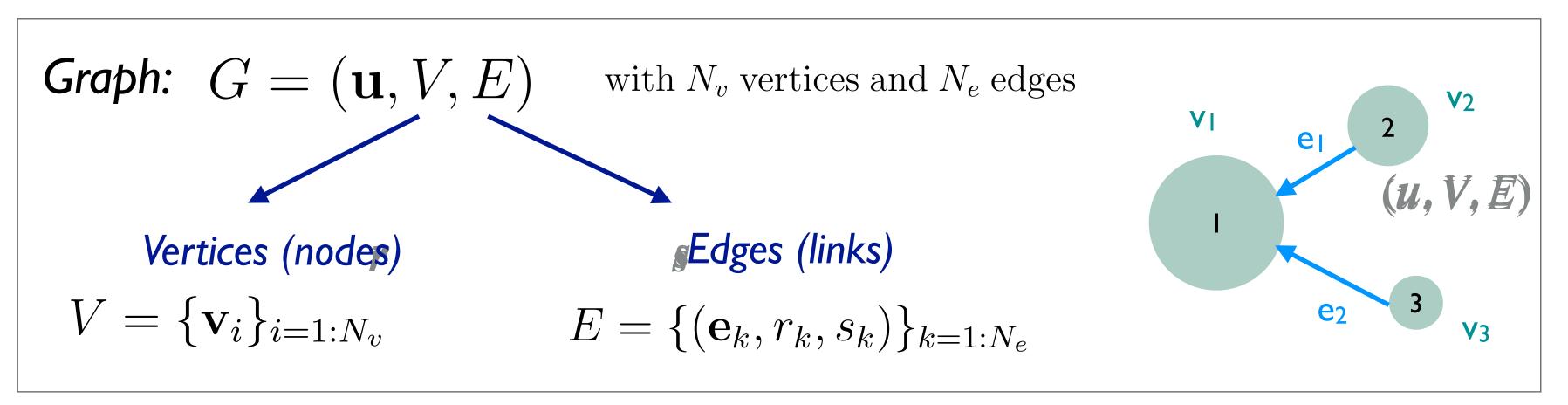
 e'_k : message computed for edge k connecting nodes r_k , s_k

 v'_i : node feature update based on aggregated messages and previous features

$$\boldsymbol{e}_{k}^{\prime} = \boldsymbol{\phi}^{e}(\mathbf{e}_{k}, \boldsymbol{v}_{r_{k}}, \boldsymbol{v}_{s_{k}}, \mathbf{u}) \qquad \boldsymbol{\bar{e}}_{i}^{\prime} = \boldsymbol{\rho}^{e \to v}(E_{i}^{\prime})$$
$$\boldsymbol{v}_{i}^{\prime} = \boldsymbol{\phi}^{v}\left(\boldsymbol{\bar{e}}_{i}^{\prime}, \boldsymbol{v}_{i}, \boldsymbol{u}\right)$$



Typical GNN architectures can be described in the "Message Passing" framework

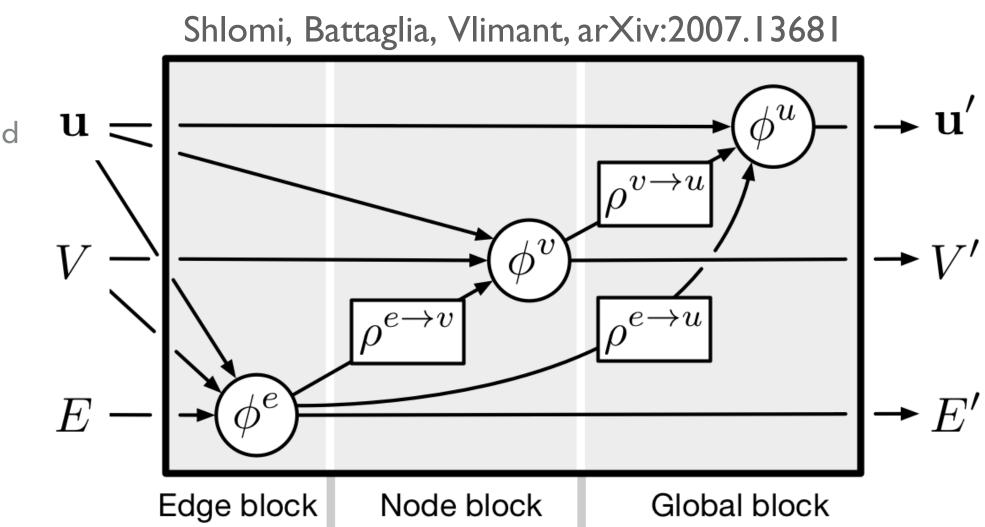


 e'_k : message computed for edge k connecting nodes r_k , s_k

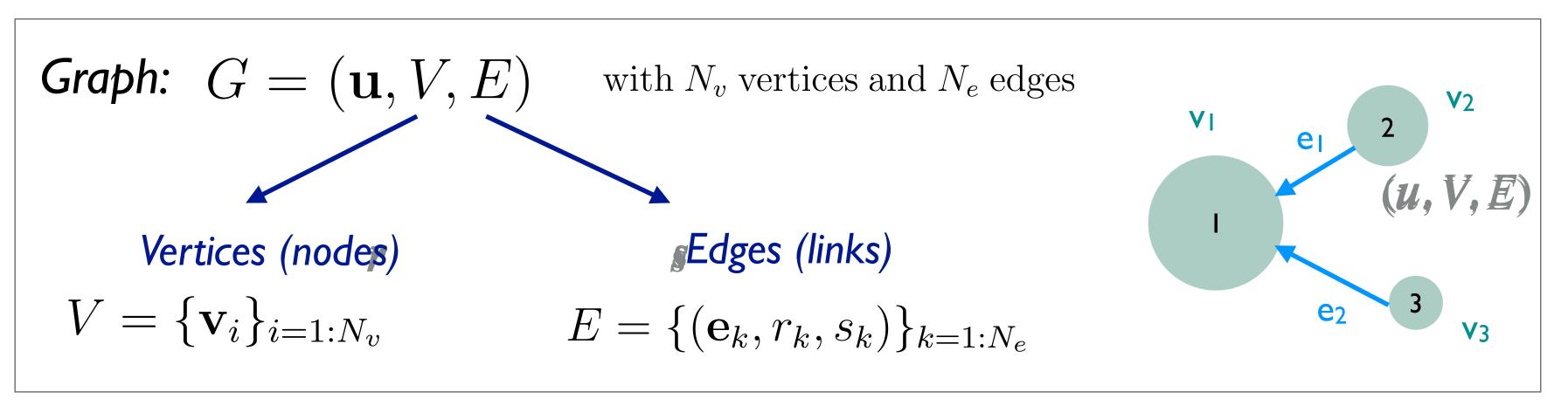
 v'_i : node feature update based on aggregated messages and previous features

u': global feature update based on aggregated, updated node and edge features

$$e'_{k} = \phi^{e}(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}) \qquad \bar{e}'_{i} = \rho^{e \to v}(E'_{i})$$
$$v'_{i} = \phi^{v}\left(\bar{e}'_{i}, \mathbf{v}_{i}, \mathbf{u}\right) \qquad \bar{e}' = \rho^{e \to u}(E')$$
$$u' = \phi^{u}(\bar{e}', \bar{\mathbf{v}}', \mathbf{u}) \qquad \bar{\mathbf{v}}' = \rho^{v \to u}(V')$$



