Reconstruction of Hadronic system at CEP Mangi Ruan

Outline

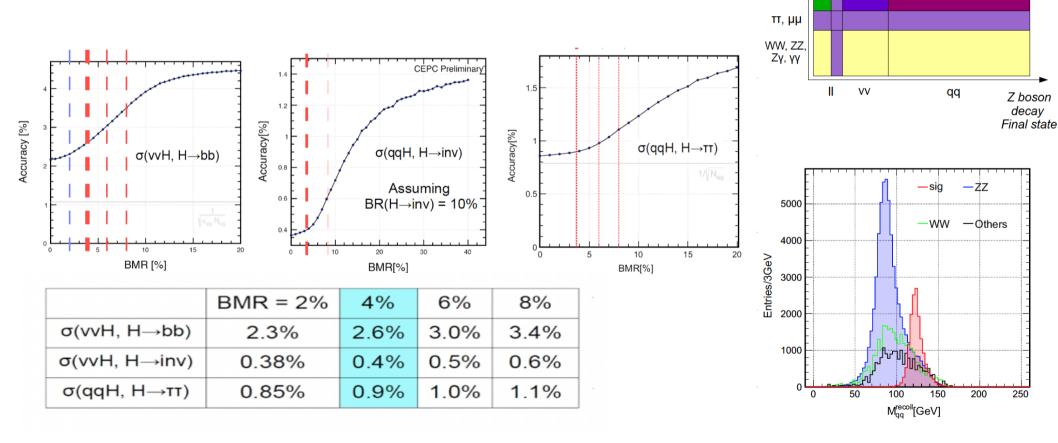
- Motivation:
 - Majority of physics Events & Measurements;
 - Comparative advantage of ee collider @ HEF.
- BMR
- Jet: energy scale & resolution
- Jet flavor tagging
- Jet charge measurement
- CSI : Color Singlet identification
- Physics benchmark: H→bb, cc, gg & V_cb from W decay
- Discussion & Perspective

BMR

Higgs

qq,

gg


Strategy: make all the possible

measurements in each

different channel and combine

the result!

- Relative mass resolution of particles decay into hadronic final state: quantified with vvH, H→gg
- Higgs measurement require BMR < 4%;
- Flavor & NP: much more demanding

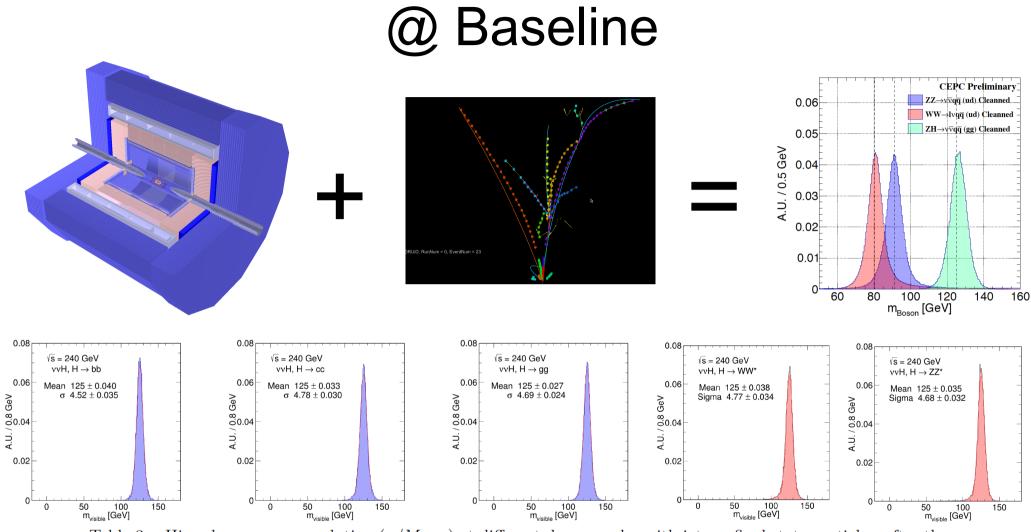
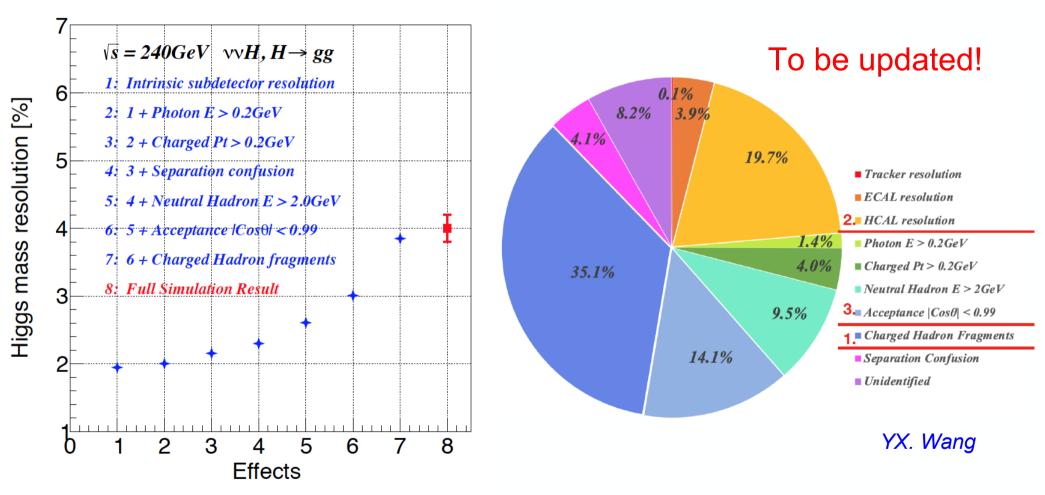
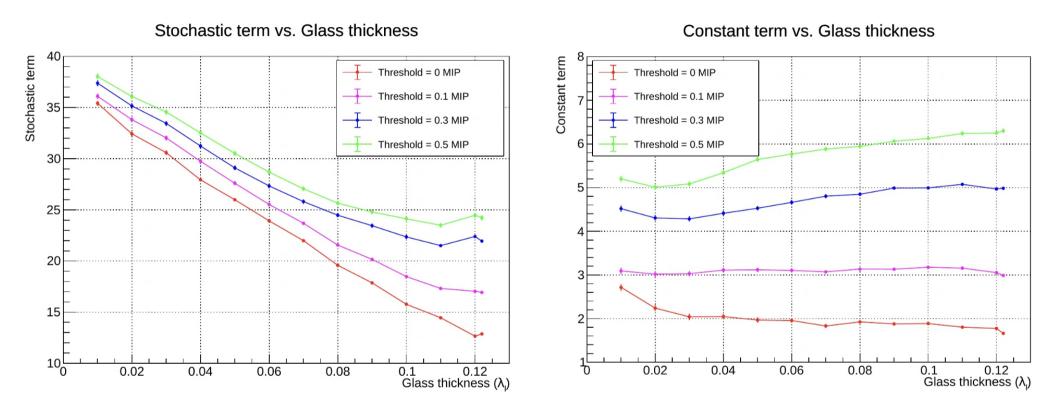



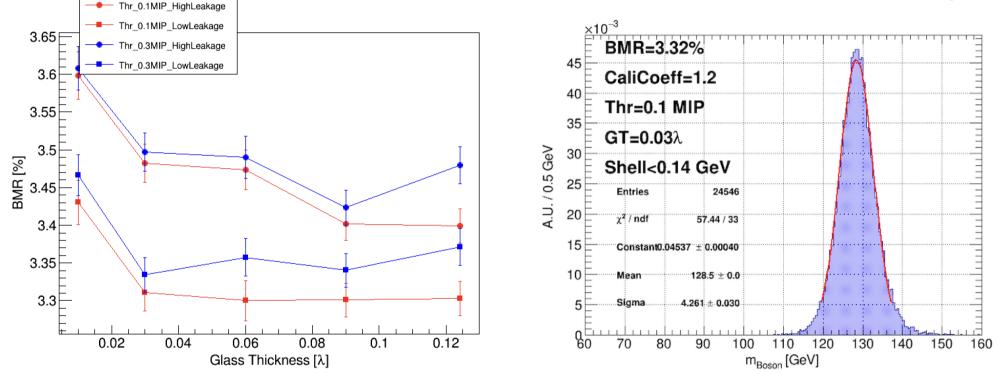
Table 3. Higgs boson mass resolution ($\sigma/Mean$) at different decay modes with jets as final state particles, after the event cleaning.

$Higgs \rightarrow bb$	Higgs→cc	Higgs→gg	$\mathrm{Higgs}{\to}\mathrm{WW}^*$	$\mathrm{Higgs}{\to}\mathrm{ZZ}^*$
3.63%	3.82%	3.75%	3.81%	3.74%


PFA Fast simulation

Fast simulation reproduces the full simulation results, factorize/quantifies different impacts

12/1/2023

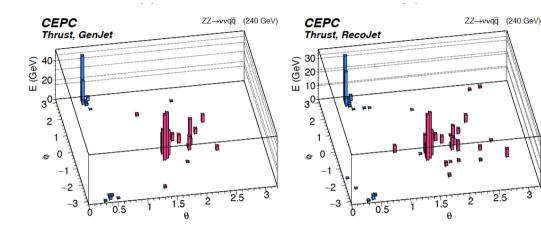

HCAL using high density scintillating glass

Performance improves almost linearly at lower energy threshold, and larger sampling fraction

