
Graph Neural Networks  
for Particle Physics

Huilin Qu (CERN)

IAS Program on High Energy Physics (HEP 2023)

February 12, 2023

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

MOTIVATION

2

×

MLHEP

First and foremost:
How to represent the data?

Collision events, hadronic jets, tracker/calorimeter hits,…

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

DATA REPRESENTATION: IMAGE

3

Image

Image-Based Jet Analysis 3

the detector measurements directly, rather than relying on jet features de-
veloped using physics domain knowledge, additional discrimination power
could be extracted. Deep learning approaches surpass such linear meth-
ods, but build on this notion of learning discriminating information from
detector observables rather than engineered features.

Fig. 1.: An example jet image of a Lorentz boosted top quark jet after
preprocessing has been applied [10].

While designed to take advantage of advances in computer vision, jet im-
ages have notable di↵erences with respect to typical natural images in CV.
Jet images are sparse, with most pixels in the image having zero content.
This is markedly di↵erent from natural images that tend to have all pixels
containing content. Moreover, jet images tend to have multiple localized
regions of high density in addition to di↵usely located pixels throughout
the image, as opposed to the smooth structures typically found in natural
images. An example top quark jet image illustrating these features can
be seen in Figure 1. These di↵erences can lead to notable challenges, for
instance the number of parameters used in jet image models (and conse-
quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The

Convert to 2D/3D image => Computer vision

then use convolutional neural networks (CNNs)

but:

inhomogeneous geometry, high sparsity, …

e.g., review in Kagan, arXiv:2012.09719

HEP

Collision events, hadronic jets, tracker/calorimeter hits,…

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

DATA REPRESENTATION: SEQUENCE

4

Sequence

S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633

Convert to a sequence => Natural language processing (NLP)

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.

but:

must impose an ordering on the particles/hits, which can limit the learning performance

HEP

Collision events, hadronic jets, tracker/calorimeter hits,…

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

DATA REPRESENTATION: POINT CLOUD

5

Point cloud

HEP data as a point cloud

each particle / hit / cell is a point in the cloud

for each point: (spatial) coordinates + any additional properties (energy/momentum, detector response, …)

key feature: permutation invariance

HEP

Collision events, hadronic jets, tracker/calorimeter hits,… An unordered set of points in space  
(e.g., produced by a LiDAR on self-driving cars)

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

LEARNING ON POINT CLOUDS

6

Point cloud

HEP data as a point cloud

each particle / hit / cell is a point in the cloud

for each point: (spatial) coordinates + any additional properties (energy/momentum, detector response, …)

key feature: permutation invariance

HEP

Collision events, hadronic jets, tracker/calorimeter hits,… An unordered set of points in space  
(e.g., produced by a LiDAR on self-driving cars)

Graph Neural Networks in Particle Physics 8

In practice the �e, �v, and �u are often implemented as a simple trainable neural

network, e.g. a fully connected network. The ⇢e!v, ⇢e!u, and ⇢v!u functions are

typically implemented as permutation invariant reduction operators, such as element-

wise sums, means, or maximums. The ⇢ functions must be permutation invariant if the

GN block is to maintain permutation equivariance.

(a)

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

GN1
<latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit>

GN2
<latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit>

GNM
<latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit>

. . .
<latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit>G1

<latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GNcore
<latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit>

�M
<latexit sha1_base64="xCEPSgjeJaAOppNxwTZXrwRukIg=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYGMjRDAfkBxhb7OXLNnbu+zOCeHIn7CxUMTWv2Pnv3GTXKGJDwYe780wMy9IpDDout9OYW19Y3OruF3a2d3bPygfHjVNnGrGGyyWsW4H1HApFG+gQMnbieY0CiRvBaPbmd964tqIWD3iJOF+RAdKhIJRtFK7iyLihtz3yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVRRu8bP5vdOyZlV+iSMtS2FZK7+nshoZMwkCmxnRHFolr2Z+J/XSTG89jOhkhS5YotFYSoJxmT2POkLzRnKiSWUaWFvJWxINWVoIyrZELzll1dJ86LquVXv4bJSu8njKMIJnMI5eHAFNbiDOjSAgYRneIU3Z+y8OO/Ox6K14OQzx/AHzucPqJqPrw==</latexit><latexit sha1_base64="xCEPSgjeJaAOppNxwTZXrwRukIg=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYGMjRDAfkBxhb7OXLNnbu+zOCeHIn7CxUMTWv2Pnv3GTXKGJDwYe780wMy9IpDDout9OYW19Y3OruF3a2d3bPygfHjVNnGrGGyyWsW4H1HApFG+gQMnbieY0CiRvBaPbmd964tqIWD3iJOF+RAdKhIJRtFK7iyLihtz3yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVRRu8bP5vdOyZlV+iSMtS2FZK7+nshoZMwkCmxnRHFolr2Z+J/XSTG89jOhkhS5YotFYSoJxmT2POkLzRnKiSWUaWFvJWxINWVoIyrZELzll1dJ86LquVXv4bJSu8njKMIJnMI5eHAFNbiDOjSAgYRneIU3Z+y8OO/Ox6K14OQzx/AHzucPqJqPrw==</latexit><latexit sha1_base64="xCEPSgjeJaAOppNxwTZXrwRukIg=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYGMjRDAfkBxhb7OXLNnbu+zOCeHIn7CxUMTWv2Pnv3GTXKGJDwYe780wMy9IpDDout9OYW19Y3OruF3a2d3bPygfHjVNnGrGGyyWsW4H1HApFG+gQMnbieY0CiRvBaPbmd964tqIWD3iJOF+RAdKhIJRtFK7iyLihtz3yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVRRu8bP5vdOyZlV+iSMtS2FZK7+nshoZMwkCmxnRHFolr2Z+J/XSTG89jOhkhS5YotFYSoJxmT2POkLzRnKiSWUaWFvJWxINWVoIyrZELzll1dJ86LquVXv4bJSu8njKMIJnMI5eHAFNbiDOjSAgYRneIU3Z+y8OO/Ox6K14OQzx/AHzucPqJqPrw==</latexit><latexit sha1_base64="xCEPSgjeJaAOppNxwTZXrwRukIg=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYGMjRDAfkBxhb7OXLNnbu+zOCeHIn7CxUMTWv2Pnv3GTXKGJDwYe780wMy9IpDDout9OYW19Y3OruF3a2d3bPygfHjVNnGrGGyyWsW4H1HApFG+gQMnbieY0CiRvBaPbmd964tqIWD3iJOF+RAdKhIJRtFK7iyLihtz3yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVRRu8bP5vdOyZlV+iSMtS2FZK7+nshoZMwkCmxnRHFolr2Z+J/XSTG89jOhkhS5YotFYSoJxmT2POkLzRnKiSWUaWFvJWxINWVoIyrZELzll1dJ86LquVXv4bJSu8njKMIJnMI5eHAFNbiDOjSAgYRneIU3Z+y8OO/Ox6K14OQzx/AHzucPqJqPrw==</latexit>

Unshared, deep GN stack

Shared, recurrent GN stack

(b)

Figure 4. (a) A GN block (from [13]). An input graph, G = (u, V, E), is processed
and a graph with the same edge structure but di↵erent attributes, G

0 = (u0
, V

0
, E

0),
is returned as output. The component functions are described in Equation 1. (b) GN
blocks can be composed into more complex computational architectures. The top row
shows a sequence of di↵erent GN blocks arranged in series, or depth-wise, fashion. The
bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

Some key benefits of GNs are that they are generic: if a problem can be expressed

as requiring a graph to be mapped to another graph or some summary output, GNs

are often suitable. They also tend to generalize well to graphs not experienced during

training, because the learning is focused on the edge- and node-level—in fact if the global

block is omitted, the GN is not even aware of the full graph in any of its computations,

as the edge and node blocks take only their respective localities as input. Yet when

multiple GN blocks are arranged in deep or recurrent configurations, as in Figure 4b,

information can be processed and propagated across the graph’s structure, to allow more

Graph neural network - A unified framework

Review in Shlomi, Battaglia, Vlimant, arXiv:2007.13681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

CONSTRUCTING THE GRAPH
From point clouds to graphs:

points (particles/hits/cells) naturally become the nodes of the graph

but how to define the edges?