Typical GNN architectures can be described in the "Message Passing" framework



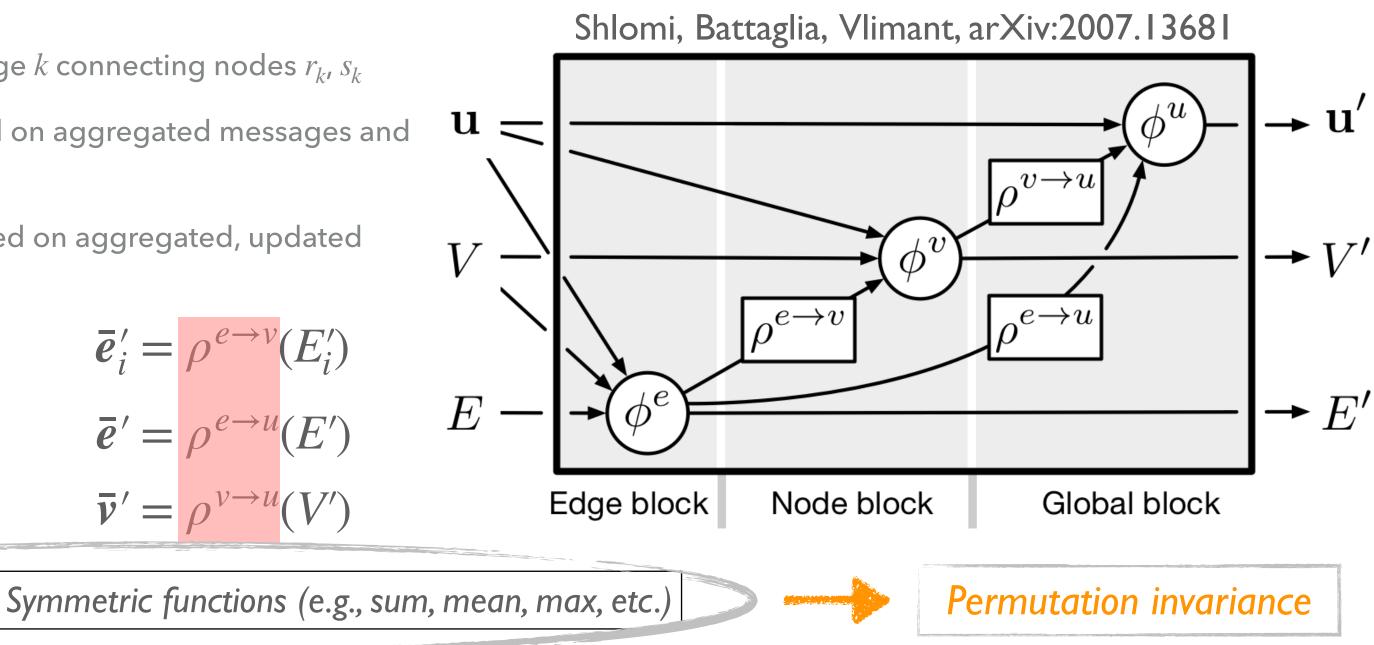
 e'_k : message computed for edge k connecting nodes r_k , s_k

 v'_i : node feature update based on aggregated messages and previous features

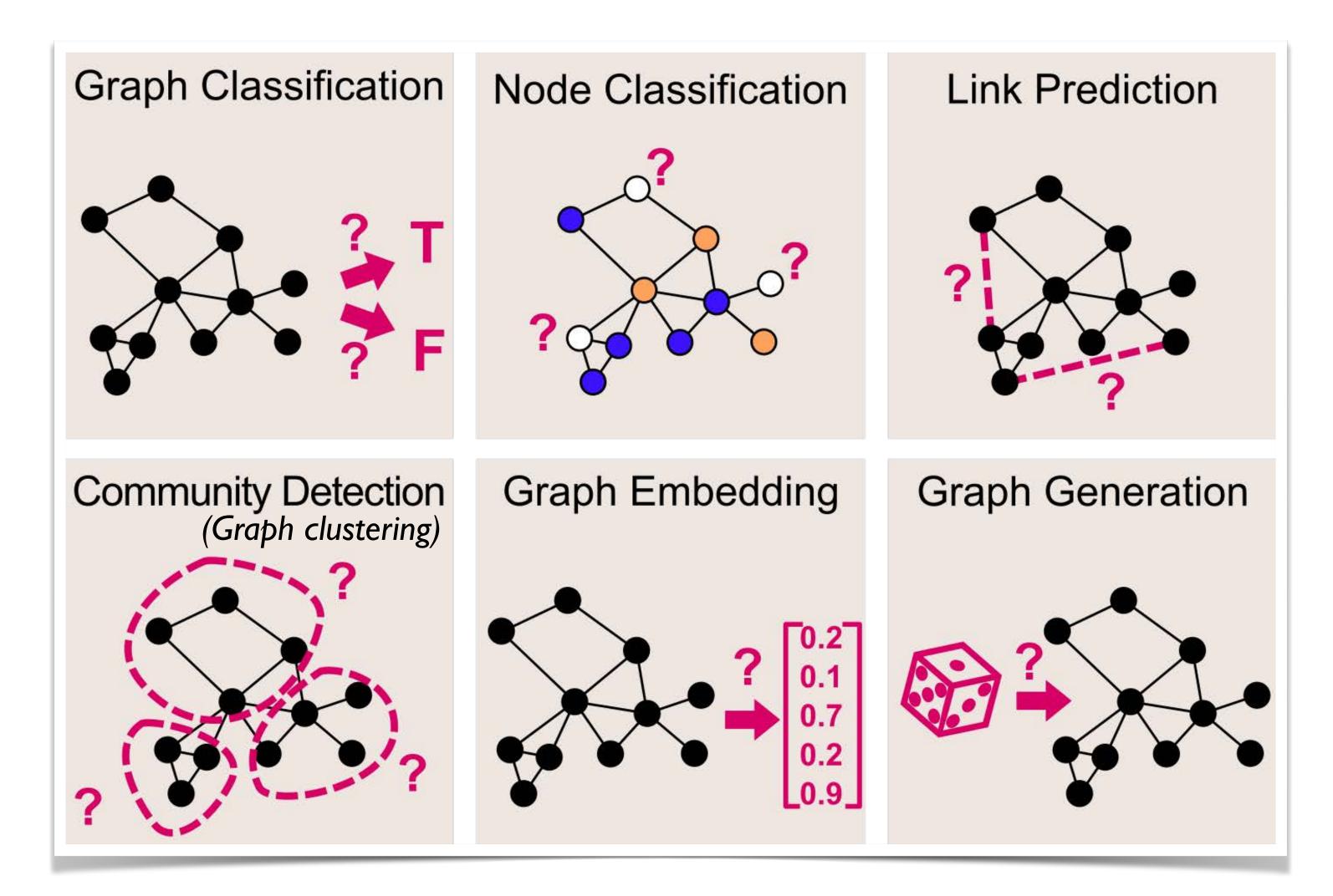
u': global feature update based on aggregated, updated node and edge features