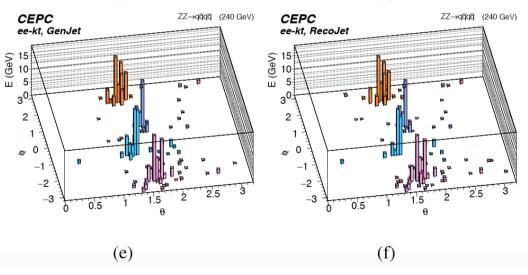
HCAL @ BMR

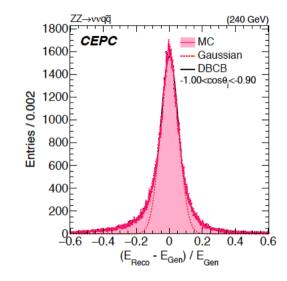
P. Hu & YX. Wang

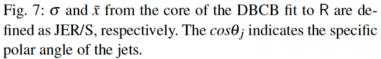
• ...Yet, a lot more to be understood

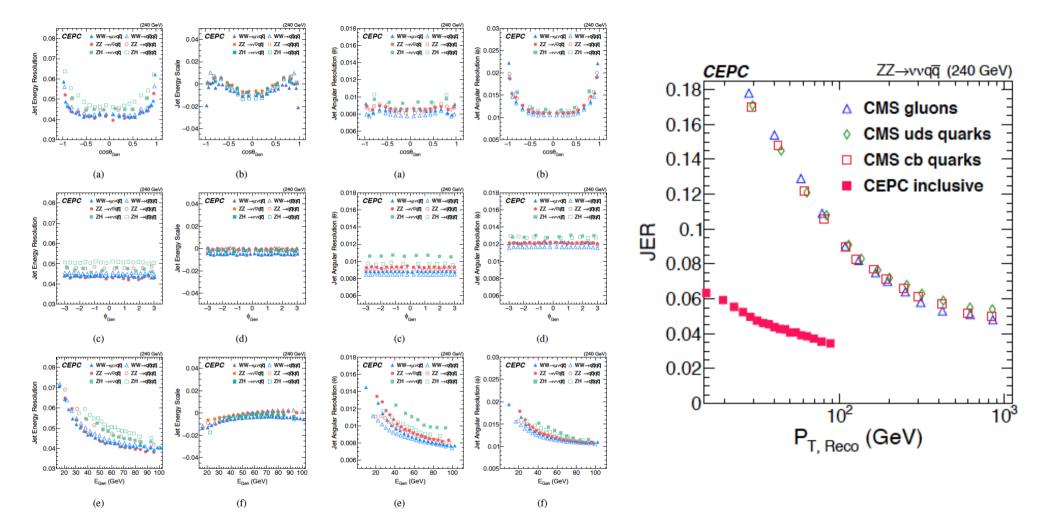

Individual Jet

Remark - BMR dosen't depend on Jet


Jet clustering - matching


2.5


(d)


Jet Clustering & Matching is critical: ee-kt is used as CEPC baseline

Relative difference between Gen/Recojet is define to be the detector jet response

12/1/2023

Jet: lots of ambiguities & large theoretical uncertainty... not ideal, but works

Energy response

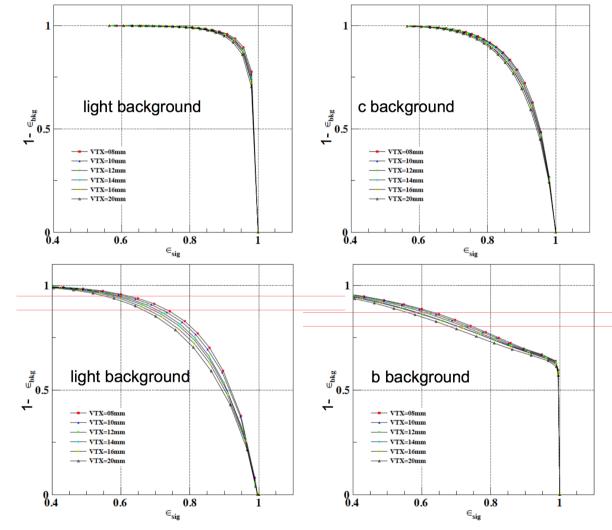
Jet Energy Response: 2.5 – 4 times better than LHC in the same Pt range, Jet Energy Scale: 3 times better before sophisticated calibration

W-mass direct reconstruction at 240 GeV. Challenge & interesting

- W mass measurement at 240 GeV:
 - Statistic uncertainty @ 20 iab~
 - 0.3 MeV using only µvqq final state
 - Bias ~ 2.5 MeV once Z mass calibrated to known value
 - Ultimate accuracy?
 - Can we better control the systematic using the differential information?
 - Control the jet confusion?...
 - Identify & tame ISR?
 - Better calibrate?
 - Can we maintain sufficient stability over 7/10 years? ...

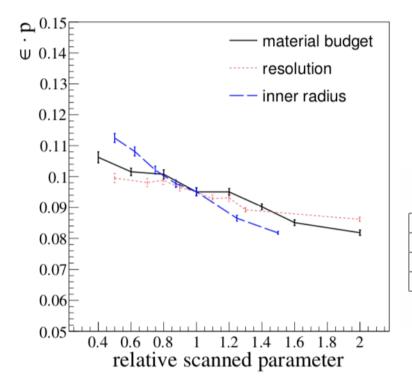
Quasi analysis: JES calibrated to pure ISR return qq sample

Jet Flavor


Is a jet fragmented from

b, c, light (gluon or uds) \rightarrow

b, c, light, gluon, s?


Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ HKIAS HEP 2023

Flavor tagging V.S VTX geometry

$$\epsilon \cdot p = 0.095(1 - 0.14 \frac{\Delta x_{\text{material}}}{x_{\text{material}}})(1 - 0.09 \frac{\Delta x_{\text{resolution}}}{x_{\text{resolution}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radius}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radiu$$

Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)	
Material per layer/ X_0	0.075	0.15	0.3	
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7	
R _{in} /mm 8		16	23	
trace	2.3	2.1	1.9	

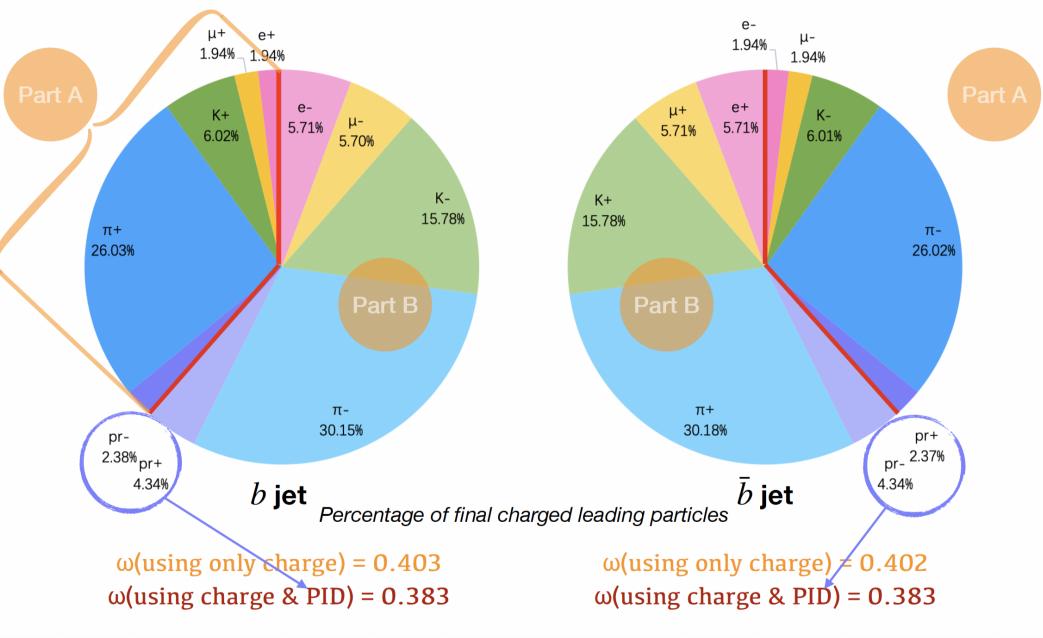
$$Tr_{mig} = 2.118 + 0.054 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.040 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.098 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$$

12/1/2023

Jet Charge

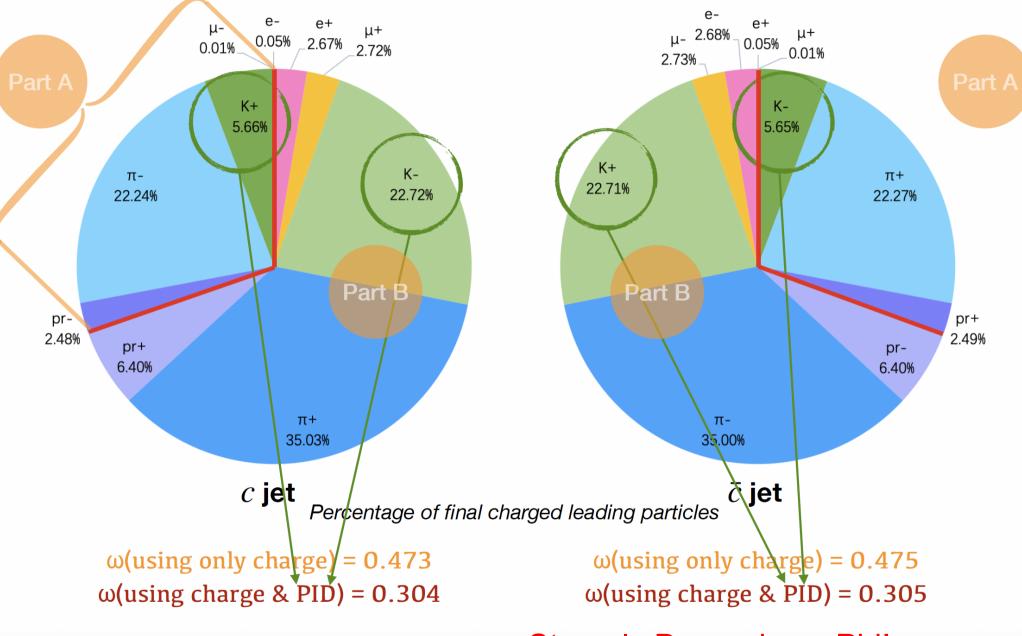
b or b-bar? c or c-bar?

Essential for CKM measurements with neutral hadron oscillations. enable differential measurements that depends on quark charge


Far future: might be well extended & combine with Jet Flavor tagging \rightarrow to identify the species & charge of quark/gluon that induces a jet

Effective tagging power

- Tagging power = efficiency * (1 2*omega)^2
- Omega ~ chance of mis-id, value between 0 0.5.
- To 1st order, accuracy ~ 1/sqrt(N*tagging power).
- Tagging power highly sensitive to mis-id chance.
- Many method to measure Jet Charge: VTX charge, weighted sum, jet lepton/kaon, 2nd leading kaon, ...