7

Set: no edges
Hierarchical trees:
- decay chain
- jet clustering history

Graph Neural Networks in Particle Physics 17

Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10)) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.

Fully connected graph
- i.e., connect each node

to all other nodes

Locally connected graph
- i.e., connect each node

only to neighbor nodes
- k-nearest neighbors
- fixed radius

Graph Neural Networks in Particle Physics 17

Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10)) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.

static

Graph Neural Networks in Particle Physics 17

Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10)) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.

(dynamically) learned

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

CONSTRUCTING THE GRAPH
From point clouds to graphs:

points (particles/hits/cells) naturally become the nodes of the graph

but how to define the edges?

Why we need the edges?

edges <==> interactions

edges control information flows in the graph

input edge features can encode inter-relationship between nodes and can incorporate physics motivated variables
(e.g., ΔR between particles, invariant mass of the particle pair, etc.)

latent edge features store learned relational information — crucial for the ML task

8

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GRAPH NETWORK FORMALISM
Typical GNN architectures can be described in the “Message Passing” framework

9

GRAPH NETWORKS*

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

*One type of GNN

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph:

Edges (links)Vertices (nodes)
1

2

3

v1
v2

v3

e1

e2

Shlomi, Battaglia, Vlimant, arXiv:2007.13681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GRAPH NETWORK FORMALISM
Typical GNN architectures can be described in the “Message Passing” framework

10

GRAPH NETWORKS*

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

One type of GNNGRAPH NETWORKS

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and
previous features
v′ i

*One type of GNN

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph:

Edges (links)Vertices (nodes)
1

2

3

v1
v2

v3

e1

e2

Shlomi, Battaglia, Vlimant, arXiv:2007.13681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GRAPH NETWORK FORMALISM
Typical GNN architectures can be described in the “Message Passing” framework

11

GRAPH NETWORKS*

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

One type of GNNGRAPH NETWORKS

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and
previous features
v′ i

One type of GNNGRAPH NETWORKS

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and
previous features
v′ i

: global feature update based on aggregated, updated
node and edge features
u′

*One type of GNN

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph:

Edges (links)Vertices (nodes)
1

2

3

v1
v2

v3

e1

e2

Shlomi, Battaglia, Vlimant, arXiv:2007.13681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GRAPH NETWORK FORMALISM
Typical GNN architectures can be described in the “Message Passing” framework

12

GRAPH NETWORKS*

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

One type of GNNGRAPH NETWORKS

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and
previous features
v′ i

One type of GNNGRAPH NETWORKS

▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261]

▸ Graph is a triplet of global features, node features, and edge features:
with “receivers” and “senders” (graph connectivity)

▸ GN is a graph-to-graph function approximator
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′)
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′)

: message computed for edge connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and
previous features
v′ i

: global feature update based on aggregated, updated
node and edge features
u′

*One type of GNN

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph Neural Networks in Particle Physics 7

(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.

Graph:

Edges (links)Vertices (nodes)
1

2

3

v1
v2

v3

e1

e2

Shared-weight NN Symmetric functions (e.g., sum, mean, max, etc.) Permutation invariance

Shlomi, Battaglia, Vlimant, arXiv:2007.13681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GRAPH ML TASKS

13
https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

(Graph clustering)

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GNNS FOR JET TAGGING: PARTICLENET
ParticleNet: jet tagging via particle clouds

treating a jet as an unordered set of particles, distributed in the η — φ space

graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829]

treating a point cloud as a graph: each point is a vertex

for each point, a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj)

aggregate the edge features in a symmetric way: xi’ = eijmeanj

14

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

ParticleNet architecture

HQ and L. Gouskos
[arXiv: 1902.08570]

https://arxiv.org/abs/1902.08570

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

PARTICLENET IN ACTION: H→CC SEARCH

15

0 0.2 0.4 0.6 0.8 1
Signal efficiency

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

 (13 TeV)

CMS
Simulation

 R = 1.5 jetsTanti-k
| < 2.4η > 300 GeV, |

T
p

DeepAK15
ParticleNet

bb→ vs. Hcc→H
 vs. V+jetscc→H

~5x better  
V+jet rejection

~5x better  
H→bb rejection

0 0.5 1 1.5 2
target / MrecoM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ev
en

t f
ra

ct
io

n

H -> cc (soft drop)
H -> cc (regression)

CMS Simulation Preliminary

 jets T anti-k
 R = 1.5
 > 200 GeV

T
 p

Jet mass response:  
H→cc jets

~50% improvement 
in resolution 60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]
0

200

400

600

800

1000

1200

S/
(S

+B
) W

ei
gh

te
d

Ev
en

ts

 (13 TeV)-1138 fb

CMS
Preliminary

Observed)bb→VH(H

)cc→VZ(Z VV(other)
Single Top tt
W+jets Z+jets

=7.7µ), cc→VH(H B uncertainty

60 80 100 120 140 160 180 200
Higgs candidate mass [GeV]

50−

0

50

100 B subtracted

Merged-jet
All categories
S/(S+B) weighted

Z→cc H→cc

arXiv:2205.05550

First
observation of

Z→cc  
at a hadron

collider!

Most stringent limit on H→cc to date. 
Comparable to previous HL-LHC projection  

but with only 5% of the data.

https://arxiv.org/abs/2205.05550

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

PARTICLENET IN ACTION: BEYOND JETS

16

Particle identification
Eur.Phys.J.Plus 137 (2022) 1, 39
Eur.Phys.J.C 82 (2022) 7, 646

4 Azzi, Gouskos, Selvaggi, Simon: Higgs and top physics challenges

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

b vs g
b vs ud
b vs c

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

c vs g
c vs ud
c vs b

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

s vs g

s vs ud

Fig. 1: Background contamination e�ciency as a function of jet-tagging e�ciency for bottom (left), charm (centre)
and strange (right) quark jets in HZ events at a centre-of-mass energy of 240 GeV in the IDEA detector.

clear challenges in the detector and algorithm design, another big challenge is the calibration of such algorithms with
the required precision in order to achieve relative uncertainty for most of the Higgs coupling measurements better than
1%. The FCC-ee running scenario includes the operation at the Z pole with the goal to collect O(1012) events. This
will provide excellent conditions for the calibration of the jet flavour tagging algorithm with unprecedented precision.

4 Exploitation for precision measurements and opportunities for further development

The physics potential of the techniques outlined above has already been studied for Higgs boson and top quark physics,
primarily in the linear collider context. In the following, we discuss one concrete example, and then highlight areas
where we see significant potential for further developments that address key remaining challenges.

A concrete example for the exploitation of precise jet energy reconstruction in the context of Higgs physics is
the reconstruction of HZ Higgsstrahlung events for hadronic decays of the Z boson. The recoil mass measurements
in the HZ process give model-independent access to the total HZ cross section, and with that to the coupling of the
Higgs boson to the Z, and thus also allow to constrain invisible Higgs boson decays. In principle, the extension from
considering only Z ! µ+µ�, e+e� to the inclusion of hadronic Z boson decays increases the number of HZ signal
events by one order of magnitude. The actual improvement achievable by adding these events depends on the level of
background in the signal region, which in turn is influenced by the accuracy of the recoil mass reconstruction, which
is determined by the jet reconstruction and the beam parameters. Concrete full-simulation studies have been carried
out in the context of CLIC and ILC, using the PandoraPFA algorithm [4,5]. Due to the constrained phase space at
250 GeV close to the threshold of ZH production, there is significant background in the signal region from four-quark
final states that end up being reconstructed near the kinematic limit, resulting in only modest improvements in the
measurement of the ZH cross section on the order of 20% compared to leptonic Z decays only, assuming the CLIC
luminosity spectrum [30]. Nevertheless, Figure 2 (left) demonstrates the capability for a clean reconstruction of the
hadronic Z decays and the associated recoil mass. The technique unfolds its full potential at energies of around 350
GeV, where signal and background are well separated, as shown in Figure 2 (right). Here, an improvement of the cross
section measurement by a factor of 2.3 is achieved in a CLIC study [30,11].