$\boldsymbol{e}_k' = \boldsymbol{\phi}^{\boldsymbol{e}}(\mathbf{e}_k, \boldsymbol{v}_{r_k}, \boldsymbol{v}_{s_k}, \mathbf{u})$	$\bar{\boldsymbol{e}}_i' = \rho^{e \to v}(E_i')$
$\boldsymbol{v}_i' = \boldsymbol{\phi}^{\boldsymbol{v}} \left(\boldsymbol{\bar{e}}_i', \boldsymbol{v}_i, \boldsymbol{u} \right)$	$\bar{e}' = \rho^{e \to u}(E')$
$\boldsymbol{u}' = \boldsymbol{\phi}^{\boldsymbol{u}}(\boldsymbol{\bar{e}}', \boldsymbol{\bar{v}}', \boldsymbol{u})$	$\overline{\boldsymbol{\nu}}' = \rho^{\boldsymbol{\nu} \to \boldsymbol{\mu}}(V')$

Shared-weight NN



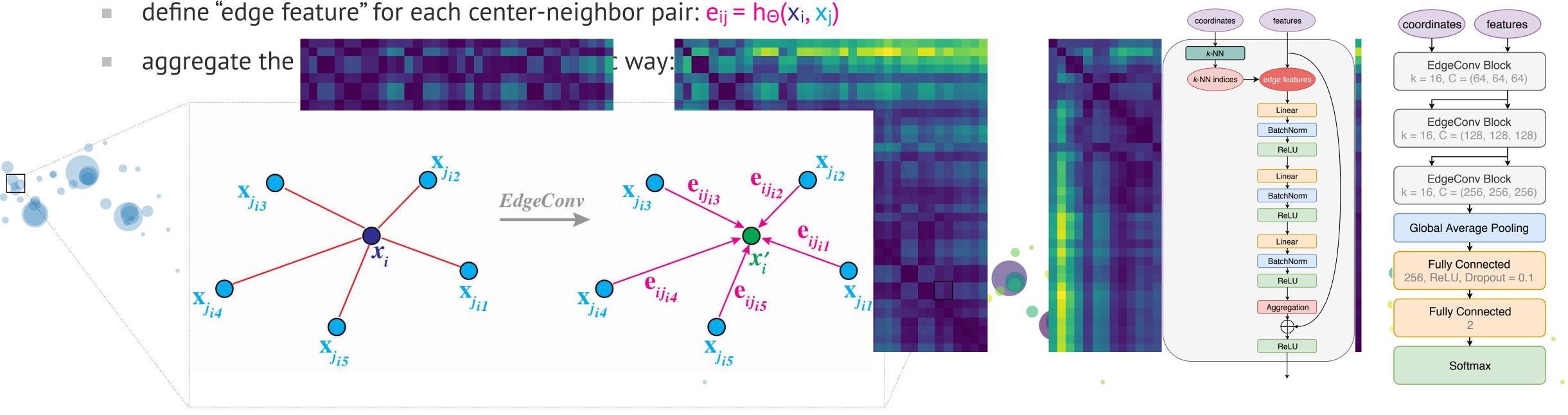
GRAPH ML TASKS



https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

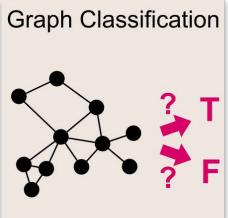
GNNS FOR JET TAGGING: PARTICLENET

- ParticleNet: jet tagging via particle clouds
 - treating a jet as an **unordered set of particles**, distributed in the $\eta \phi$ space
 - graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829]
 - treating a point cloud as a graph: each point is a vertex
 - for each point, a local patch is defined by finding its k-nearest neighbors
 - designing a permutation-invariant "convolution" function

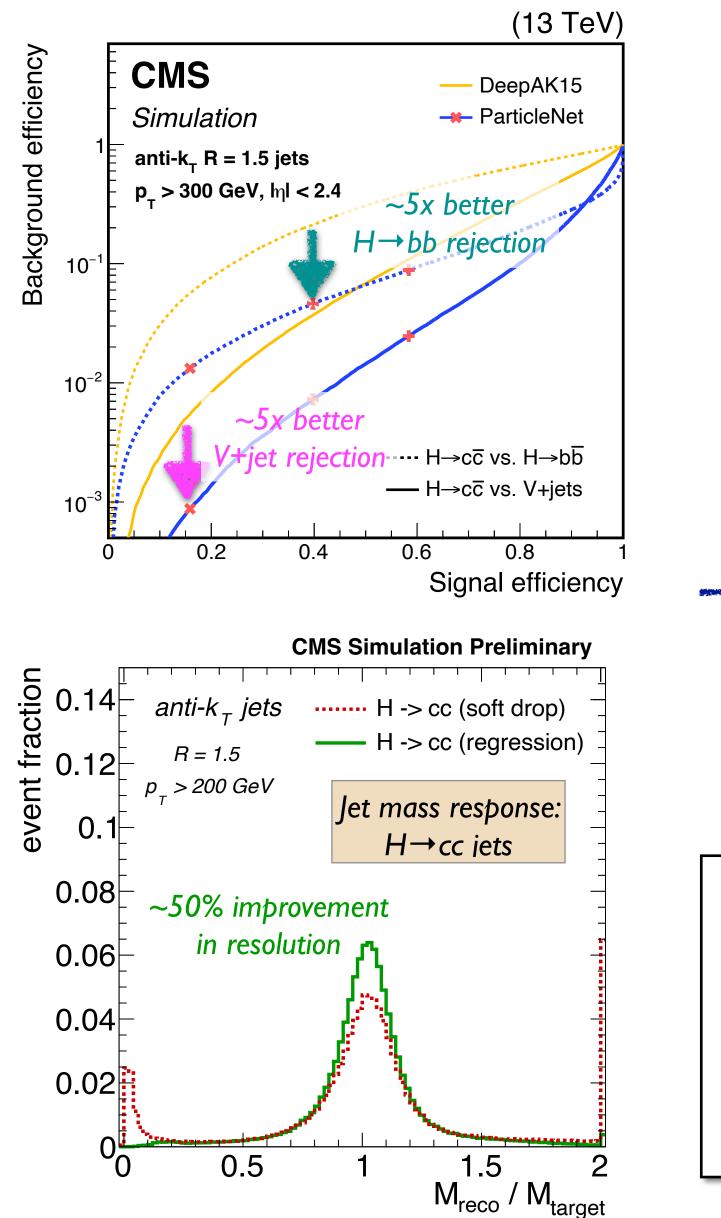


HQ and L. Gouskos [<u>arXiv: 1902.08570</u>]