Dependence on leading particle type

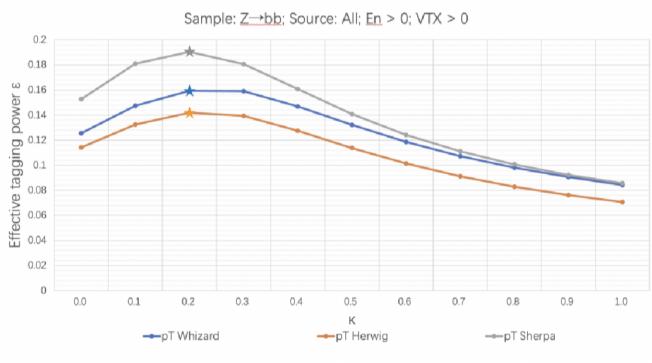
 $Z \rightarrow b\bar{b}$

12/1/2023 Leptons can be generated from seemiedeptonic b decay, or from c from $b \rightarrow c$ 17

Dependence on leading particle type

HKIAS HEStrongly Depends on Pid!

18


 $Z \rightarrow c\bar{c}$

Weighted charge method (WCJC)

Method:

- Use the charge and momentum of all final charged particles in a jet with a weight parameter κ to calculate Q_{jet}^κ.
- the weight parameter κ is optimized for different decay modes.
- if Q_{jet}^κ<0, we consider this is a b quark, and vise versa.

$$Q_{jet}^{\kappa} = \frac{\Sigma_i (E_i)^{\kappa} Q_i}{\Sigma_i (E_i)^{\kappa}}$$

Methods	Optimized ĸ							
Generat or	Whizard		Her	wig	Sherpa			
source	all	all from B/ D all from B/		all	from B/ D			
All b hadrons	(ĸ=0.2)	(K=0)	(κ=0.2)	(к=0)	(κ=0.2)	(к=0)		
B0/ B0bar	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(κ=0.3)	(ĸ=0.6)		
B+/B-	(к=0.3)	(κ=0)	(ĸ=0.4)	(ĸ=0)	(ĸ=0.3)	(κ= 0)		
Bs/ Bsbar	(κ= 0)	(κ= 0)	(κ= 0)	(κ =0)	(κ=0.2)	(ĸ=1.0)		
Bc+/Bc-	(ĸ=0.2)	(κ=0)	(ĸ=0.7)	(к= 0)	(κ=0.6)	(ĸ=0)		
Λb/ Abbar	(к=0)	(κ=1.0)	(к=0)	(ĸ=0.9)	(к=0)	(к=0)		

Result @ Truth level

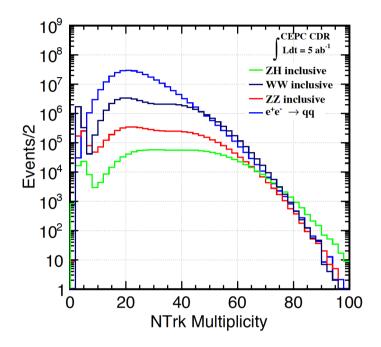
Analysis of jet charge performance for single jet at CEPC Z pole:

- ★ Effective tagging power:
- ★ LPJC method: 0.089 / 0.203
- ★ WCJC method: 0.159 / 0.258
- \bigstar Decision level combination: 0.165 / 0.342 (improve 3.8% / 32.6%)
- ★ Tagger level combination: 0.182 / 0.372 (improve 14.5% / 44.2%)
- ★ Total combination. 0.198 / 0.404 (improve 24.5% / 56.6%)

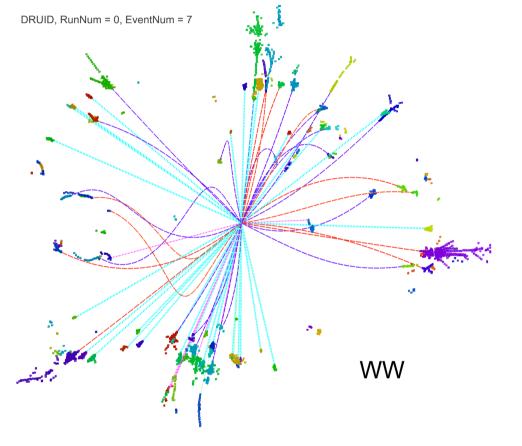
★ Dependences:

- High dependence on leading particle type.
- High dependence on b/c hadrons type, especially for B_s (Mingrui), Λ_b , Λ_c , ...
- High dependence on the decay source of leading particle.

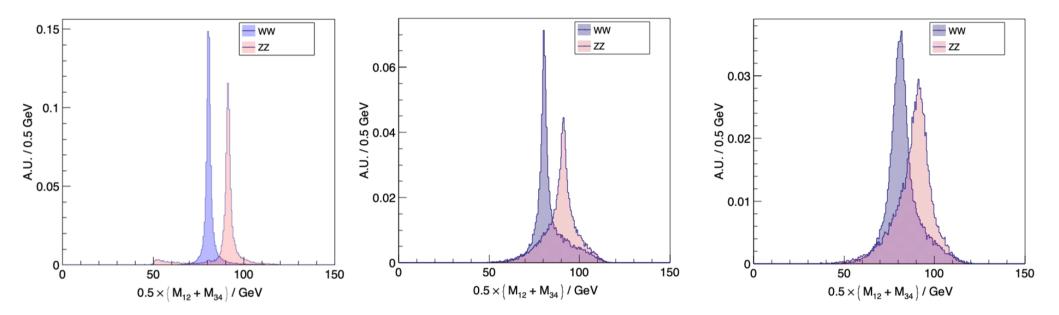
		€ _{eff}	
е	Decision Level	0.025	
μ	Decision Level	0.025	
К	Decision Level	0.060	
π	Tagger Level	0.076	
р	Decision Level	0.012	
Total		0.198	
e	Tagger Level	0.025	
μ	Tagger Level	0.027	
к	Decision Level	0.137	
π	Tagger Level	0.186	
р	Decision Level	0.029	
Total		0.404	


two combination methods combination

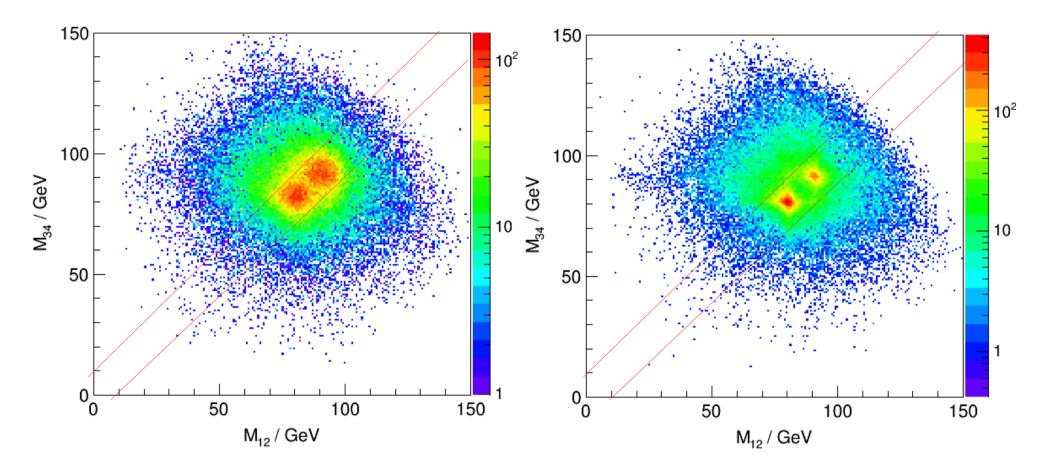
Color Singlet Identification (~Grouping)


How to find all the final state particles generated from one boson decay, in a full hadronic WW/ZZ/ZH events?

Jet clustering + matching, or goes beyond?


Full hadronic WW-ZZ separation

- Low energy jets! (20 120 GeV)
- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response


Jet confusion: the leading term

- Separation be characterized by
- Final state/MC particles are clustered into Reco/Genjet with ee-kt, and paired according to chi2
- WW-ZZ Separation at the inclusive sample:
 - Intrinsic boson mass/width lower limit: Overlapping ratio of 13%
 - + Jet confusion Genjet: Overlapping ratio of 53%
- + Detector response Recojet: Overlapping ratio of 58%
 12/1/2023 HKIAS HEP 2023

overlapping ratio =
$$\sum_{bins} min(a_i, b_i)$$

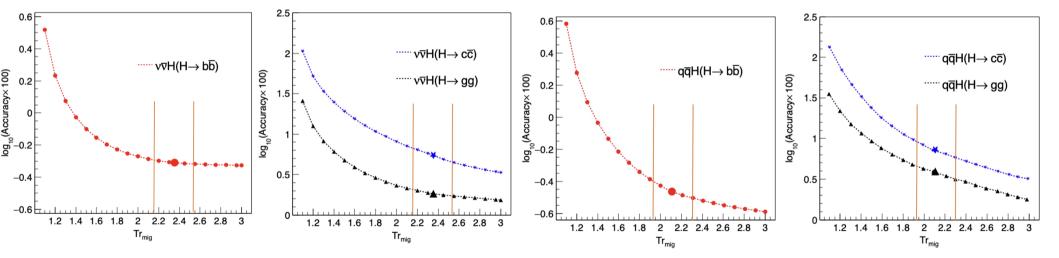
 $\chi^2 = rac{(M_{12} - M_B)^2 + (M_{34} - M_B)^2}{\sigma_B^2}$

Reconstructed mass of the two di-jet system

Equal mass condition |M12 - M34| < 10 GeV: At the cost of half the statistic, the overlapping ratio can be reduced from 58%/53% to 40%/27% for the Reco/Genjet