This example demonstrates that the potential for Higgs boson precision measurements profits significantly from
increasing performance of the jet energy resolution, resulting in corresponding requirements on the calorimeter and
tracker imposed by the PF reconstruction. At the same time, it shows that this performance alone does not guarantee
precision, with kinematic boundary conditions and the quality of the association of final state particles to jets also
highly relevant.

In the context of top quark physics, we have already discussed in section 2 with the example of [13] that the
exploitation of kinematic constraints in the event reconstruction can improve quantities such as the reconstructed
invariant mass, and with that can also serve as a means of signal selection. Measurements that use the top quarks as
tools to explore physics beyond the standard model impose further requirements on the overall event reconstruction.
It is crucial to assess the flavour and the correct association of the jets to the final state partons for measuring
asymmetries or searching for CP-violating couplings. Moreover, these will help also increase the sensitivity for the
search for FCNC in the top sector, where the current expectation obtained with a traditional analysis approach is
comparable to that for the HL-LHC [1].

4 Azzi, Gouskos, Selvaggi, Simon: Higgs and top physics challenges

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

b vs g
b vs ud
b vs c

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

c vs g
c vs ud
c vs b

0 0.2 0.4 0.6 0.8 1
(SIG)ε

3−10

2−10

1−10

1

(B
KG

)
ε

s vs g

s vs ud

Fig. 1: Background contamination e�ciency as a function of jet-tagging e�ciency for bottom (left), charm (centre)
and strange (right) quark jets in HZ events at a centre-of-mass energy of 240 GeV in the IDEA detector.

clear challenges in the detector and algorithm design, another big challenge is the calibration of such algorithms with
the required precision in order to achieve relative uncertainty for most of the Higgs coupling measurements better than
1%. The FCC-ee running scenario includes the operation at the Z pole with the goal to collect O(1012) events. This
will provide excellent conditions for the calibration of the jet flavour tagging algorithm with unprecedented precision.

4 Exploitation for precision measurements and opportunities for further development

The physics potential of the techniques outlined above has already been studied for Higgs boson and top quark physics,
primarily in the linear collider context. In the following, we discuss one concrete example, and then highlight areas
where we see significant potential for further developments that address key remaining challenges.

A concrete example for the exploitation of precise jet energy reconstruction in the context of Higgs physics is
the reconstruction of HZ Higgsstrahlung events for hadronic decays of the Z boson. The recoil mass measurements
in the HZ process give model-independent access to the total HZ cross section, and with that to the coupling of the
Higgs boson to the Z, and thus also allow to constrain invisible Higgs boson decays. In principle, the extension from
considering only Z ! µ+µ�, e+e� to the inclusion of hadronic Z boson decays increases the number of HZ signal
events by one order of magnitude. The actual improvement achievable by adding these events depends on the level of
background in the signal region, which in turn is influenced by the accuracy of the recoil mass reconstruction, which
is determined by the jet reconstruction and the beam parameters. Concrete full-simulation studies have been carried
out in the context of CLIC and ILC, using the PandoraPFA algorithm [4,5]. Due to the constrained phase space at
250 GeV close to the threshold of ZH production, there is significant background in the signal region from four-quark
final states that end up being reconstructed near the kinematic limit, resulting in only modest improvements in the
measurement of the ZH cross section on the order of 20% compared to leptonic Z decays only, assuming the CLIC
luminosity spectrum [30]. Nevertheless, Figure 2 (left) demonstrates the capability for a clean reconstruction of the
hadronic Z decays and the associated recoil mass. The technique unfolds its full potential at energies of around 350
GeV, where signal and background are well separated, as shown in Figure 2 (right). Here, an improvement of the cross
section measurement by a factor of 2.3 is achieved in a CLIC study [30,11].

This example demonstrates that the potential for Higgs boson precision measurements profits significantly from
increasing performance of the jet energy resolution, resulting in corresponding requirements on the calorimeter and
tracker imposed by the PF reconstruction. At the same time, it shows that this performance alone does not guarantee
precision, with kinematic boundary conditions and the quality of the association of final state particles to jets also
highly relevant.

In the context of top quark physics, we have already discussed in section 2 with the example of [13] that the
exploitation of kinematic constraints in the event reconstruction can improve quantities such as the reconstructed
invariant mass, and with that can also serve as a means of signal selection. Measurements that use the top quarks as
tools to explore physics beyond the standard model impose further requirements on the overall event reconstruction.
It is crucial to assess the flavour and the correct association of the jets to the final state partons for measuring
asymmetries or searching for CP-violating couplings. Moreover, these will help also increase the sensitivity for the
search for FCNC in the top sector, where the current expectation obtained with a traditional analysis approach is
comparable to that for the HL-LHC [1].

Muon bundle reconstruction
JINST 16 (2021) 10, C10011,  
PoS ICRC2021 (2021) 1048

PoS(ICRC2021)1048

Muon bundle reconstruction with KM3NeT/ORCA using GNNs Stefan Reck

(a) all events (b) events with two or more muons

Figure 1: Absolute di�erence between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).

Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in
this plot.

4

PoS(ICRC2021)1048

Muon bundle reconstruction with KM3NeT/ORCA using GNNs Stefan Reck

(a) all events (b) events with two or more muons

Figure 1: Absolute di�erence between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).

Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in
this plot.

4

100 MeV

Photo-nuclear background rejection
Work in progress

 measurement
Yunxuan Song, Yangu Li et al., BAM-00632

Λ+
c → ne+ν

https://doi.org/10.1140/epjp/s13360-021-02223-z
https://doi.org/10.1140/epjc/s10052-022-10609-1
https://doi.org/10.1088/1748-0221/16/10/C10011
https://doi.org/10.22323/1.395.1048

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

BEYOND PARTICLENET

17

LundNet LorentzNet Particle Transformer

J
H
E
P
0
3
(
2
0
2
1
)
0
5
2

Lund coordinates

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Lund tree

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Concatenate

Linear (384) + BN + ReLU

ReLU

features

Lund tree feature pairs

Linear (C1) + BN + ReLU

Aggregation

Linear (C2) + BN + ReLU

(a)

(b) (c)

edge features

Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and

– 5 –

J
H
E
P
0
3
(
2
0
2
1
)
0
5
2

 2

 5

 20

 10

 1 10 100

anti kt R=1 jets, pt>2 TeV, εW=0.7
signal: pp­>WW, background: pp­>jj

Pythia 8.223 simulation

ln kt cuts: �, ­2, ­1.5, ­1, ­0.5, 0, 0.5, 1, 1.5, 2

pe
rf
or
m
an
ce

resilience to non­perturbative effects

LundNet­3
LundNet­5

RecNN (LCBC '17)
Lund+LSTM (DSS '18)
ParticleNet (QG '19)

performance v. resilience

Figure 8. Performance εW√
εQCD

versus resilience to non-perturbative effects.