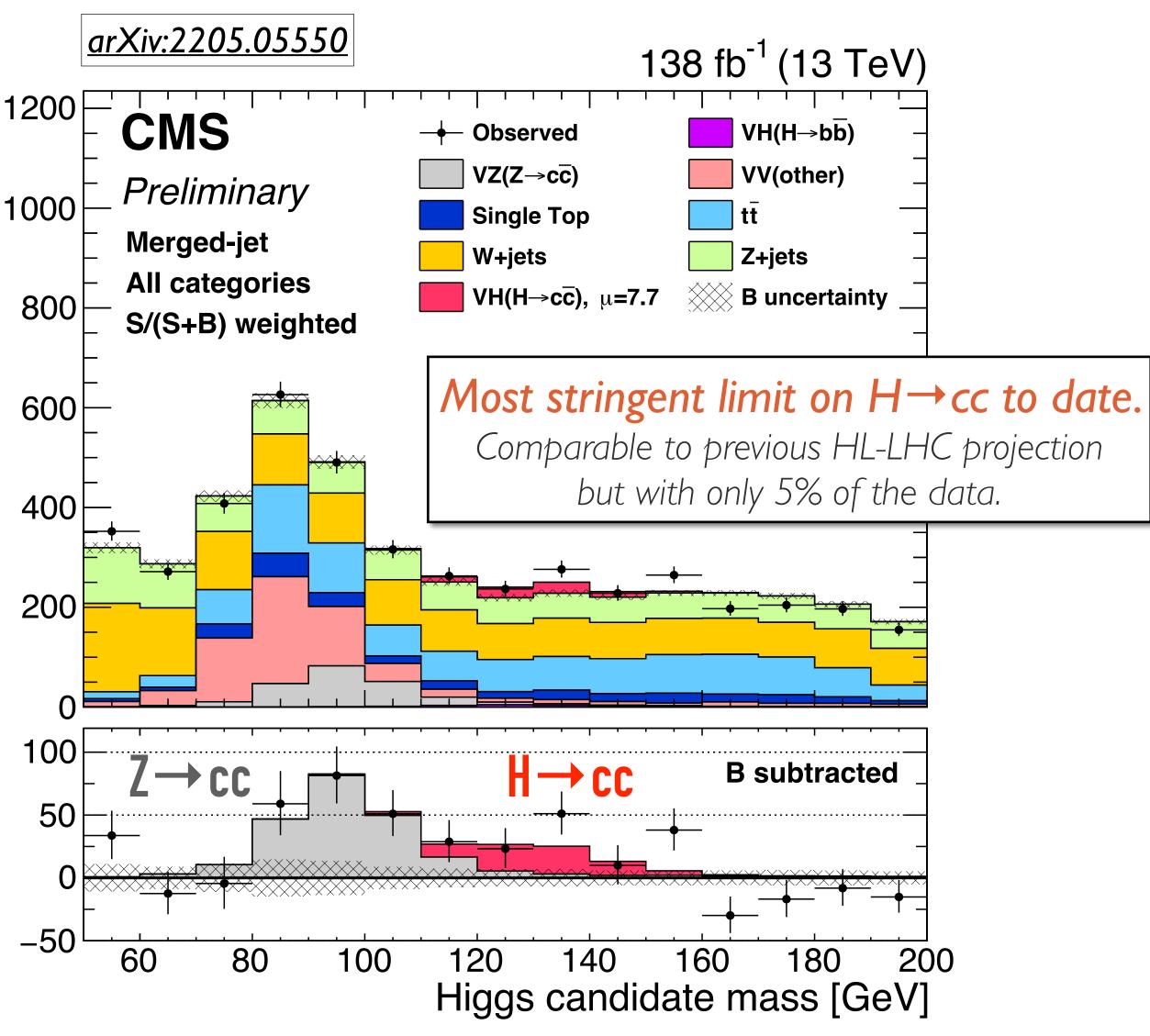
ParticleNet architecture



PARTICLENET IN ACTION: $H \rightarrow CC$ SEARCH



First observation of $Z \rightarrow cc$ at a hadron collider!