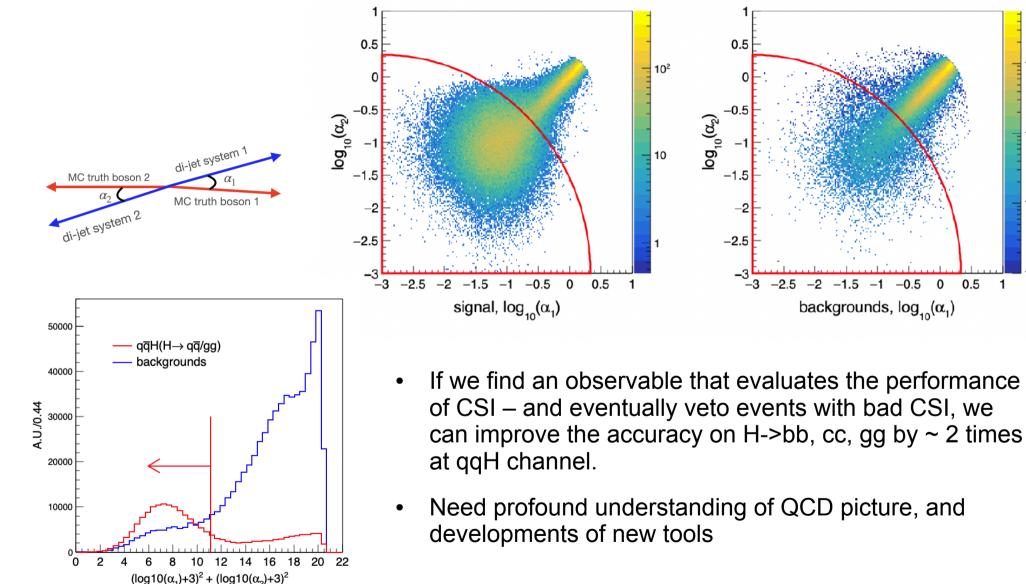
Physics benchmarks

$H \rightarrow bb, cc, gg$


- Core physics measurements, excellent benchmarks for BMR, Flavor Tagging & CSI
- Tactic
 - Analysis
 - Concentrate Higgs to di jet event using Cut Chain + BDT
 - Using Flavor Tagging to disentangle different decay modes, and extract/resolve the relevant signal strengths
 - Optimization
 - Modeling the different Flavor tagging performance using interpolation method, and resolve the corresponding accuracies

Impact of Flavor tagging

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{l} - Tr_{opt}} \cdot (M_{l} - M_{opt}) + M_{opt}$$

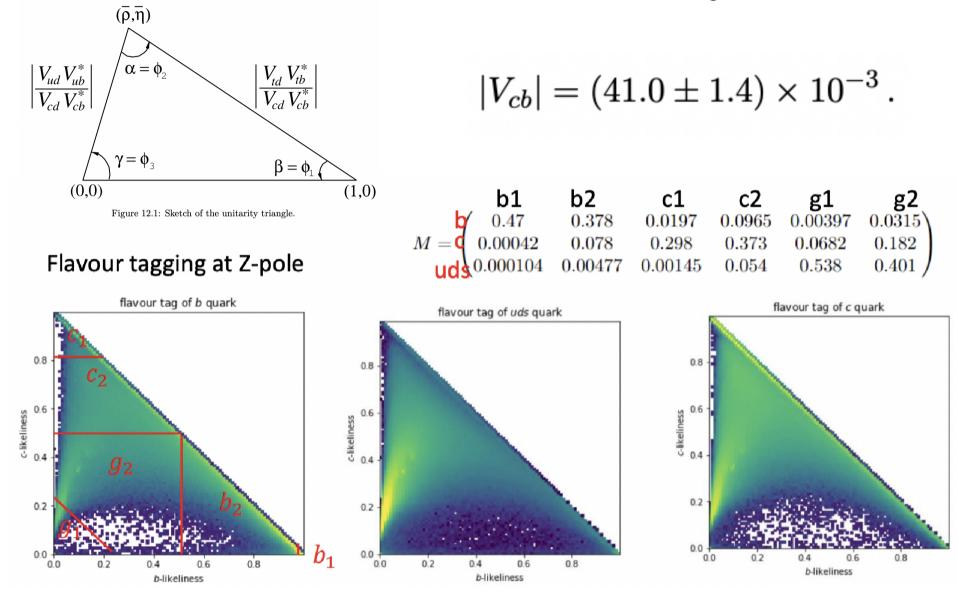

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt}$$

_		Perfe	ect				Wor	rst	
		b	с	g			b	С	g
	b	1	0	0		b	1/3	1/3	1/3
true	С	0	1	0	true	С	1/3	1/3	1/3
	g	0	0	1		g	1/3	1/3	1/3
	i	dentifie	ed as				identif	ied as	

 Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

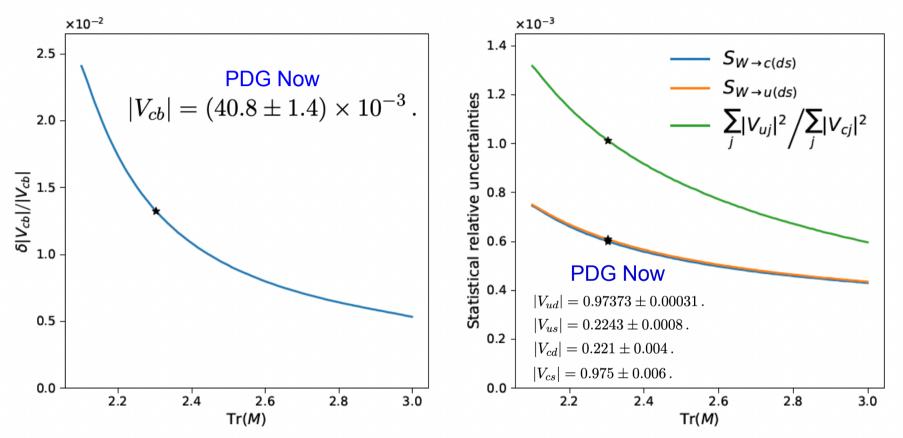
Impact of CSI

10³

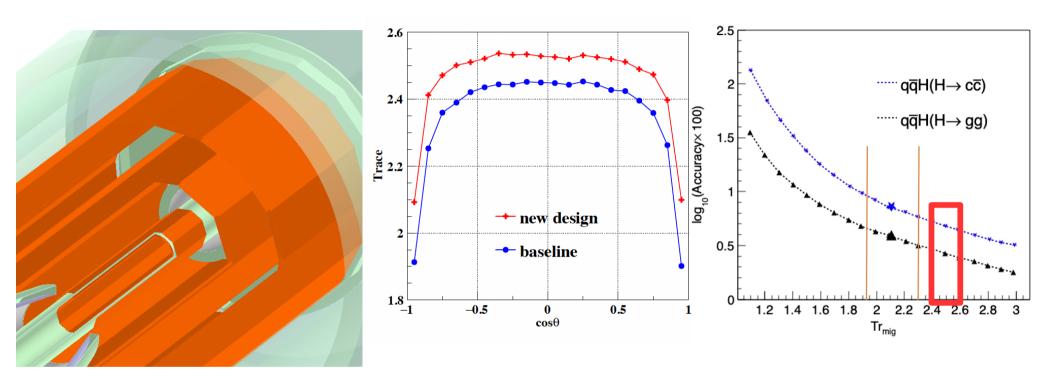

10²

10

0


0.5

Vcb from W decay


12/1/2023

Impact of Flavor tagging

- Percentage level accuracy on Vcb anticipated; using only muvqq events at 5.6 iab. Can be improved by 3-4 times... if using 20 iab and all leptonic channels, plus better analysis method
- Compared to baseline... ideal FT improves the accuracy by 2.5 times
 HKIAS HEP 2023

New design of the VTX system

Beam pipe radius reduced from ~15 mm to 9 mm, and put the first silicon layer inside the beam pipe!

Innovative reconstruction algorithm shall also be emphasized, to achieve a better performance

Summary

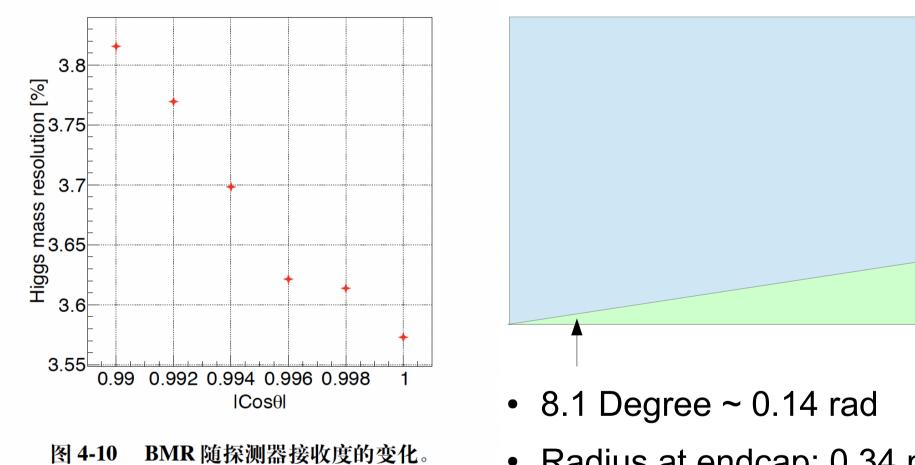
- Hadronic system: vital for electron positron Higgs factory, explored with intensive • simulation-detector studies
- Future Focus: Via detector optimization & reco algorithm development ٠
 - BMR ~ 3% (current 3.8%): improves differential Jet measurements as well _
 - Full detector optimization + Arbor, etc
 - Flavor tagging: Tri M improved to 2.5 (2.5) —
 - VTX optimization + algorithm development •
 - Jet Charge: secure b/c tagging power 20%/40%
 - Detector with good Pid & low Pt threshold, etc •
 - CSI: Enhance ggH signal strength accuracy by $\sim 25\%$?
 - QCD studies... especially on the fragmentation & event topology description, etc. •
- Open questions to theorists: •
 - New Physics search, etc: How can we use better current/prospected performance? —
 - New observables can be measure from Hadronic System?
 - Lots of excitement ahead...

Many Thanks!