5.1 Non-perturbative effects

Beyond its raw performance, it is important for practical applications that a tagger be
relatively robust to model-dependent non-perturbative effects. To carry out studies of
sensitivity to non-perturbative effects, we compare performance between a data sample of
both 50k signal and background jets produced at parton level, and a sample obtained with
hadronisation and underlying event models turned on in the event generator. The same
model, trained on hadron-level data, is evaluated on both samples for the comparison. For
this study, we use the same 2TeV W jet sample as was used in section 4.1 as well as the
corresponding models shown in figure 5, which are now used to label jets from both parton
and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This
robustness is measured through the resilience ζNP [59], calculated using both the efficiency

– 12 –

increasing kt => better resilience

Be
tte

r
pe

rfo
rm

an
ce

Better resilience to non-pert. effects

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

ISR
(large

�
)

M
PI/UE non-pert. (small kt)

ln(1/�)

ln
(k

t/
G
eV
)

GNN +  
Lund jet plane

(jet tree)

F. Dreyer & HQ 
 JHEP (2021)

S. Gong, Q. Meng, J. Zhang, HQ, C. Li, S. Qian et. al. 
JHEP (2022)

HQ, C. Li and S. Qian 
ICML 2022

݄௅ିଵ

݄଴

௅ିଵݔ

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

ٔ

߶௫

߶௘

߶௛

݄௟ ௟ݔ

݄௟ାଵ ௟ାଵݔ

ْ ْ

݄௅

Scalars 4-momentum

LorentzNet

ൈ ࡸ െ ૚

Embedding

LGEB

଴ݔ
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

3 Network Architecture

In this section, we illustrate the architecture of LorentzNet. The construction of the
LorentzNet is based on the following universal approximation theorem for the Lorentz
group equivariant continuous function.

Proposition 3.1. [55] A continuous function � : (RN⇥4) ! R4 is Lorentz-equivariant if
and only if

�(x1, x2, · · · , xN) =
NX

i=1

gi(hxi, xjiNi,j=1)xi, (3.1)

where gi are continuous Lorentz-invariant scalar functions, and h·, ·i is the Minkowski inner
product.

Proposition 3.1 provides a way to construct Lorentz group equivariant mapping with
no need to calculate the high-order tensors. Instead, a Lorentz group equivariant continu-
ous mapping can be constructed by the attention on xi with encoding the Minkovski dot
products of xi with its neighbours. This motivates us to design the Minkowski dot product
attention in LorentzNet, which will be introduced in the next section.

3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,

– 5 –

fine-grained signal efficiency. The ROC curves of LorentzNet achieve the highest score at
all the selected signal efficiency compared to the baselines. Especially, LorentzNet shows
superiority compared to the LGN. Especially, it achieves 4 or 5 times improvement on the
background rejection. The results verify our discussions in Section 3.2.

Training
Fraction

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

0.5%
ParticleNet 0.913 0.9687 77± 4 199± 14

LorentzNet 0.929 0.9793 176± 14 562± 72

1%
ParticleNet 0.919 0.9734 103± 5 287± 19

LorentzNet 0.932 0.9812 209± 5 697± 58

5%
ParticleNet 0.931 0.9807 195± 4 609± 35

LorentzNet 0.937 0.9839 293± 12 1108± 84

Table 3. Performance comparison between LorentzNet and ParticleNet on top tagging dataset by
a fraction of training data. The results are all averaged on 6 runs.

4.3 Sample Efficiency

The benefit of the preservation of Lorentz group symmetry in jet tagging has not been
studied in literature. In theory, the Lorentz group symmetry injects inductive bias into
the deep learning model which restricts the function class of the hypothesis space. The
inductive bias can help to boost the generalization and improve the sample efficiency. As
the improvement on the generalization performance (i.e., the tagging accuracy) has been
shown in the previous section, we show the robustness of LorentzNet trained on smaller
training data to verify the sample efficiency of LorentzNet in this part.

We choose the best performed architecture among the models with and without fully
Lorentz group symmetry (i.e., the LorentzNet and the ParticleNet) to compare. The induc-
tive bias in ParticleNet is a subgroup symmetry of Lorentz group, which only consider the
Lorentz boosts in the z-axis and the rotation on the x� y plane, while LorentzNet is sym-
metric to Lorentz group. We random select 5%, 1%, and 0.5% fraction of training data to
train the LorentzNet and ParticleNet on top tagging dataset, and we test the performance
of them on the same test data with size 400k. The training strategy keeps the same with
the experiments on the full training data. The results are reported in Table 3. The gap of
the tagging accuracy and AUC between LorentzNet and ParticleNet becomes larger as the
number of the training data becomes smaller. The results clearly show the benefit of the
preservation of Lorentz group symmetry in jet tagging.

4.4 Equivariance test

Another advantage of symmetry-preserving deep learning models is their robustness under
Lorentz transformation. To verify it, we rotate the test data by Lorentz transformation
with different scales of � along the x axis, i.e., the value of (E, px) in the 4-momentum
vector will be rotated. As � becomes larger, the difference between the distributions of
training and test data will become larger. We test the model trained on the original

– 11 –

GNN +  
Lorentz

symmetry

Symmetry preservation greatly
improves the generalization power.

New state-of-the-art. 
Significantly outperforms ParticleNet.

Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

U

(a) Particle Transformer

xL−1 xL

xl−1
x

U

U

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

U

(a) Particle Transformer

xL−1 xL

xl−1
x

U

U

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

U

(a) Particle Transformer

xL−1 xL

xl−1
x

U

U

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

Transformer +  
Physics-enhanced  

self-attention

https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP07(2022)030
https://proceedings.mlr.press/v162/qu22b

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GNNS FOR RECONSTRUCTION
GNNs also powerful tools for event reconstruction, particularly for non-uniform detector geometry

18

Object condensation: one-stage multi-object reconstruction

simultaneously predict the number of showers and their properties

in addition: cluster hits belonging to shower in a clustering space
by using attractive/repulsive potentials in the loss

Distance-weighted GNNs: GarNet/GravNet

much lower computational cost than DGCNN

GarNet: lightweight, can be implemented on
FPGA for e.g., event triggering

753 Page 10 of 15 Eur. Phys. J. C (2022) 82 :753

Fig. 9 True versus predicted cluster examples in 200 pileup. In the top
two figures, a single particle is shot into the calorimeter, where the left
and right figures show the true and the corresponding matched predicted
cluster, respectively. The bottom row shows particles originating from

qq → t t collision in colors while the grey is 200 pileup. The predicted
clusters (right) are matched to the true clusters (left). Jet reconstruction
performance is studied on these true and matched clusters while the
pileup is ignored

ers, the tendency to oversplit is inherent to the nature of
hadrons which is why the hadronic efficiency drops also at
high pT when pileup is added. Therefore, to study the over-
splits, we use energy-weighted intersection over minimum
(EIOM), defined below:

EIOM(t, p) =
∑

h∈(Ht∩Hp)
eh

min(
∑

h∈Ht
eh,

∑
h∈Hp

eh)
.

Unmatched showers are all the predicted clusters with
EIOM > 0.9 with the truth-level probe particle but with
EIOU less than 0.5 and these are shown in Fig. 12. The
unmatched rate decreases steeply with the predicted pT . This
indicates that low pT clusters are split off from higher-pT
showers while most of the energy is reconstructed properly.
We note, that by adding tracking information and employ-
ing a suitable particle flow algorithm, these splits could be
re-merged, increasing the efficiency. In addition to oversplit-

123

Eur. Phys. J. C (2022) 82 :753 Page 9 of 15 753

Fig. 8 Compute specifications of our model as a function of the amount
of pileup to run inference with one event. The left axis (blue) shows
average execution time, and the right (orange) shows the average peak
memory allocated on the GPU

In Fig. 8, we show inference time and peak GPU mem-
ory required for single particle in different pileup conditions.
The inference times are evaluated on a Nvidia V100 GPU.
For single-particle events, inference takes about 200 ms. The
inference time increases to 1.2 s or 7 s for 40 and 200 pileup,
respectively. We expect an additional significant improve-
ment of the overall inference time using edge-contraction
methods to reduce the cardinality of the hits. These refine-
ments will be considered in future work. These values should
be compared to O(1000) s taken by currently adopted algo-
rithms running on CPU, when scaled up to a 200 pileup envi-
ronment.

Inference in 40 and 200 pileup allocates an average of
only 500 MiB and 1300 MiB, respectively, on the GPU. This
opens up the possibility that our method can be deployed
on machines with less powerful GPUs with smaller VRAM.
Note that a larger GPU is required for the training stage as
memory can’t be freed up after executing a neural network
layer for backpropagation-related computations.