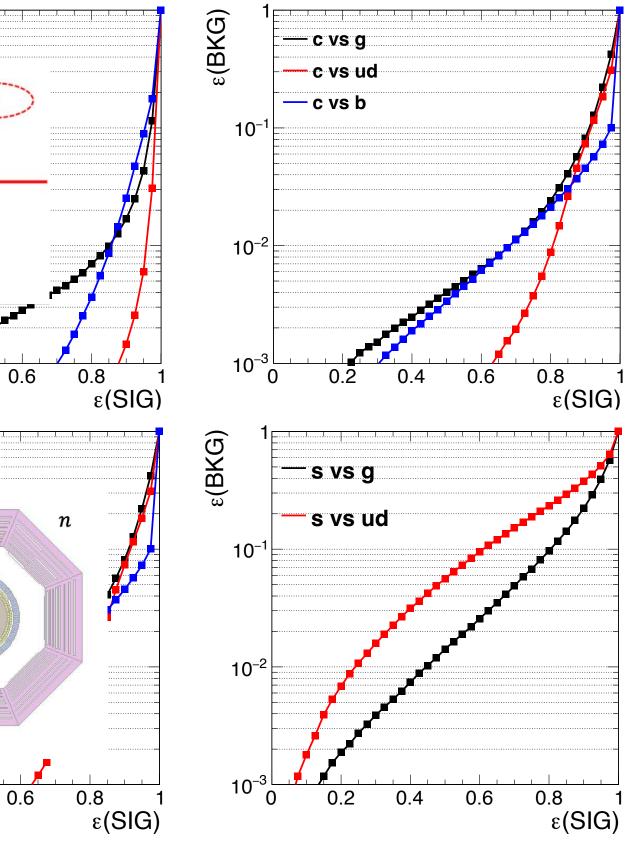
PARTICLENET IN ACTION: BEYOND JETS

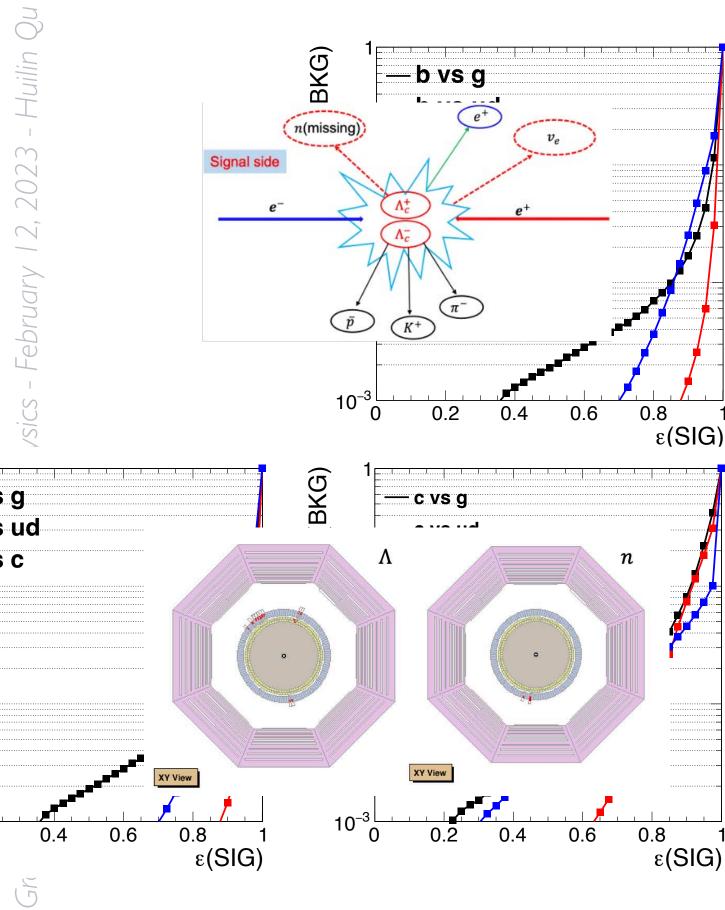
₿€SⅢ

 $\Lambda_c^+ \rightarrow n e^+ \nu$ measurement Yunxuan Song, Yangu Li et al., BAM-00632

(CERN

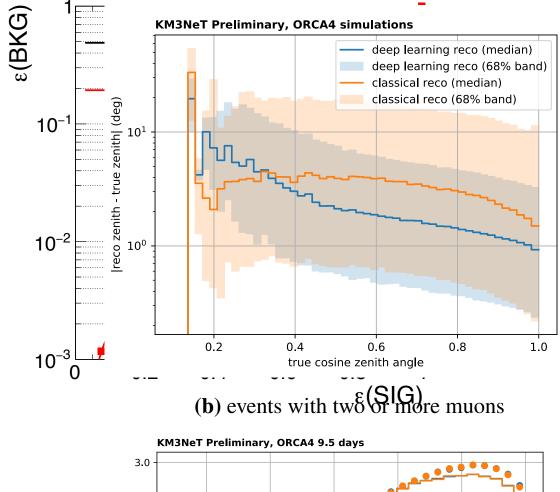
Particle identification *Eur.Phys.J.Plus* 137 (2022) 1, 39 *Eur.Phys.J.C* 82 (2022) 7, 646