References

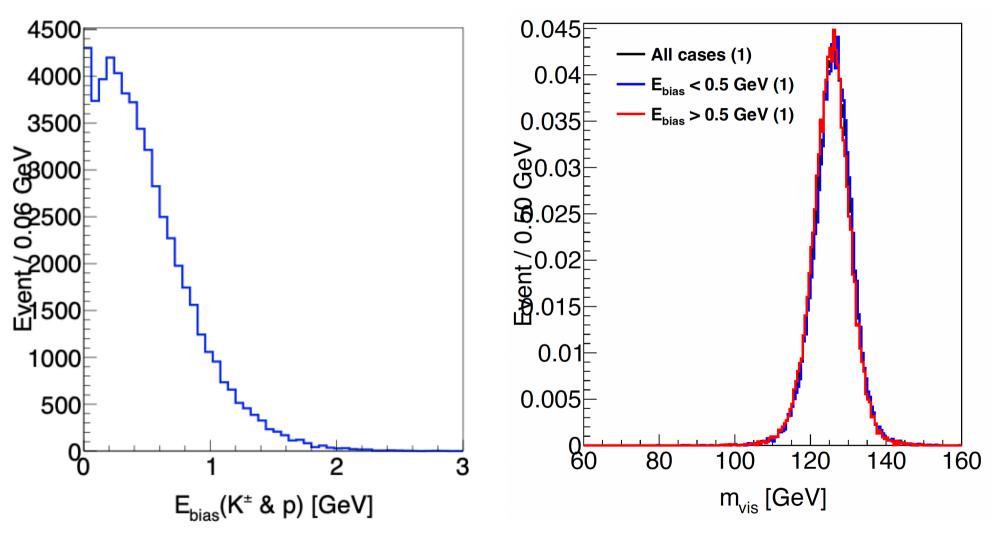
- BMR
 - 3.8% achieved at baseline + Arbor, meet BMR < 4% Manqi, EPJC, 2018
 - Informative decomposition (Yuexin, thesis) + update (Yuexin, to be submit)
 - To pursue BMR of 3%
 - 3.3% achieved (Peng Hu, Yuexin, etc, to be submit to NIMA)
- Jet, an conventional, but not perfect method to describe hadronic event...
 - Energy Scale & resolution: ~3 times better than LHC, differential relationship quantified, W boson mass ~ 1 MeV
 Peizhu, JINST, 2021
 - Charge: Innovative method developed, achieves decent, possibly the best effective tagging power (~20%/40% for b/c-jets) (Hanhua, to be submit)
 - Dependence on key performance (Pt threshold, Pid, ...) to be quantified
 - Flavor tagging:
 - Performance dependence on VTX geometry Zhigang, JINST, 2018

References


- CSI: bottleneck for physics measurement with full hadronic final state
 - Concept arises:
 - Extremely challenge. A small task force formed...
- Physics benchmarks
 - Vcb mesurement: Flavor tragging, Lianghao, to be submit
 - $H \rightarrow bb$, cc, gg: BMR + Flavor Tagging + CSI,
 - WW/ZZ separation: CSI + BMR,
 - Bs→Phi vv: BMR + Pid,
 - H→tautau: BMR,
 - $H \rightarrow invisible: BMR,$
 - Higgs white paper: Everything,
 - Higgs Snowmass whitepaper

Yongfeng, JHEP, 2022 Yongfeng, EPJC, 2019 Yudong, RPD, 2022 Dan, EPJC, 2020 Hangyu, CPC, 2020 Everyone, CPC, 2019 ArXiv, 2023

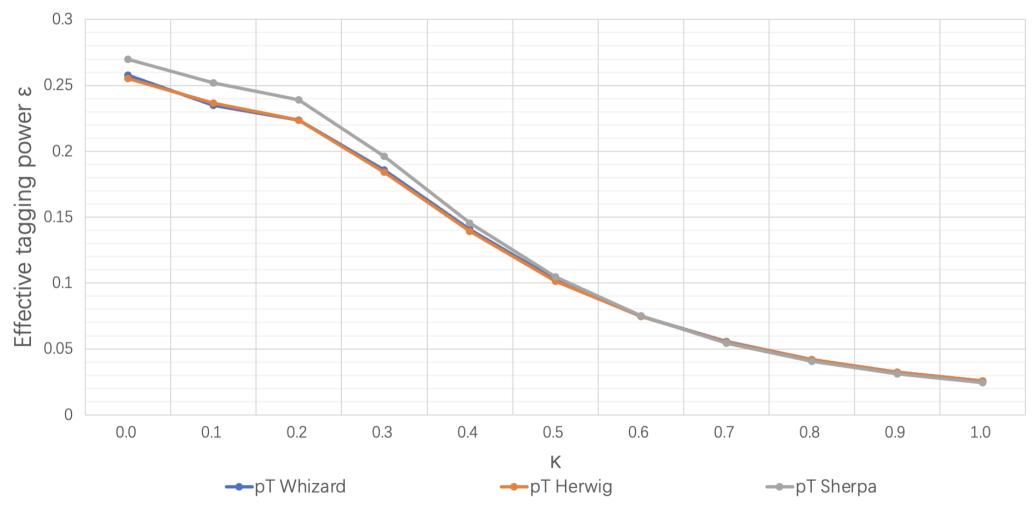
Yongfeng, EPJC, 2019


Backup

V.S. Acceptance

• Radius at endcap: 0.34 m

Update: impact of Pid



• Ebias = E_truth – E_reco

^{HKIA}Perfect³Pid will improve BMR by 1-2% ³⁷

WCJC @ c jet

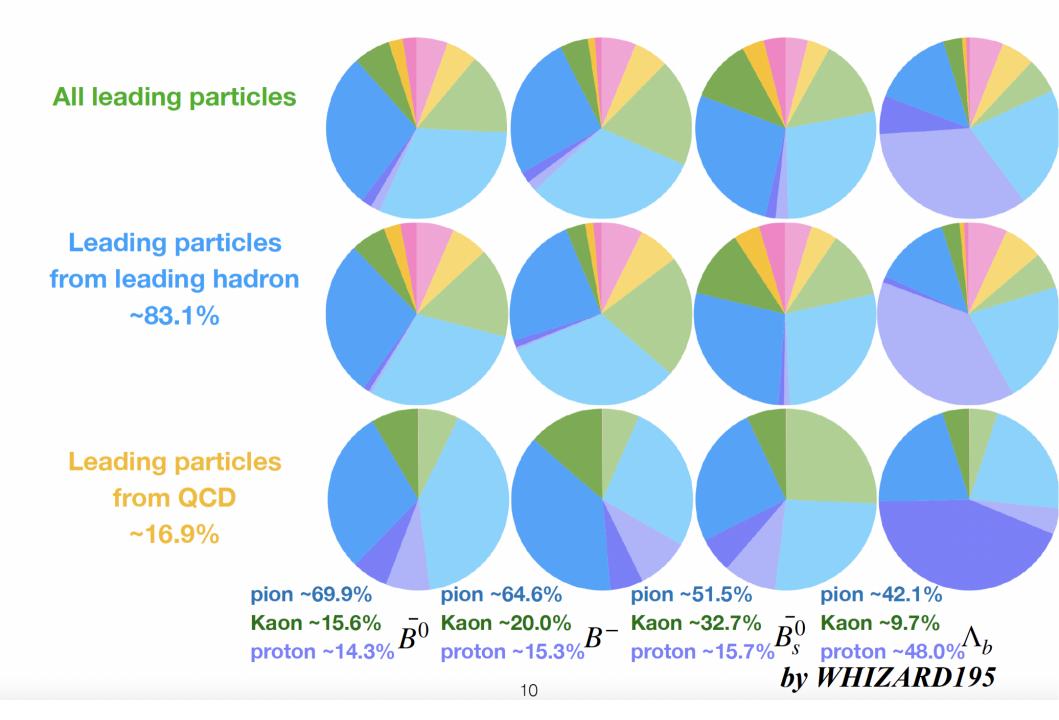
Sample: $Z \rightarrow cc$; Source: All; En > 0; VTX > 0

Very demanding on energy threshold... 38

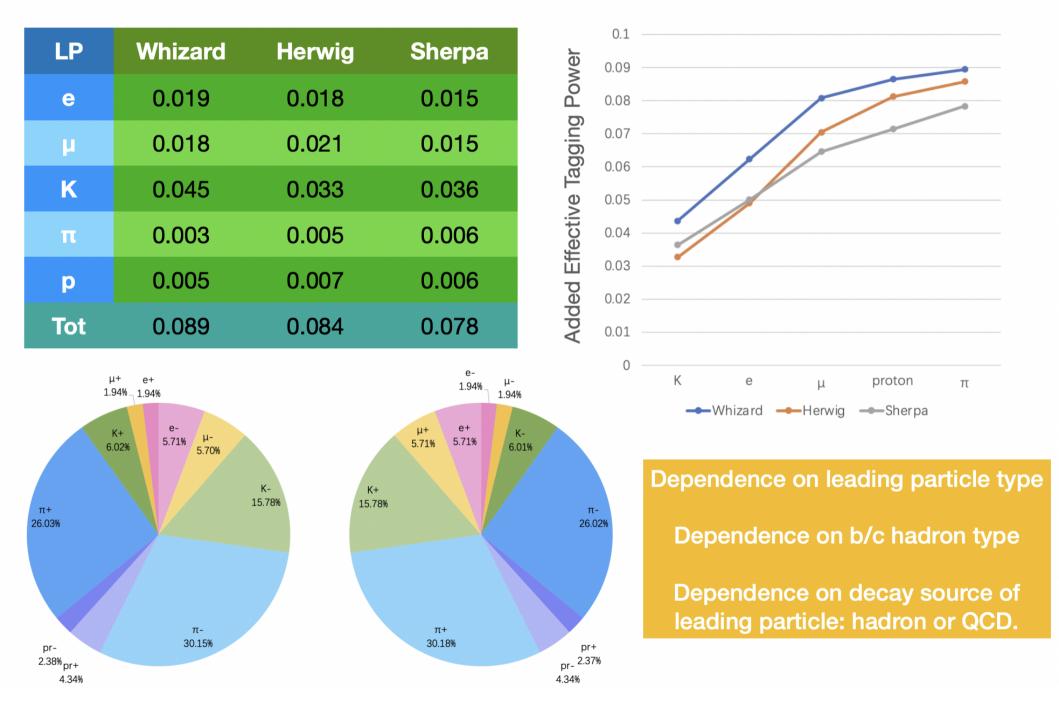
12/1/2023

Tagger level combination of two methods

Method	Tagger	к	ε _{tag} =N _{tag} ∕N	$\omega_i = N_w / N_{tag}$	$ar{\omega}$	r ²	€ _{eff}
	е		7.70%	25.45%		0.241	0.019
LPJC	μ		7.70%	25.53%		0.239	0.018
	к		21.97%	27.45%		0.203	0.045
LFUC	π		56.33%	46.34%		0.005	0.003
	р		6.30%	36.45%		0.073	0.005
	Total		100.00%	38.35%	35.06%	0.089	0.089
WCJC	All	2	100.00%	30.04%		0.159	0.159
	е	4	7.70%	22.36%		0.306	0.024
WCJC	μ	4	7.70%	22.35%		0.306	0.024
combined	К	4	21.97%	26.32%		0.224	0.049
with LP	π	2	56.33%	31.61%		0.135	0.076
PID	р	0	3.92%	27.94%		0.195	0.008
	Total		97.62%	28.13%	28.52%	0.185	0.180
	е		7.65%	22.33%	22.36%	0.306	0.023
	μ		7.65%	22.31%	22.35%	0.306	0.023
Total	K		21.81%	26.46%	26.32%	0.224	0.049
Combined	π		56.18%	31.72%	31.61%	0.135	0.076
	р		6.72%	30.40%	30.57%	0.151	0.010
	Total		100.00%	29.05%	28.68%	0.182	0.182