Here, the final inference algorithm was adapted to only
consider close-by hits using a binning approach, making its
contribution to the execution time negligible.

8 Physics performance

We evaluate physics performance in several ways by study-
ing the reconstruction performance of the individual particles
and jets. The individual particles, split in electromagnetic
particles (e− and γ) and hadronic particles (π+), are studied
separately as they exhibit different behaviors. Reconstruc-
tion efficiency, energy response, and resolution are studied

in different pileup environments, as well as the rate of recon-
structed clusters that are either split off from the main shower
(unmatched showers). For jets, we investigate the response
and resolution in different pileup environments, assuming
per-particle pileup removal procedures are in place.

The metrics are studied as a function of the pT of the
particles and jets. The neural network is regressing only the
particles’ energy, but for the computation of their pT , we use
energy-weighted mean hit positions to estimate the particles’
direction. For consistency, we also use the same methodology
to compute truth-level pT .

Figure 9 visually shows the predictions of the neural net-
work and compares them to the truth for both individual par-
ticle reconstruction and jet reconstruction.

8.1 Particle reconstruction performance

We begin by studying the performance in 0 pileup. These
events contain only one probe truth particle and some detector
noise. The probe particle is taken from Type B simulations
as discussed in Sect. 4. We then overlay the probe particle
with 40 and 200 pileup interactions to study performance in
a more controlled fashion. While our method reconstructs all
the particles in the event, including all the particles from the
pileup, we only study the reconstruction performance of the
probe particle.

First, we match the probe shower to one of the predicted
showers by applying a hit-based matching procedure that
we already introduced in Ref. [20]. The procedure calculates
energy weighted hit-intersection over hit-union score (EIOU)
of a reconstructed cluster p and a truth shower t̂ . The pre-
dicted shower that results in the highest overlap is taken as
the matched shower (p̂):

p̂ = argmax
p∈P

(EIOU(t̂, p)). (14)

We apply a lower threshold of 0.5 to the EIOU score to study
reconstruction efficiency which is shown in Figs. 10a and
11a for electromagnetic and hadronic particles respectively.

The efficiency rises steeply with the increase in pT in
both electromagnetic and hadronic cases. In 0 pileup, the
efficiency reaches a plateau of almost one at pT > 1 GeV
for electromagnetic particles while it remains slightly lower
for the hadronic particles with pT < 15 GeV. As expected,
because of the dense environment, the performance drops as
the pileup is increased. In 40 pileup, the reconstruction effi-
ciency of the electromagnetic particles deteriorates to around
80% at 1-15 GeV with a significant drop for pT < 1 GeV.
For the hadronic particles the reconstruction efficiency drops
to around 70% at 5-20 GeV.

The efficiency deterioration occurs when the neural net-
work oversplits the showers and these split showers fail to
satisfy the matching criterion. Unlike electromagnetic show-

123

Time and
memory usage

Truth Reconstructed
608 Page 4 of 11 Eur. Phys. J. C (2019) 79 :608

s1

s2

FIN

FLR

S

(a) (b) (c)

di2

di1

dj2

dj1

(e)(d)

vk

v1

v2

v3

v4

f2
i

f3
i

f4
i

d1k

d2k

d3k

d4k

f1
i

fj
i

 ifjk = fj V(djk)
~i

Max(fjk)~i
j

 fjk
~i

j
fk = ~i

FOUT

FIN

FLR

FLR

~

~

Fig. 1 Pictorial representation of the data flow across the GarNet and
the GravNet layers. a The input features FIN of each vi ∈ V are pro-
cessed by a dense neural network with two output arrays: a set of learned
features FLR and spatial information S in some learned representation
space. b In the case of the GravNet layer, the S quantities are inter-
preted as the coordinates of the vertices in some abstract space. The
graph is built in this space, connecting each vi to its N closest neigh-
bors (N = 4 in the figure), using the euclidean distance di j between the
vertices to rank the neighbors. c In the case of the GarNet layer, the
S quantities are interpreted as the distances between the vertices and a
set of S aggregators in some abstract space. The graph is then built con-

necting each vi vertex to each a j aggregator, and the S quantities are the
di j euclidean distances. d Once the graph structure is established, the
f ij features of the v j vertices connected to a given vertex or aggregator

vk are converted into the f̃ ijk quantities, through a potential (function of
d jk). The corresponding information is then gathered across the graph
and turned into a new feature f̃ ik of vk (e.g. summing over the edges, or
taking the maximum). e For each choice of gathering function, a new
set of features f̃ ik ∈ F̃LR is generated. The F̃LR vector is concatenated
to the initial FIN vector. The resulting feature vector is given as input to
a dense neural network with tanh activation, which returns the output
representation FOUT

tors back to the initial vertices, weighted by the V (d jk)

potential. This information exchange of the garnered
information through the aggregators defines the Gar-
Net name.

The full process transforms the initial B × V × FIN data
set into a B × V × FOUT data set. As common with graph
networks, the main advantage comes from the fact that the
FOUT output (unlike the FIN input) carries collective infor-
mation from each vertex and its surrounding, providing a
more informative input to downstream processing. Thanks
to the distinction between learned space information S and
learned features FLR, the dimensionality of connections in
the graph is kept under control, resulting in a smaller mem-
ory consumption than, for instance, the EdgeConv layer.

The two layer architectures and the models based on them,
described in the following sections, are implemented in Ten-
sorFlow [43].5

5 The code for the models and layers can be found in https://github.
com/jkiesele/caloGraphNN.

4 Data set

The data set used in this paper is based on a simplified
calorimeter with irregular geometry, built in GEANT4 [44].
The calorimeter is made entirely of Tungsten, with a width
of 30 cm × 30 cm in the x and y directions and a length of
2 m in the longitudinal direction (z), which corresponds to
20 nuclear interaction lengths. The longitudinal dimension
is further split into 20 layers of equal thickness. Each layer
contains square sensor cells, with a fine segmentation in the
quadrant with x > 0 and y > 0 and a lower granularity else-
where. The total number of cells and their individual sizes
vary by layer, replicating the basic features of a slightly irreg-
ular calorimeter. For more details, see Fig. 2 and Table 1.

Charged pions are generated at z = − 2 m; the x and y
coordinates of the generation vertex are randomly sampled
within |x | < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z component
is sampled uniformly between 10 and 100 GeV. The particles
therefore impinge the calorimeter front face perpendicularly
and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded

123

GarNet/GravNet

S. R. Qasim, J. Kieseler, Y. Iiyama and M. Pierini [arXiv:1902.07987]; J. Kieseler [arXiv:2002.03605]; S. R. Qasim et. al., [arXiv:2204.01681]

https://doi.org/10.3389/fdata.2020.598927
https://doi.org/10.3389/fdata.2020.598927
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2204.01681

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GNNS FOR PARTICLE FLOW
Use GNNs to directly perform end-to-end particle flow reconstruction

comparable/better performance than rule-based PF on Delphes dataset

runtime scales linearly with input size, no quartic explosion

19

4

η

-4
-2

0
2

4

x [
a.u

.]

-1

0

1

y
[a

.u
.]

-1

0

1

tt, 14 TeV, 200 PU
Tracks
ECAL clusters
HCAL clusters
Truth particles

Fig. 1 A simulated tt event from the MLPF dataset with 200 PU interactions. The input tracks are shown in gray, with the trajectory curvature
being defined by the inner and outer h ,f coordinates. Electromagnetic (hadron) calorimeter clusters are shown in blue (orange), with the size
corresponding to cluster energy for visualization purposes. We also show the locations of the generator particles (all types) with red cross markers.
The radii and thus the x,y-coordinates of the tracker, ECAL and HCAL surfaces are arbitrary for visualization purposes.

in the scores and one-hot encoded classes c j, while the mo-
mentum and charge regression values in p j. We use CLS
to denote the multi-classification loss, while REG denotes
the regression loss for the momentum components weighted
appropriately by a coefficient a . This combined per-particle
loss function serves as a baseline optimization target for the
ML training. Further physics improvements may be reached
by extending the loss to take into account event-level quan-
tities, either by using an energy flow distance as proposed in
Ref. [47–49], or using a particle-based [50–53] generative
adversarial network (GAN) [54] to optimize the reconstruc-
tion network in tandem with an adversarial classifier that is
trained to distinguish between the target and reconstructed
events, given the detector inputs.