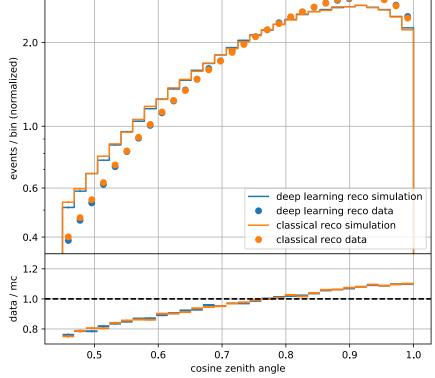




Muon bundle reconstruction

JINST 16 (2021) 10, C10011, Pos ICRC2021 (2021) 1048

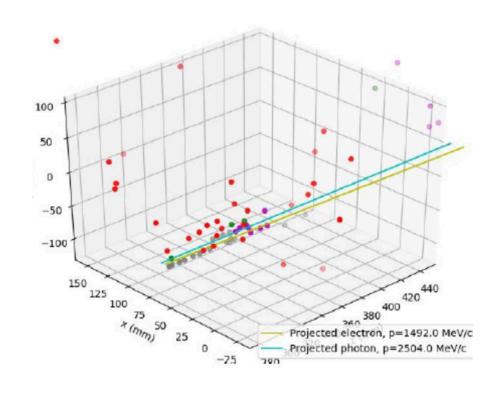


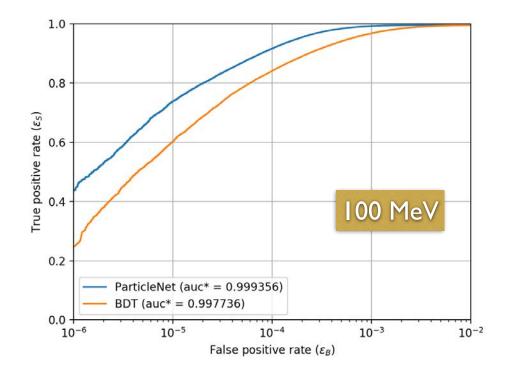


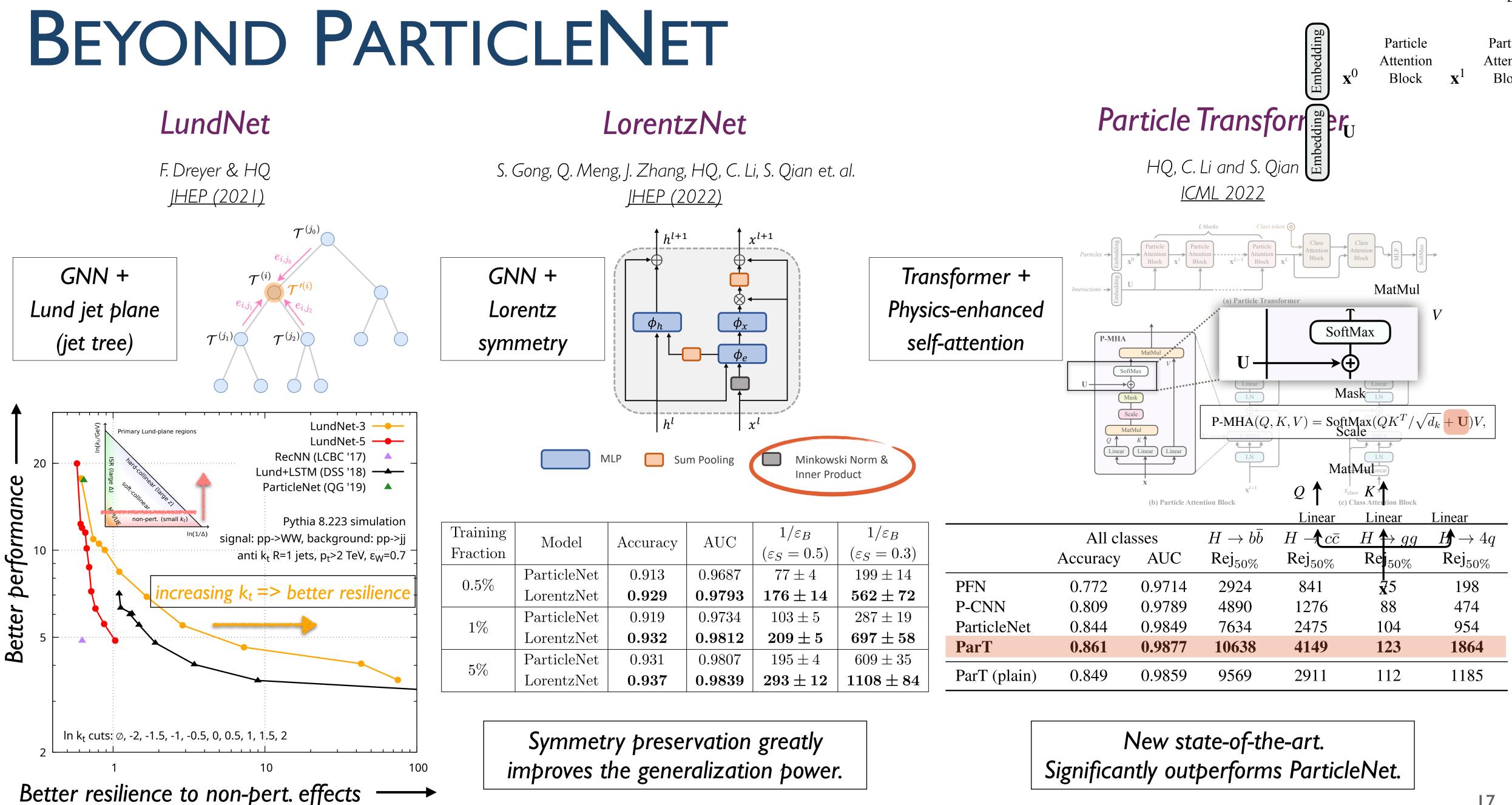
-L'DMX

Photo-nuclear background rejection

Work in progress

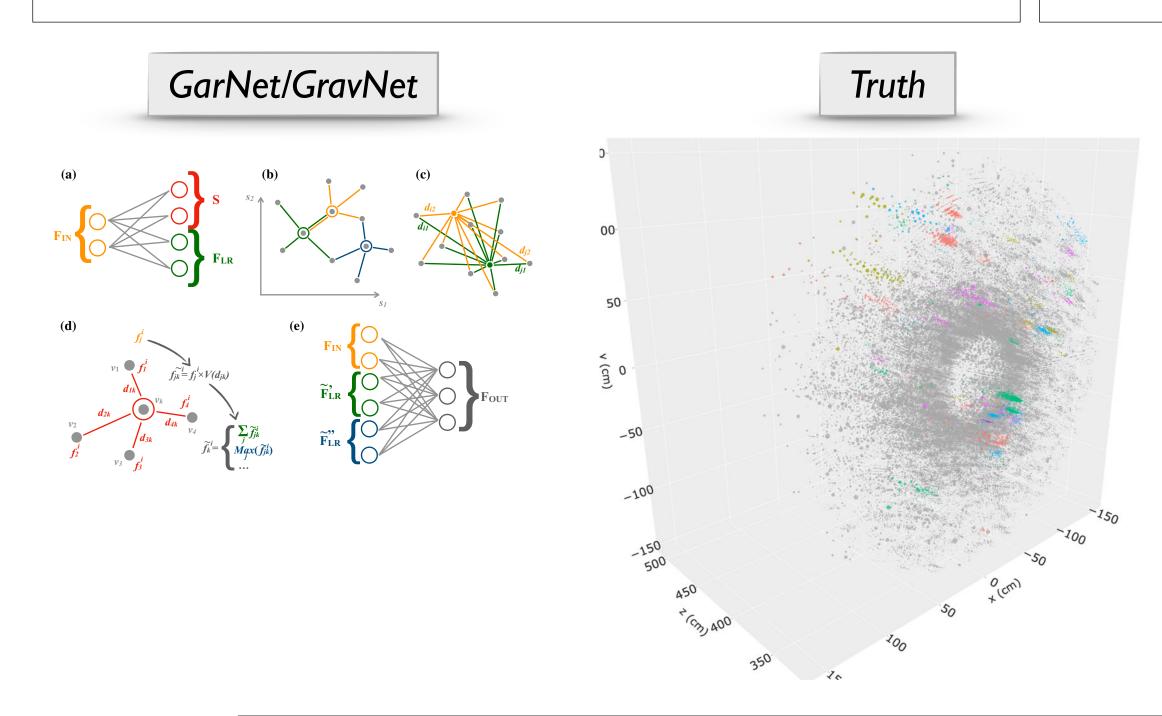






GNNS FOR RECONSTRUCTION

- GNNs also powerful tools for event reconstruction, particularly for non-uniform detector geometry
- Distance-weighted GNNs: GarNet/GravNet
 - much lower computational cost than DGCNN
 - GarNet: lightweight, can be <u>implemented on</u> <u>FPGA</u> for e.g., event triggering

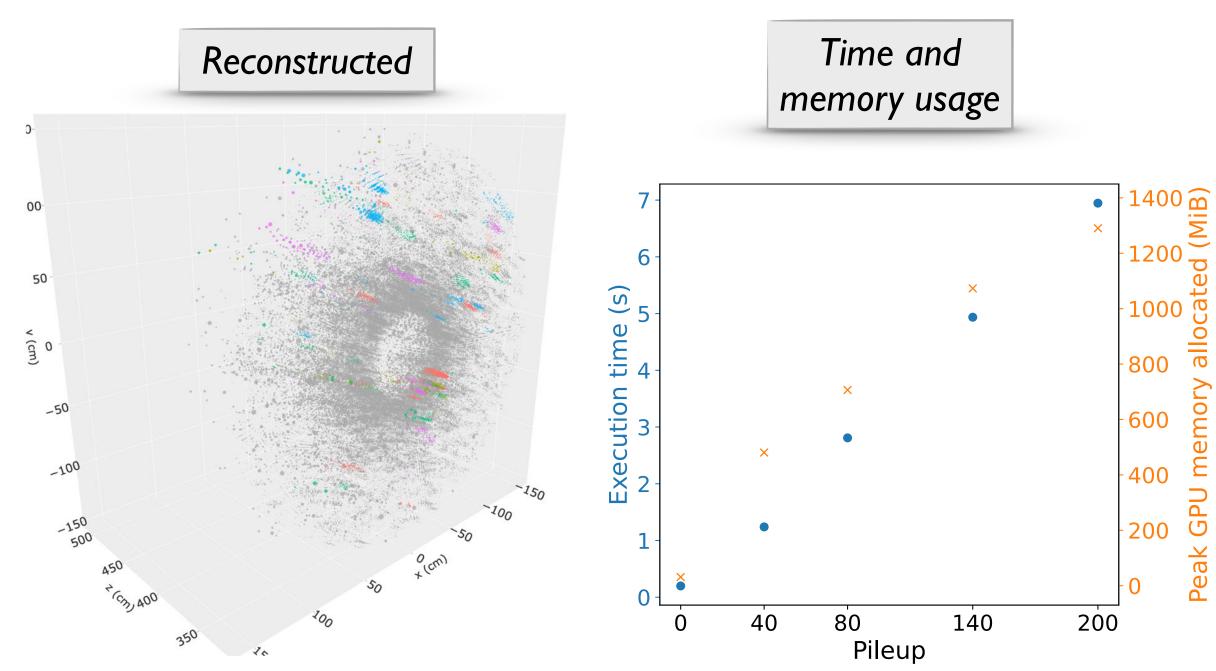


S. R. Qasim, J. Kieseler, Y. liyama and M. Pierini [arXiv:1902.07987]; J. Kieseler [arXiv:2002.03605]; S. R. Qasim et. al., [arXiv:2204.01681]