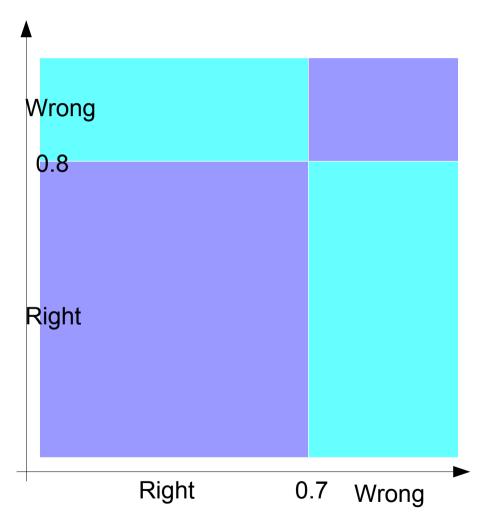

9

1

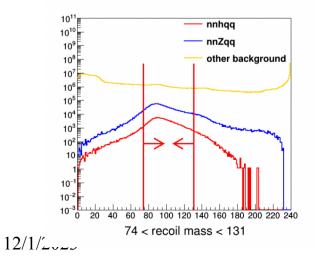

Tagger level combination of two methods

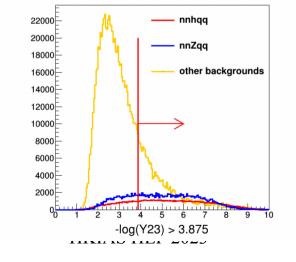
Method	Tagger	к	ε _{tag} =N _{tag} ∕N	$\omega_i = N_w / N_{tag}$		r ²	ε _{eff}
	е		2.75%	1.90%		0.926	0.025
LPJC	μ		2.76%	0.47%		0.981	0.027
	к		28.70%	19.73%		0.367	0.105
LFUC	π		57.56%	38.79%		0.050	0.029
	р		8.22%	28.00%		0.194	0.016
	Total		100.00%	30.36%	27.49%	0.203	0.203
WCJC	All	0	67.39%	19.07%		0.383	0.258
	е	10	2.75%	7.89%		0.709	0.020
WCJC	μ	10	2.76%	6.84%		0.745	0.021
combined	К	0	19.36%	18.99%		0.385	0.074
with LP	π	0	38.80%	19.11%		0.382	0.148
PID	р	3	8.22%	22.77%		0.297	0.024
	Total		71.89%	13.37%	18.41%	0.399	0.287
	е		2.72%	1.91%	1.90%	0.926	0.025
	μ		2.73%	0.46%	0.47%	0.981	0.027
Total	K		28.38%	19.32%	19.18%	0.380	0.108
Combined	π		57.28%	25.77%	21.49%	0.325	0.186
	р		8.88%	22.78%	22.77%	0.297	0.026
	Total		100.00%	22.33%	19.49%	0.372	0.372

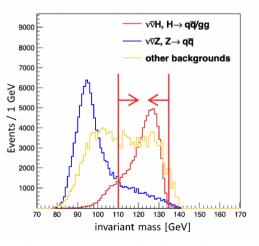
$Z \rightarrow b\bar{b}$ Percentage of leading particles (*b* jet, Whizard195)



Leading particle method (LPJC)

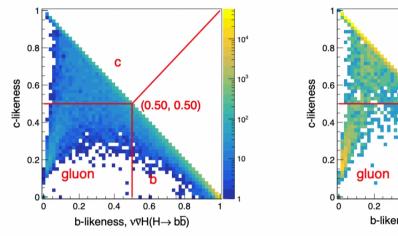

Combine...

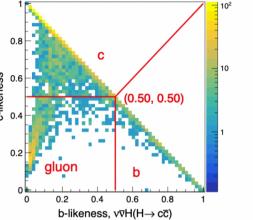

- Naive case: non correlated two observer
 - O1, omega = 0.3, eff = 1, Tagging
 Power ~ 16%
 - O2, omega = 0.2, eff = 1, Tagging
 Power ~ 36%
- Since Tagging power depends stronger on omega rather than efficiency, we can select only event with consistent O1 & O2
 - Efficiency drops to
 - 0.7*0.8 + 0.2*0.3 = 62%
 - Omega:
 - 0.2*0.3/(0.7*0.8 + 0.2*0.3) = 6/62
 - Tagging Power ~ 40.3%

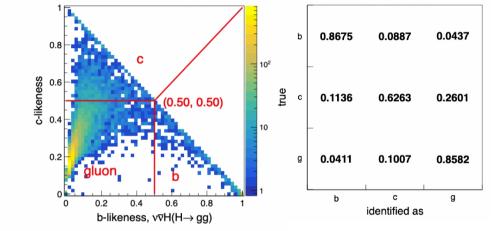


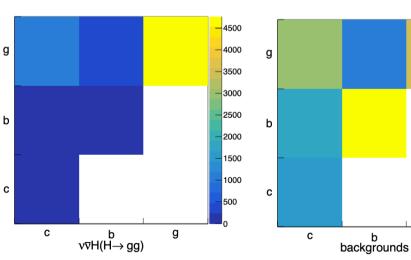
vvH, H→bb, cc, gg

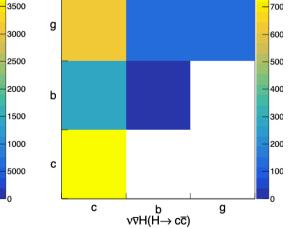
	vvHqą̄/gg	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07E6	5.08 <i>E</i> 7	6.39E6	2.18E7	961606	16.86
recoilMass (GeV) $\in (74, 131)$	157822	5.11E7	2.17E6	1.38E6	4.78E6	1.30 <i>E</i> 6	1.08E6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37E7	1.35 <i>E</i> 6	8.81E5	3.60E6	1.03 <i>E</i> 6	6.29E5	50989	3.92
$\begin{array}{l} \textit{leadLepEn (GeV)} \\ \in (0, 42) \end{array}$	141926	2.08E7	3.65E5	7.24E5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34E5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66E7	2.36E5	5.24E5	2.62E6	9.07 <i>E</i> 5	4977	42751	3.29
<i>leadNeuEn</i> (GeV) $\in (0, 41)$	138653	1.46E7	2.24E5	4.72E5	2.49E6	8.69E5	4552	42303	3.12
<i>Pt</i> (GeV) ∈ (20, 60)	121212	248715	1.56E5	2.48E5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
PI (GeV) ∈ (0, 50)	118109	52784	1.05E5	74936	7.30E5	1.13 <i>E</i> 5	847	34279	0.94
-log10(Y23) ∈ (3.375, +∞)	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76
InvMass (GeV) ∈ (116, 134)	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (−0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

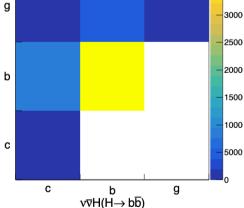





Thanks to BMR ~ 3.8%!


• •


Flavor tagging @ vvH

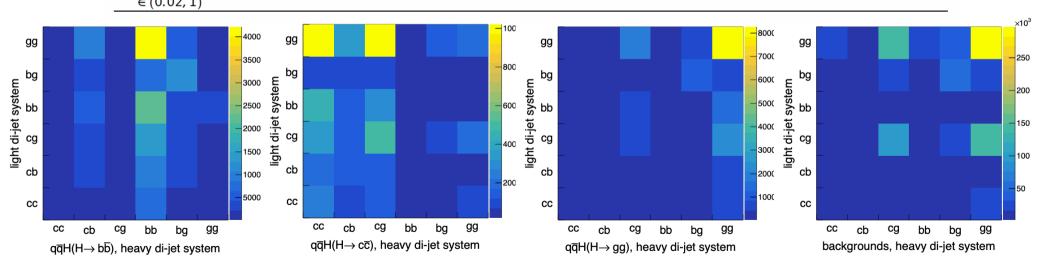


12/1/2023

HKIAS HEP 2023

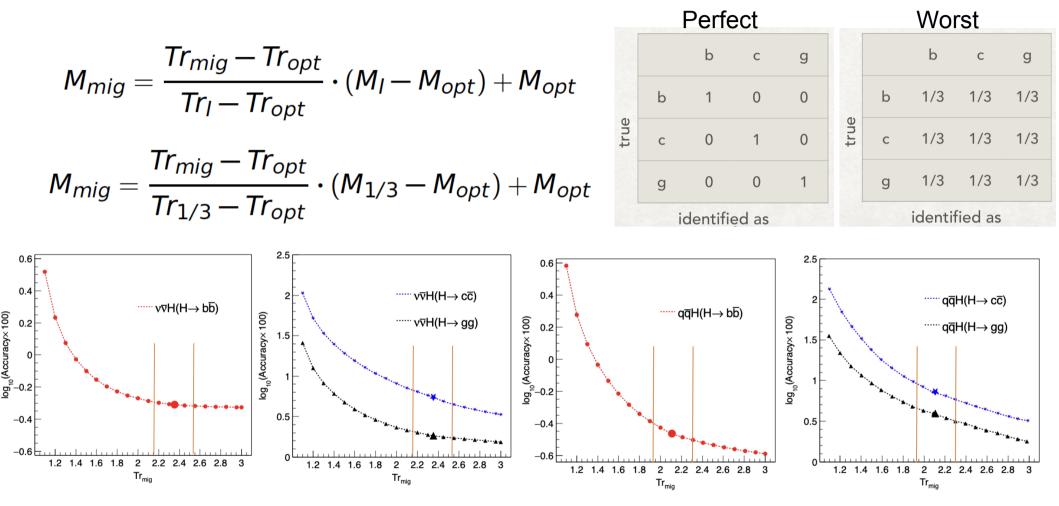
g

$$-2 \cdot \log(\ell) = \sum_{i=1}^{i=6} \frac{[S_b \cdot N_{b,i} + S_c \cdot N_{c,i} + S_{light} \cdot N_{light,i} + N_{bkg,i} - N_i]^2}{N_i}$$