3.1 Graph neural network implementation

Given the set of detector inputs for the event X = {xi}, we
adopt a message passing approach for reconstructing the PF
candidates Y = {y j}. First, we need to construct a trainable
graph adjacency matrix F (X |w) = A for the given set of in-
put elements, represented with the graph building block in
Fig. 3. The input set is heterogeneous, containing elements
of different type (tracks, ECAL clusters, HCAL clusters) in
different feature spaces. Therefore, defining a static neigh-
borhood graph in the feature space in advance is not straight-
forward. A generic approach to learnable graph construc-
tion using kNN in an embedding space, known as GravNet,
has been proposed in Ref. [37], where the authors demon-
strated that a learnable, dynamically-generated graph struc-
ture significantly improves the physics performance of an
ML-based reconstruction algorithm for calorimeter cluster-

6

LSH+kNN GCN

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

�(X, A |w) = H�(X |w) = A

elementwise
FFN

�(xj, hj |w) = y��j

Output set Y�� = {y��j}

Elementwise loss

classification & regression

L(yj, y��j)

Graph building Message passing

Decoding

Trainable neural networks:

 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, �, �, �outer, �outer, q, …], type � {track, cluster}
yj = [PID, pT, E, �, �, q, …], PID � {none, charged hadron, neutral hadron, �, e±, �±}

hi � �256
�, �, �

Fig. 3 Functional overview of the end-to-end trainable MLPF setup with GNNs. The event is represented as a set of detector elements xi. The
set is transformed into a graph by the graph building step, which is implemented here using an locality sensitive hashing (LSH) approximation of
kNN. The graph nodes are then encoded using a message passing step, implemented using graph convolutional nets. The encoded elements are
decoded to the output feature vectors y j using elementwise feedforward networks.

We have a joint graph building, but separate graph con-
volution and decoding layers for the multi-classification and
the momentum and charge regression subtasks. This allows
each subtask to be retrained separately in addition to a com-
bined end-to-end training should the need arise. The classifi-
cation and regression losses are combined with constant em-
pirical weights such that they have an approximately equal
contribution to the full training loss. We use categorical
cross-entropy for the classification loss, which measures the
similarity between the true label distribution c j and the pre-
dicted labels c

0
j
. For the regression loss, we use componen-

twise mean-squared error between the true and predicted
momenta, where the losses for the individual momentum
components (pT,h ,sinf ,cosf ,E) are scaled by normaliza-
tion factors such that the components have approximately
equal contributions to the total loss. It may be beneficial to
use specific multi-task training strategies such as gradient
surgery [63] to further improve the performance across all

subtasks and to reduce the reliance on ad-hoc scale factors
between the losses in a multi-task setup.

The multi-classification prediction outputs for each node
are converted to particle probabilities with the softmax op-
eration. We choose the PID with the highest probability for
the reconstructed particle candidate, while ensuring that the
probability meets a threshold that matches a fake rate work-
ing point defined by the baseline DELPHES PF reconstruc-
tion algorithm.

The predicted graph structure is an intermediate step in
the model and is not used in the loss function explicitly—
we only optimize the model with respect to reconstruction
quality. However, using the graph structure in the loss func-
tion when a known ground truth is available may further
improve the optimization process. In addition, access to the
predicted graph structure may be helpful in evaluating the
interpretability of the model.

J. Pata, J. Duarte, J. R. Vlimant,  
M. Pierini and M. Spiropulu 

[arXiv: 2101.08578]

Delphes simulation

11

-2 -1 0 1 2
pT resolution, (pT − pT)/pT

102

104

106

108

1010

Pa
rti

cl
es QCD, 14 TeV, PU200

Charged hadrons
Rule-based PF
µ = − 0.01, σ = 0.21
MLPF
µ = 0.03, σ = 0.14

-0.2 -0.1 0.0 0.1 0.2
η resolution, (η − η)/η

102

104

106

108

1010

Pa
rti

cl
es QCD, 14 TeV, PU200

Charged hadrons
Rule-based PF
µ = − 0.00, σ = 0.24
MLPF
µ = 0.00, σ = 0.25

Fig. 9 The pT and h resolution of the DELPHES PF benchmark and the
MLPF model for charged hadrons in simulated QCD multijet events
with PU. The pT resolution is comparable for both algorithms, with
the angular resolution being driven by the smearing of the track (h ,f)
coordinates.

properties of particle reconstruction are learned in a gen-
eralizable way. To evaluate the reconstruction performance,
efficiencies, fake rates, and resolutions for all particle types
need to be studied in detail as a function of particle kine-
matics and detector conditions. Furthermore, high-level de-
rived quantities such as pileup-dependent jet and missing
transverse momentum resolutions must be assessed for a

Fig. 10 The energy and h resolution of the DELPHES PF benchmark
and the MLPF model for neutral hadrons in simulated QCD multijet
events with PU. Both reconstruction algorithms show comparable per-
formance.

more complete characterization of the reconstruction perfor-
mance. With ongoing work in ML-based track and calorime-
ter cluster reconstruction upstream of PF [26, 29, 52, 74–
76] and ML-based reconstruction of high-level objects in-
cluding jets and jet classification probabilities downstream
of PF [33–35, 77–81], care must be taken that the various
steps are optimized and interfaced coherently.

Resolution

12

0 2500 5000 7500 10000 12500 15000
Average event size [elements]

0

20

40

60

80

100

120

Av
er

ag
e

ru
nt

im
e

/ e
ve

nt
 [m

s]

t ̄t, 14 TeV
40 PU
80 PU
200 PU
MLPF scaling

1 2 3 4
Batch size [events]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
in

fe
re

nc
e

tim
e

[a
.u

.]

40 PU
80 PU
200 PU

Fig. 11 Average runtime of the MLPF GNN model with a varying in-
put event size (upper) and the relative inference time when varying
the number of events evaluated simultaneously, i.e. batch size (lower),
normalized to batch size 1. For a simulated event equivalent to 200
PU collisions, we see a runtime of around 50 ms, which scales approx-
imately linearly with respect to the input event size. We see a weak
dependence on batch size, with batching having a minor positive ef-
fect for low-pileup events. The runtime for each event size is averaged
over 100 randomly generated events over three independent runs. The
timing tests were done using an Nvidia RTX 2060S GPU and an Intel
i7-10700@2.9GHz CPU. We assume a linear scaling between PU and
the number of detector elements.

Finally, the MLPF algorithm is inherently parallelizable
and can take advantage of hardware acceleration of GNNs
via graphics processing units (GPUs), field-programmable
gate arrays (FPGAs) or emerging ML-specific processors.
Current experimental software frameworks can easily in-
tegrate coprocessing accelerators as a scalable service. By
harnessing heterogeneous computing and parallelizable, ef-
ficient ML, the burgeoning computing demand for event
reconstruction tasks in the high-luminosity LHC era can

be met while maintaining or even surpassing the current
physics performance.

Acknowledgements We would like to thank Guenther Dissertori for
suggesting the idea of ML-driven PF reconstruction several years ago
in private discussions. We thank our colleagues in the CMS Collabora-
tion, especially in the Particle Flow, Physics Performance and Datasets,
Offline and Computing, and Machine Learning groups, in particu-
lar Josh Bendavid, Kenichi Hatakeyama, Lindsey Gray, Jan Kieseler,
Danilo Piparo, Gregor Kasieczka, Laurits Tani, and Juska Pekkanen,
for helpful feedback in the course of this work.