Community Detection

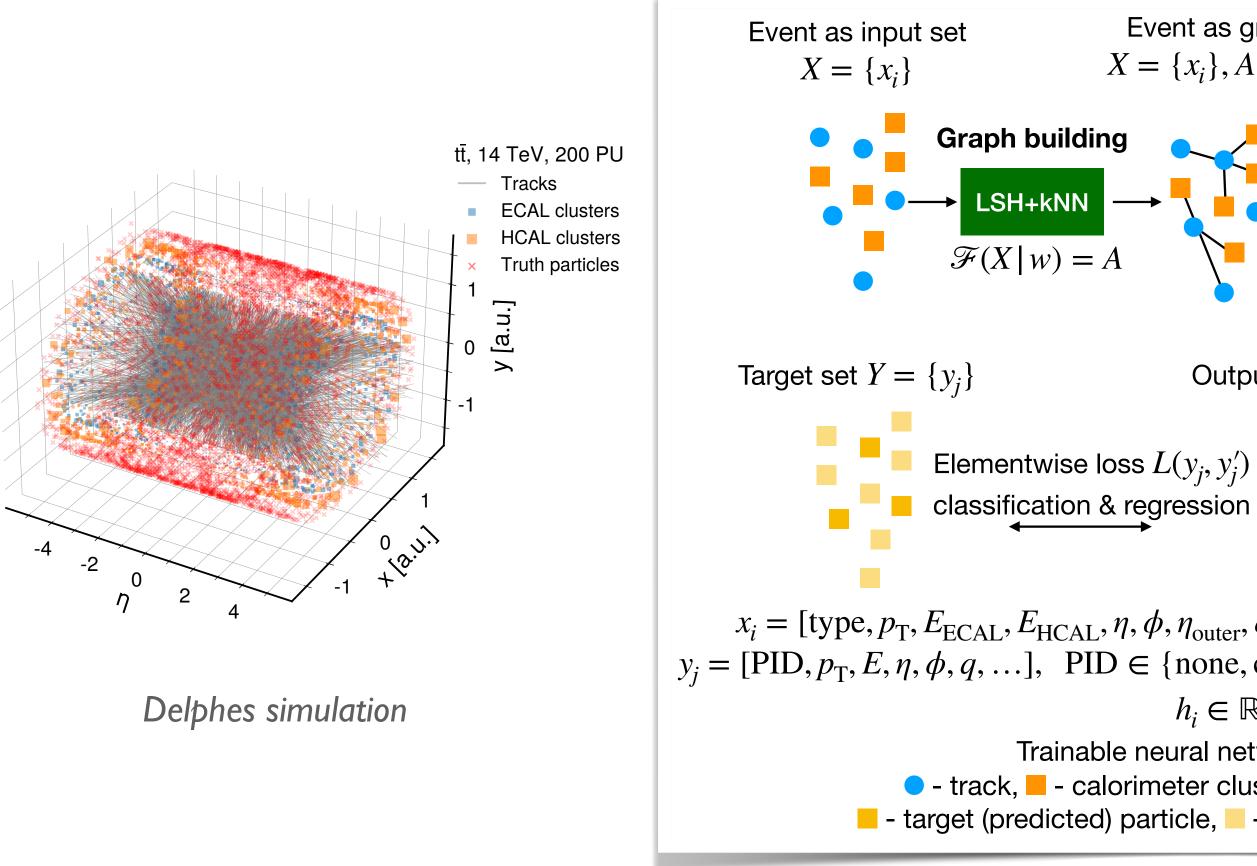
Object condensation: one-stage multi-object reconstruction

- simultaneously predict the number of showers and their properties
- in addition: cluster hits belonging to shower in a clustering space by using attractive/repulsive potentials in the loss



GNNS FOR PARTICLE FLOW

- Use GNNs to directly perform end-to-end particle flow reconstruction
 - comparable/better performance than rule-based PF on Delphes dataset
 - runtime scales linearly with input size, no quartic explosion



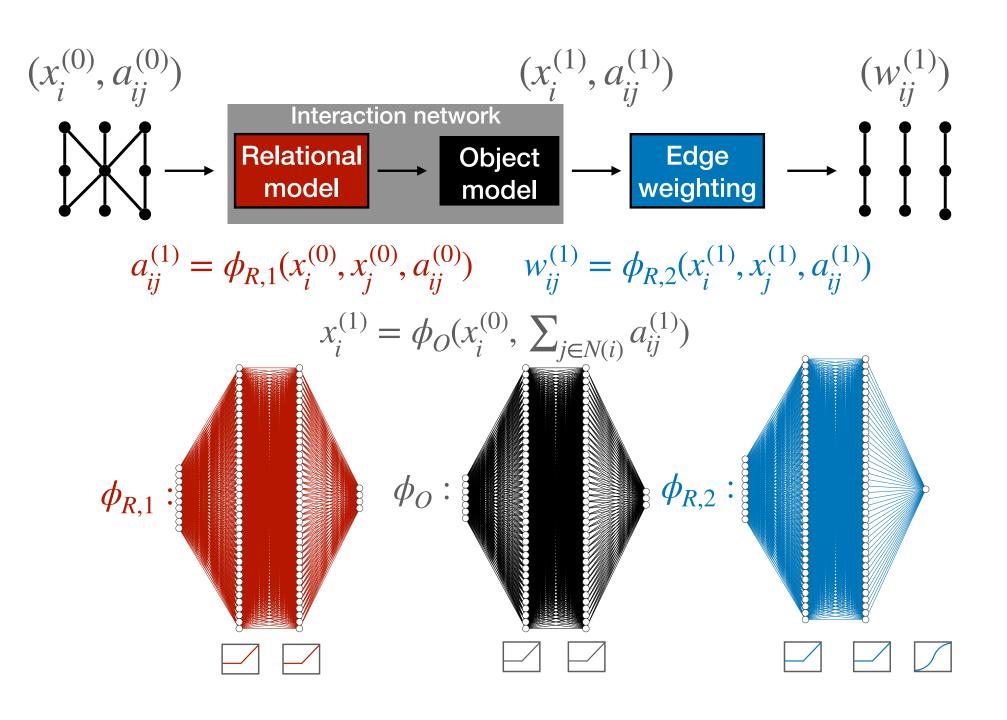
Node Classification J. Pata, J. Duarte, J. R. Vlimant, M. Pierini and M. Spiropulu [arXiv: 2101.08578] Resolution Particles QCD, 14 TeV, PU200 Charged hadrons Rule-based PF $\mu = -0.01, \sigma = 0.21$ Event as graph Transformed inputs MLPF $\mu = 0.03, \sigma = 0.14$ $X = \{x_i\}, A = A_{ii}$ $H = \{h_i\}$ 106 Message passing GCN 10^{4} $\mathcal{G}(X, A \mid w) = H$ 104 p_T resolution, $(p_T^{'} - p_T)/p_T$ Output set $Y' = \{y'_i\}$ Decoding Inference time elementwise event [ms] 100 FFN tt, 14 TeV $\mathscr{D}(x_i, h_i | w) = y'_i$ 40 PU 80 PU 200 PU runtime $x_i = [\text{type}, p_T, E_{\text{ECAL}}, E_{\text{HCAL}}, \eta, \phi, \eta_{\text{outer}}, \phi_{\text{outer}}, q, \dots], \text{ type} \in \{\text{track, cluster}\}$ MLPF scaling $y_i = [\text{PID}, p_T, E, \eta, \phi, q, \ldots], \text{ PID} \in \{\text{none, charged hadron, neutral hadron, } \gamma, e^{\pm}, \mu^{\pm}\}$ 60 Average $h_i \in \mathbb{R}^{256}$ 40 Trainable neural networks: $\mathcal{F}, \mathcal{G}, \mathcal{D}$ - track, - calorimeter cluster, - encoded element - target (predicted) particle, - no target (predicted) particle 5000 7500 10000 12500 15000 2500