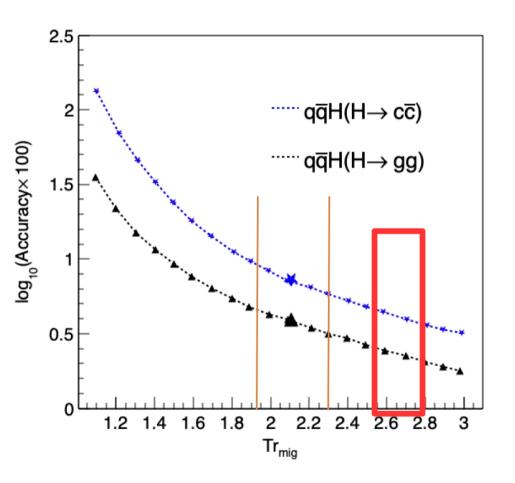

- S_b : the signal strength of $\nu\nu Hb\bar{b}$
- $N_{b,i}$: the event number of $\nu\nu Hb\bar{b}$ in *ith* bin
- N_i: the total event number in i'th bin of vvHbb, vvH/cc, vvHgg and backgrounds
- $N_{bkg,i}$ is the expected event number in *ith* bin of backgrounds,
- similar for S_c , S_{light} , $N_{c,i}$, and $N_{light,i}$

$$hessian \ matrix = \begin{bmatrix} \frac{\partial^2 \log(\ell)}{\partial S_g \partial S_c} & \frac{\partial^2 \log(\ell)}{\partial S_g \partial S_b} & \frac{\partial^2 \log(\ell)}{\partial S_g \partial S_g} \\ \frac{\partial^2 \log(\ell)}{\partial S_b \partial S_c} & \frac{\partial^2 \log(\ell)}{\partial S_b \partial S_b} & \frac{\partial^2 \log(\ell)}{\partial S_b \partial S_g} \\ \frac{\partial^2 \log(\ell)}{\partial S_c \partial S_c} & \frac{\partial^2 \log(\ell)}{\partial S_c \partial S_b} & \frac{\partial^2 \log(\ell)}{\partial S_c \partial S_g} \end{bmatrix}$$

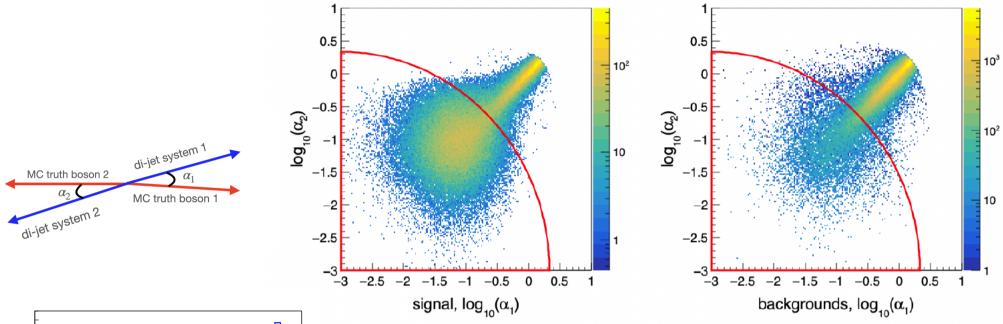
- The error covariance is obtained from the hessian matrix.
- The relative accuracy of signal strength is the square roots of the diagonal elements of the covariance matrix, tt is 0.49%/5.75%/1.82% for vvHbb/cc/gg.

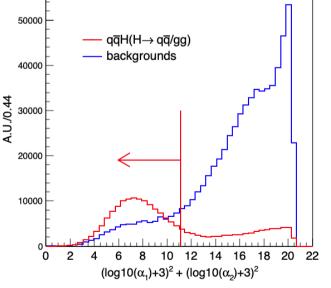

qqH, H→bb, cc, gg

total	qqHqq 527488	2f 8.01 <i>E</i> 8	SW 1.95E7	SZ 9.07E6	WW 5.08E7	ZZ 6.39E6	Mixed 2.18E7	ZH 613008	$\frac{\sqrt{S+B}}{S}(\%)$ 5.71
multiplicity $\in (27, +\infty)$	527488	3.04E8	1.46E7	3.37E6	4.85E7	6.00E6	1.81E7	577930	3.77
leadLepEn $∈ (0, 59)$	527036	2, 98E8	6.76E6	2.44E6	3.93E7	5.40 <i>E</i> 6	1.79E7	531411	3.65
visEn ∈ (199, 278)	510731	1.21 <i>E</i> 8	1.29 E 6	551105	2.14E7	3.06 <i>E</i> 6	1.71 <i>E</i> 7	180571	2.52
leadNeuEn ∈ (0, 57)	509623	5.68 E 7	716161	168030	2.04 E 7	2.93 E 6	1.65 E 7	176387	1.94
thrust ∈ (0, 0.86)	460535	7.81 <i>E</i> 6	473732	132126	1.88E7	2.60 E 6	1.54 E 7	167863	1.47
$-log(Y_{34}) \in (0, 5.8875)$	451468	4.90 <i>E</i> 6	181432	119836	1.74E7	2.40 <i>E</i> 6	1.45 E 7	165961	1.40
HiggsJetsA $\in (2.18, 2\pi)$	326207	2.83 E 6	110156	58613	4.54 E 6	870276	3.74 E 6	96560	1.08
ZJetsA ∈ (1.97, 2π)	279030	1.37 <i>E</i> 6	33491	37101	2.39E6	496611	2.00E6	74005	0.93
ZHiggsA $\in (2.32, 2\pi)$	274530	1.32 E 6	17026	33847	2.28E6	468340	1.91 <i>E</i> 6	69620	0.92
circle	268271	1.20E6	10193	31567	2.13E6	424514	1.79E6	65434	0.90
BDT ∈ (0.02.1)	192278	378300	40	307	271436	141446	244126	30022	0.57


Relative accuracies on signal strength: 0.35%/7.7%/4.0%, for bb/cc/gg respectively. 47

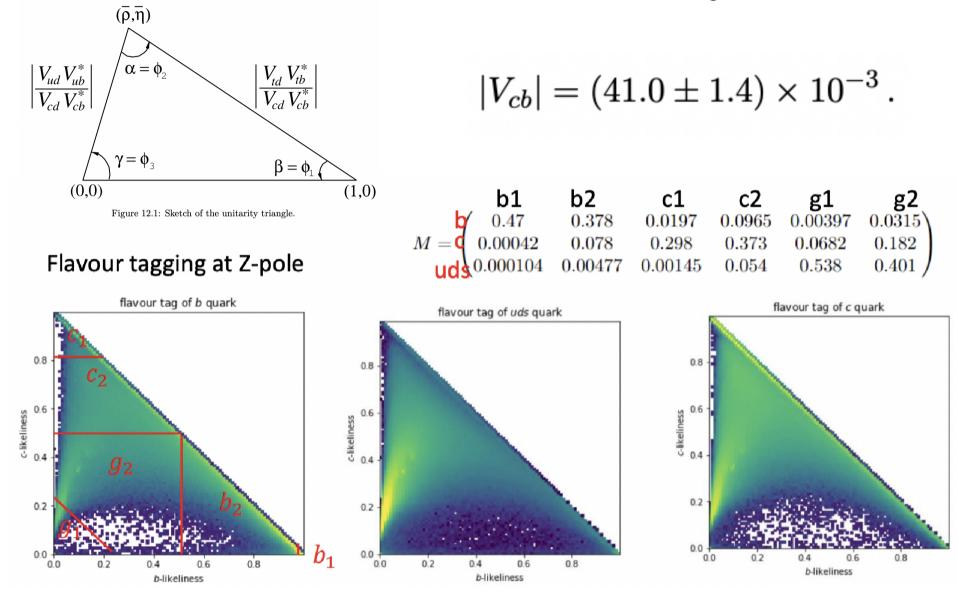
Interpolation


 Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

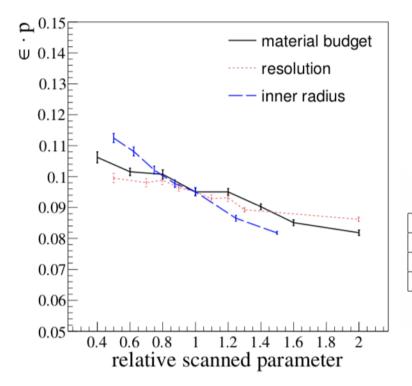

Perspective to the far future

- If we put the VTX inside the beam pipe:
 - the material & radius halves from Aggressive scenario...
 - a much better polar angle coverage...
- Much intelligent algorithm...

CSI: impact on $H \rightarrow bb$, cc, gg



If we find an observable that evaluates the performance of CSI – and eventually veto events with bad CSI, we can improve the accuracy on H->bb, cc, gg by ~ 2 times at qqH channel.


- Many ppl interested in: Yongfeng Zhu, Huaxing Zhu, Meng Xiao, Chen Zhou, MQ, ... New ideas under test
- Physics Picture, then goes to sophisticated tools. HKIAS HEP 2023

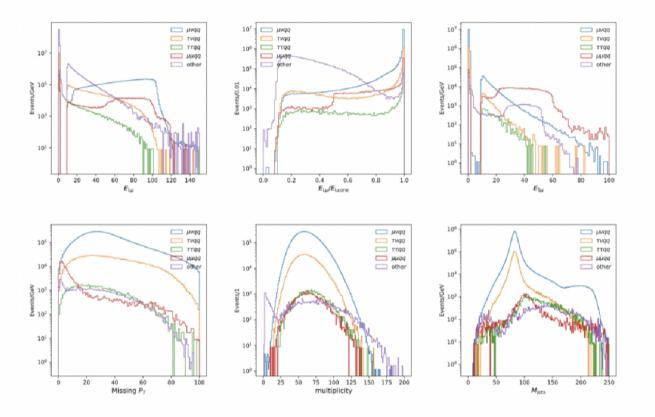
Vcb from W decay

12/1/2023

Flavor tagging V.S VTX geometry

$$\epsilon \cdot p = 0.095(1 - 0.14 \frac{\Delta x_{\text{material}}}{x_{\text{material}}})(1 - 0.09 \frac{\Delta x_{\text{resolution}}}{x_{\text{resolution}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radius}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radiu$$

Table 2. Reference geometries.