J. P. was supported by the Prime National Science Foundation
(NSF) Tier2 award 1624356 and the U.S. Department of Energy
(DOE), Office of Science, Office of High Energy Physics under Award
No. DE-SC0011925 while at Caltech, and is currently supported by
the Mobilitas Pluss Grant No. MOBTP187 of the Estonian Research
Council. J. D. is supported by the DOE, Office of Science, Office of
High Energy Physics Early Career Research program under Award No.
DE-SC0021187 and by the DOE, Office of Advanced Scientific Com-
puting Research under Award No. DE-SC0021396 (FAIR4HEP). M. P.
is supported by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation program (Grant
Agreement No. 772369). J-R. V. and M. S. are supported by the DOE,
Office of Science, Office of High Energy Physics under Award No.
DE-SC0011925, DE-SC0019227, and DE-AC02-07CH11359. J-R. V.
was additionally partially supported the same ERC grant as M. P.

We are grateful to Caltech and the Kavli Foundation for their
support of undergraduate student research in cross-cutting areas of
machine learning and domain sciences. This work was conducted at
“iBanks,” the AI GPU cluster at Caltech, and on the NICPB GPU re-
sources, supported by European Regional Development Fund through
the CoE program grant TK133. We acknowledge Nvidia, SuperMi-
cro and the Kavli Foundation for their support of iBanks. Part of this
work was also performed using the Pacific Research Platform Nau-
tilus HyperCluster supported by NSF awards CNS-1730158, ACI-
1540112, ACI-1541349, OAC-1826967, the University of California
Office of the President, and the University of California San Diego’s
California Institute for Telecommunications and Information Technol-
ogy/Qualcomm Institute. Thanks to CENIC for the 100 Gpbs networks.

References

1. CELLO Collaboration, “An Analysis of the Charged
and Neutral Energy Flow in e+e� Hadronic
Annihilation at 34GeV, and a Determination of the
QCD Effective Coupling Constant”, Phys. Lett. B 113
(1982) 427, doi:10.1016/0370-2693(82)90778-X.

2. ALEPH Collaboration, “Performance of the ALEPH
detector at LEP”, Nucl. Instrum. Meth. A 360 (1995)
481, doi:10.1016/0168-9002(95)00138-7.

3. H1 Collaboration, “Measurement of charged particle
multiplicity distributions in DIS at HERA and its
implication to entanglement entropy of partons”,
arXiv:2011.01812.

4. ZEUS Collaboration, “Measurement of the diffractive
structure function F2(D(4)) at HERA”, Eur. Phys. J. C

1 (1998) 81–96, doi:10.1007/s100520050063,
arXiv:hep-ex/9709021.

Inference time

https://arxiv.org/abs/2101.08578

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

GNNS FOR TRACKING
Charged particle tracking as an edge prediction task within the GNN framework

each hit is a node of the graph

edges constructed between pairs of hits with geometrically plausible relations

classify whether each edge connects hits belonging to the same track or not

20

Charged particle tracking via edge-classifying interaction networks 7

Relational
model

a(1)
ij = �R,1(x(0)

i , x(0)
j , a(0)

ij)

(x(0)
i , a(0)

ij)
Object
model

x(1)
i = �O(x(0)

i , �j�N(i) a(1)
ij)

(w(1)
ij)

Interaction network
Edge

weighting

w(1)
ij = �R,2(x(1)

i , x(1)
j , a(1)

ij)

(x(1)
i , a(1)

ij)

�R1 :NN(40,ReLU,40,ReLU,4)
�O1 :NN(40,ReLU,40,ReLU,3)
�R2 :NN(40,ReLU,40,ReLU,1,sigmoid)

�R,1 : �R,2 :�O :

Fig. 6 (Left) The complete IN forward-pass with the relational and object models approximated as MLPs. (Right) An example hyperparameter
scan in which a models with varying numbers of hidden units (h.u.) were trained on ?min

T = 0.7 GeV graphs.

which are decayed by a factor of W = 0.95 for ?min
T  1 GeV

and W = 0.8 for ?min
T > 1 GeV every 10 epochs.

In order to evaluate the IN edge-classification perfor-
mance, it is necessary to define a threshold X such that each
edge weight F: 2 , (G⇠$$) satisfying F: � X or F: < X

indicates that edge : was classified as true or false respec-
tively. Here, we define X

⇤ as the threshold at which the true
positive rate (TPR) equals the true negative rate (TNR). In
principle, X⇤ may be calculated individually for each graph.
However, this introduces additional overhead to the inference
step, which is undesirable in constrained computing environ-
ments. We instead determine X

⇤ during the training process
by minimizing the di�erence |TPR � TNR| for graphs in the
validation set. The resulting X

⇤, which is stored for use in
evaluating the testing sample, represents the average optimal
threshold for the validation graphs. Accordingly, we define
the model’s accuracy at X⇤ as (=TP + =TN)/=edges, where =TP

(=TN) is the number of true positives (negatives), and note
that the BCE loss is independent of X⇤.

As shown in Fig. 7, the training process results in smooth
convergence to excellent edge-classification accuracy for a
range of ?

min
T . Classification accuracy degrades slightly as

?
min
T is lowered below 1 GeV; hyperparameter studies in-

dicate that larger networks improve performance on lower
?

min
T graphs (see Fig. 6). A transfer learning study was con-

ducted in which models trained on graphs at a specific ?
min
T

were tested on graph samples at a range of ?
min
T . The re-

sults are summarized in Fig. 8, which shows that the models
achieve relatively robust performance on a range of graph
sizes. These results suggest it may be possible to train IN
models in simplified scenarios and apply them to more com-
plex realistic scenarios (e.g. without a ?

min
T cut).

4.4 Track Building

In the track building step, the predicted edge weights F: 2
, (GCOO) are used to infer that edges satisfying F: � X

⇤

represent true track segments. If the edge weight mask per-
fectly reproduced the training target (i.e. int(, (GCOO) �
X
⇤) = H), the edge-classification step would produce =particles

disjoint subgraphs, each corresponding to a single parti-
cle. Imperfect edge-classification leads to spurious connec-
tions between these subgraphs, prompting the need for more
sophisticated track-building algorithms. Here, we use the
union-find algorithm [45] and DBSCAN to cluster hits in the
edge-weighted graphs. Hit clusters are then considered to be
reconstructed tracks candidates; the track candidates are sub-
sequently matched to simulated particles (when possible). In
a full tracking pipeline, these track candidates would then be
fit to extract track parameters such as ?T and [; in this work
we use truth information for matched particles to get the
track parameters. Tracking e�ciency metrics measure the
relative success of the clustering and matching process using
various definitions. We define three tracking e�ciency mea-
surements using progressively tighter requirements to allow
comparison with current tracking algorithm e�ciencies and
other on-going HL-LHC tracking studies:

1. LHC match e�ciency: the number of reconstructed
tracks containing over 75% of hits from the same par-
ticle, divided by the total number of particles.

2. Double-majority e�ciency: the number of reconstructed
tracks containing over 50% of hits from the same particle
and over 50% of that particle’s hits, divided by the total
number of particles.

3. Perfect match e�ciency: the number of reconstructed
tracks containing only hits from the same particle and
every hit generated by that particle, divided by the num-
ber of particles.

We note that the perfect match e�ciency is not commonly
used by experiments as 100% is not realistically achievable,
but we present it to demonstrate the absolute performance of
the GNN tracking pipeline.

Figure 9 shows each of these tracking e�ciencies as
a function of particle ?T and [for both the DBSCAN

8 G. DeZoort et al.

Fig. 7 (Left) Loss convergence for models trained on various ?min
T graphs. (Right) A model trained on ?min

T = 1 GeV graphs was used to evaluate
an unseen ?min

T = 1 GeV graph, yielding a loss of 1.52 ⇥ 10�3 and accuracy of 99.9%. 98 out of 95,160 edges were incorrectly classified; these
erroneous classifications are magnified in the figure.