Average event size [elements]

GNNS FOR TRACKING

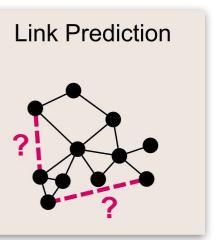
Charged particle tracking as an edge prediction task within the GNN framework

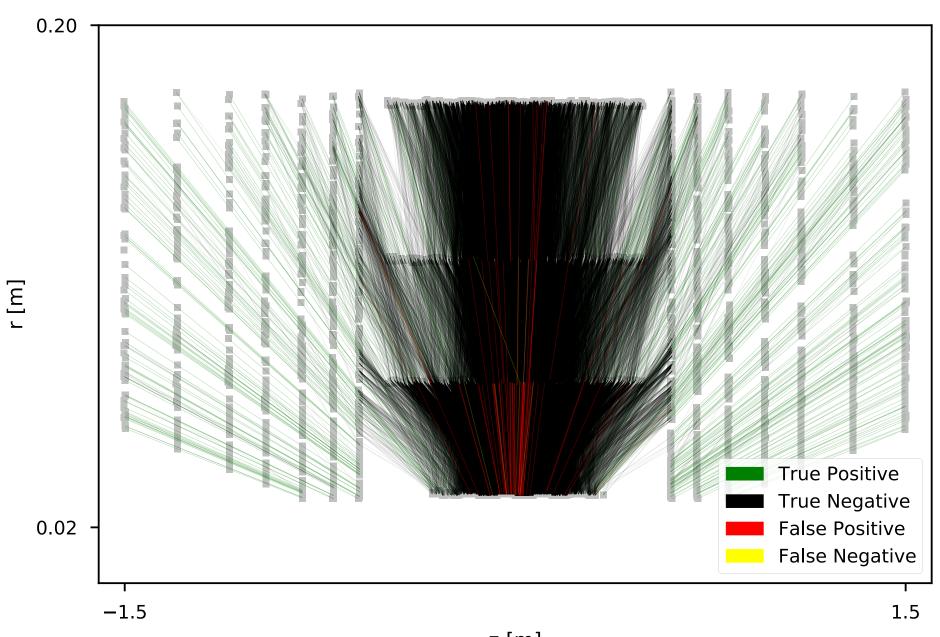
- each hit is a node of the graph
- edges constructed between pairs of hits with geometrically plausible relations
- classify whether each edge connects hits belonging to the same track or not



See also: S. Farrell et al. [1810.06111]; X. Ju et al. [2003.11603]; C. Biscarat, S. Caillou, C. Rougier, J. Stark and J. Zahreddine [2103.00916]; X. Ju et al. [2103.06995]; etc.

G. DeZoort et al. arXiv:2103.16701





z [m]

SUMMARY & OUTLOOK

Graph neural networks: a powerful and flexible framework with increasing adoption in HEP

- state-of-the-art performance in jet tagging, particle identification, event classification, ...
- active R&D for event reconstruction, particle flow, tracking, ...
- moreover: generative models (e.g., for fast simulation), representation learning (e.g., for anomaly detection), ...

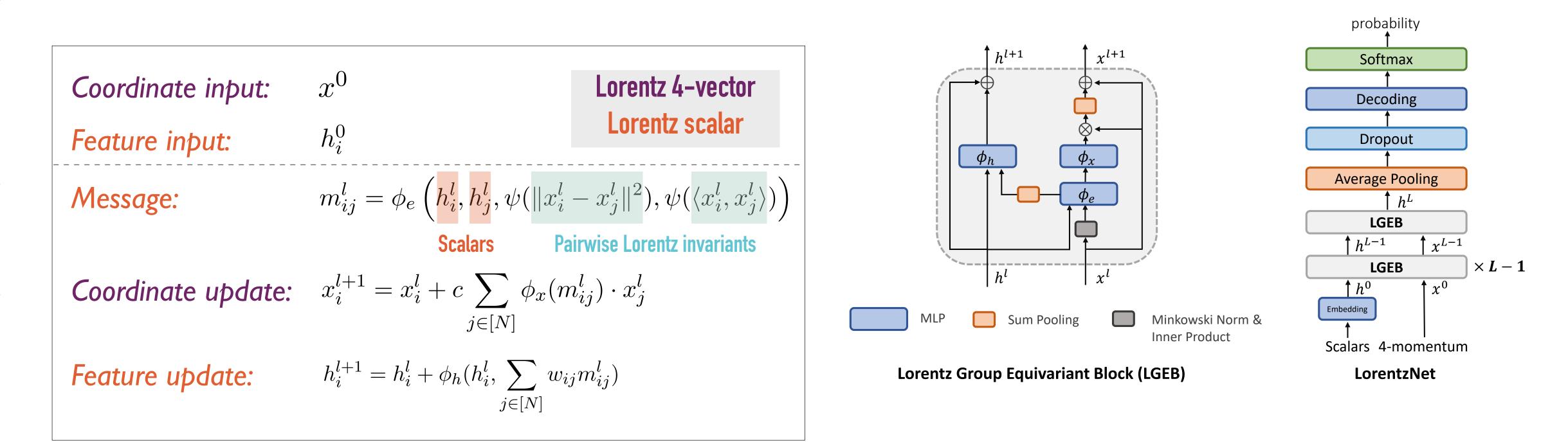
Outlook

- more powerful architectures => better performance
- more effective incorporation of physics knowledge => better robustness
- improving computational efficiency (latency/throughput/memory/etc.)
- and eventually:
 - increased sensitivity to new physics at various frontiers!

BACKUPS

LORENTZNET

Incorporating Lorentz symmetry into graph neural network architecture



S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian, W. Du, Z. M. Ma and T.Y. Liu, arXiv: 2201.08187

cf. A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller and R. Kondor, <u>arXiv: 2006.04780</u>