Fig. 8 Models trained on various ?min
T graphs in the train_1 sample

were tested on 400 graphs from the train_3 sample at various ?min
T

thresholds.

and union-find clustering approaches. Additionally, Table 2
shows the corresponding fake rates, or fractions of un-
matched clusters relative to all clusters, across the full ?T

and [range. The e�ciencies and fake rates are calculated
with ?

min
T = 0.9 GeV graphs. Tracking performance is rela-

tively stable at low ?T but degrades for higher ?T particles;
similar e�ects have been noted in other edge-weight-based
hit clustering schemes [40]. The tracking e�ciencies are
lowest in the neighborhood of [= 0, indicating that perfor-
mance is worst in the pixel barrel region. This is consistent
with the observation that most edge classification errors oc-
cur in the barrel, where the density of detector modules
is significantly higher [36]. Tracking e�ciency loss around
|[| ⇡ 2.5 corresponds to the transition region between barrel
and endcap layers. DBSCAN demonstrates higher tracking
e�ciency than union-find across all ?T and [values and e�-

ciency definitions. This performance gap is likely due to the
additional spatial information used in DBSCAN’s clustering
routine. Moving forward, additional tracking performance
may be recovered by leveraging the specific values of each
edge weight to make dynamic hit clustering decisions. The
fake rates are relatively low for both track-building methods,
and as expected roughly increase for increasingly tight ef-
ficiency definitions. Interestingly, DBSCAN demonstrates a
lower fake rate for LHC match e�ciency while union-find
demonstrates a lower fake rate for the perfect match e�-
ciency; DBSCAN also has a larger drop in tracking e�cency
between the double match and perfect match definitions, indi-
cating that while DBSCAN identifies more track candidates,
union-find builds tracks more precisely.

E�ciency definition Union-find DBSCAN
LHC match 0.0471 ± 0.008 0.0275 ± 0.005

Double majority 0.0934 ± 0.01 0.0891 ± 0.01
Perfect match 0.0910 ± 0.01 0.1242 ± 0.01

Table 2 Overall fake rates of union-find and DBSCAN track-building
for three tracking e�ciency definitions for ?min

T = 0.9 GeV.

4.5 Inference Timing

An important advantage of GNN-based approaches over tra-
ditional methods for HEP reconstruction is the ability to
natively run on highly parallel computing architectures. The
P�G library supports graphics processing units (GPUs) to
parallelize the algorithm execution. Moreover, the model was
prepared for inference by converting it to a TorchScript pro-
gram [46]. For the IN studied in this work, the average CPU
and GPU inference times per graph for a variety of mini-
mum ?T cuts is shown in Table 3. For this test, the graphs

G. DeZoort et al.  
arXiv:2103.16701

See also: S. Farrell et al. [1810.06111]; X. Ju et al. [2003.11603];  
C. Biscarat, S. Caillou, C. Rougier, J. Stark and J. Zahreddine [2103.00916]; X. Ju et al. [2103.06995]; etc.

https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2103.00916
https://arxiv.org/abs/2103.06995

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

SUMMARY & OUTLOOK
Graph neural networks: a powerful and flexible framework with increasing adoption in HEP

state-of-the-art performance in jet tagging, particle identification, event classification, …

active R&D for event reconstruction, particle flow, tracking, …

moreover: generative models (e.g., for fast simulation), representation learning (e.g., for anomaly detection), …

Outlook

more powerful architectures => better performance

more effective incorporation of physics knowledge => better robustness

improving computational efficiency (latency/throughput/memory/etc.)

and eventually:

increased sensitivity to new physics at various frontiers!

21

BACKUPS

22

G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s

- F
eb

ru
ar

y
12

, 2
02

3
- H

ui
lin

 Q
u

(C
ER

N
)

LORENTZNET
Incorporating Lorentz symmetry into graph neural network architecture

23

݄௅ିଵ

݄଴

௅ିଵݔ

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

ٔ

߶௫

߶௘

߶௛

݄௟ ௟ݔ

݄௟ାଵ ௟ାଵݔ

ْ ْ

݄௅

Scalars 4-momentum

LorentzNet

ൈ ࡸ െ ૚

Embedding

LGEB

଴ݔ
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

3 Network Architecture

In this section, we illustrate the architecture of LorentzNet. The construction of the
LorentzNet is based on the following universal approximation theorem for the Lorentz
group equivariant continuous function.

Proposition 3.1. [55] A continuous function � : (RN⇥4) ! R4 is Lorentz-equivariant if
and only if

�(x1, x2, · · · , xN) =
NX

i=1

gi(hxi, xjiNi,j=1)xi, (3.1)

where gi are continuous Lorentz-invariant scalar functions, and h·, ·i is the Minkowski inner
product.

Proposition 3.1 provides a way to construct Lorentz group equivariant mapping with
no need to calculate the high-order tensors. Instead, a Lorentz group equivariant continu-
ous mapping can be constructed by the attention on xi with encoding the Minkovski dot
products of xi with its neighbours. This motivates us to design the Minkowski dot product
attention in LorentzNet, which will be introduced in the next section.

3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,

– 5 –

݄௅ିଵ

݄଴

௅ିଵݔ

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

ٔ

߶௫

߶௘

߶௛

݄௟ ௟ݔ

݄௟ାଵ ௟ାଵݔ

ْ ْ

݄௅

Scalars 4-momentum

LorentzNet

ൈ ࡸ െ ૚

Embedding

LGEB

଴ݔ
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

3 Network Architecture

In this section, we illustrate the architecture of LorentzNet. The construction of the
LorentzNet is based on the following universal approximation theorem for the Lorentz
group equivariant continuous function.

Proposition 3.1. [55] A continuous function � : (RN⇥4) ! R4 is Lorentz-equivariant if
and only if

�(x1, x2, · · · , xN) =
NX

i=1

gi(hxi, xjiNi,j=1)xi, (3.1)

where gi are continuous Lorentz-invariant scalar functions, and h·, ·i is the Minkowski inner
product.

Proposition 3.1 provides a way to construct Lorentz group equivariant mapping with
no need to calculate the high-order tensors. Instead, a Lorentz group equivariant continu-
ous mapping can be constructed by the attention on xi with encoding the Minkovski dot
products of xi with its neighbours. This motivates us to design the Minkowski dot product
attention in LorentzNet, which will be introduced in the next section.

3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,

– 5 –

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

Coordinate input:

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

Feature input:

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

Message:

Coordinate update:

Feature update:

Lorentz 4-vector
Lorentz scalar

Pairwise Lorentz invariantsScalars

S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian,  
W. Du, Z. M. Ma and T. Y. Liu,

arXiv: 2201.08187

cf. A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller and R. Kondor,
arXiv: 2006.04780

https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2006.04780

(Je
t)

 Ta
gg

in
g

in
 C

M
S

- D
ec

em
be

r 1
4,

 2
02

2
- H

ui
lin

 Q
u

(C
ER

N
)

PARTICLE ATTENTION BLOCK

24

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

U

(a) Particle Transformer

xL−1 xL

xl−1
x

U

U

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

x

U

Scale

SoftMax

U

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

U

(a) Particle Transformer

xL−1 xL

xl−1
x

U

U

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x′ class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

Particle Transformer for Jet Tagging

P-MHA

Linear

MatMul

Mask

MatMul

Linear Linear

Q K

V
SoftMax

P-MHA

LN

M
LP

(b) Particle Attention Block (c) Class Attention Block

LN

LN

xl

Particles

Interactions

Particle
Attention

Block So
ftM

ax

Class
Attention

Block

Em
be

dd
in

g
Em

be
dd

in
g

x0

 blocksL

Particle
Attention

Block

Class token

Class
Attention

Block

Y
(a) Particle Transformer

xL�1 xL

xl�1x

Y

Y

xclass

Linear

GELU

Linear

LN

Scale

MHA

LN

LN

LN

x� class

xL

Linear

GELU

Linear

LN

Particle
Attention

Blockx1

concat

Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

and many other possible
pairwise features…

Injection of (physics-inspired) pairwise features to  
“bias” the dot-product self-attention