	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
trace	2.3	2.1	1.9

$$Tr_{mig} = 2.118 + 0.054 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.040 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.098 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$$

12/1/2023

Event selections

• Selection criteria are optimized for statistical uncertainty for $Br(W \rightarrow cb)$

	$\mu\nu cb$	$\mu\nu ub$	$\mu\nu c(d/s)$	$\mu\nu u(d/s)$	$\mu 3\nu cb$	$\mu 3\nu c(d/s)$	$\mu 3\nu u(d/s)$
w.o. slections	11.3k	102	6.78M	6.78M	2.23k	1.18M	1.18M
$E_{L\mu} > 12 \text{GeV}$	10.6k	94	6.32M	6.32M	1.5k	834k	829k
$R_{\mathrm{L}\mu} > 0.95$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
$\cos(\theta_{L\mu})$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
Second isolation muon veto	9.1k	77	5.5M	5.52M	1.2k	709k	710k
Missing P_T	8.92k	74	5.38M	5.41M	1.13k	685k	686k
multiplicity > 27	8.92k	74	5.37M	5.37M	1.13k	683k	681k
$M_{ m jets} > 50 { m GeV}$	8.86k	74	5.34M	5.35M	1.13k	679k	679k
$M_{ m jets} < 95 { m GeV}$	7.92k	70	4.79M	4.79M	1.05k	616k	613k
efficiency.	0.701(08)	0.682(88)	0.707	0.707	0.470(40)	0.524(02)	0.520(02)

Table 2: Event selections for signals. The number in the parenthesis are the uncertainties of the last two digits of the efficiencies arise from the statistics of Monte Carlo sample.

	$e3\nu qq$	$\tau_{\rm had.} 3 \nu q q$	$\tau \tau q q$	$\mu\mu qq$	other
w.o. slections	2.43M	8.79M	609k	1.25M	364.9M
$E_{ m L\mu} > 12 { m GeV}$	37.3k	190k	118k	790k	13.6M
$R_{ m L\mu} > 0.95$	357	9.93k	65.4k	413k	85.1k
Second isolation muon veto	357	9.89k	64.1k	125k	57.9k
Missing P_T	349	9.59k	60.0k	47.7k	46.7k
multiplicity > 27	341	9.51k	59.6k	47.2k	38.0k
$M_{\rm jets} > 50 { m GeV}$	318	9.41k	58.8k	45.7k	35.0k
$M_{\rm jets} < 95 { m GeV}$	302	8.47k	6.72k	10.7k	4.02k
Eff.	0.000125	0.000964	0.011	0.00854	1.1e-05

Table 3: Event selections for backgrounds.

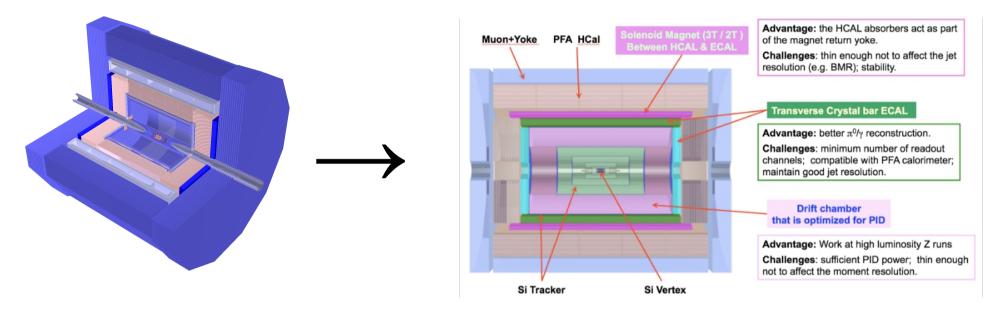
$$\begin{split} |V_{ud}| &= 0.97373 \pm 0.00031 \,. \\ |V_{us}| &= 0.2243 \pm 0.0008 \,. \\ |V_{cd}| &= 0.221 \pm 0.004 \,. \\ |V_{cs}| &= 0.975 \pm 0.006 \,. \end{split}$$
 Sum: relative - 4E-3

Sum: relative - 2%

$$|V_{cb}| = (40.8 \pm 1.4) \times 10^{-3}$$
.

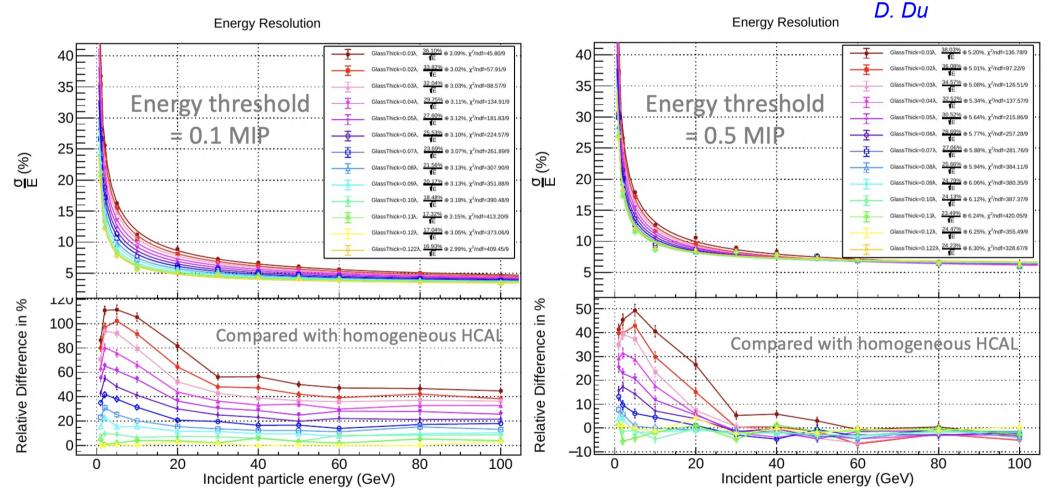
$$|V_{ub}| = (3.82 \pm 0.20) \times 10^{-3}$$
.

 $|V_{td}| = (8.6 \pm 0.2) \times 10^{-3}, \qquad |V_{ts}| = (41.5 \pm 0.9) \times 10^{-3}.$


 $|V_{tb}| = 1.014 \pm 0.029 \,.$

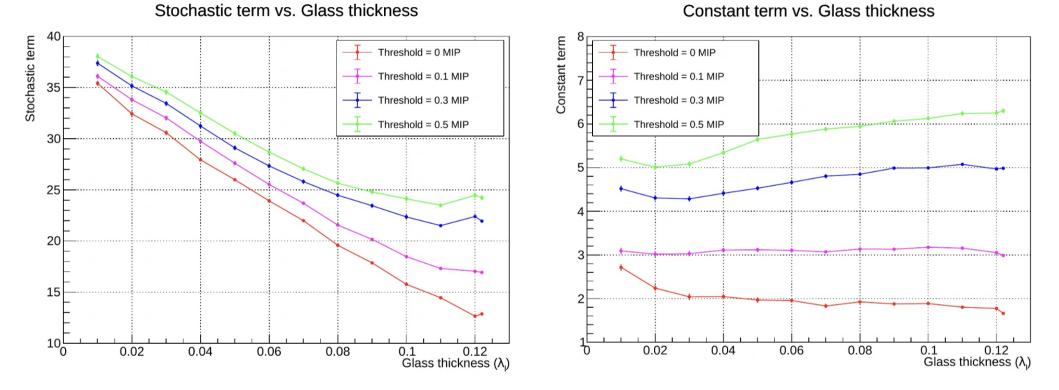
12/1/2023

Discussion on Jet charge


- We propose LPJC, a robust method that
 - Provide slightly worse tagging power compared to WCJC (reference method)
 - Significantly enhance the performance once combined with WCJC
 - c-jet with Eff. Tagging power ~ 37%, best of the world?
- LPJC, Preserve the physics information strongly depends on the
 - Hadron species that quark fragmented into
 - Final state that Heavy Hadron decays into
 - Num. results depends slightly on fragmentation models (Generator type)
- Dependency to the detector performance yet to be quantified. But LPJC & WCJC relies on different performance & highly complementary
 - Both need good acceptance & resolution.
 - LPJC: Pid!!!
 - WCJC: Momentum threshold
- Plan to submit soon.

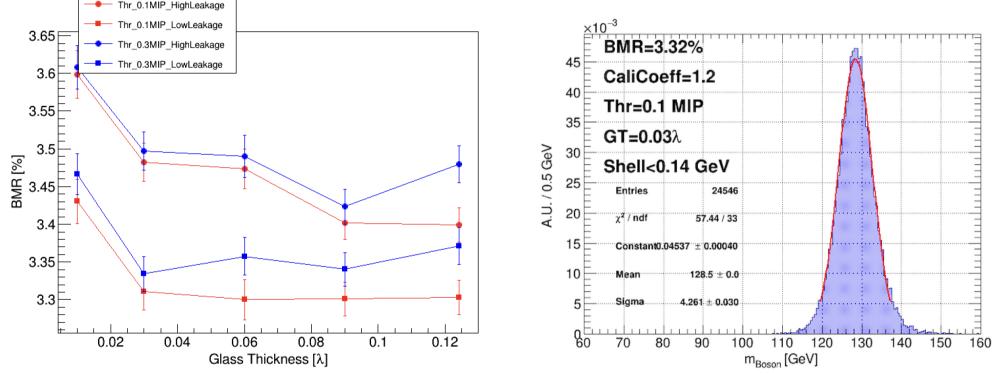
From Baseline to 4th

- Tracker: TPC + Silicon \rightarrow Drift Chamber + Silicon
- ECAL: Si+W \rightarrow Xstal
- HCAL: GRPC + Iron \rightarrow Glass + Iron
- Solenoid: Outside HCAL \rightarrow Between ECAL & HCAL

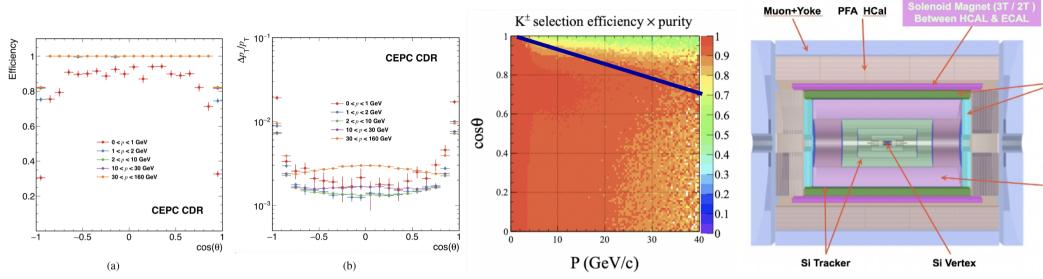


- In an ideal case ideal Geometry ~ semi infinite...
- HCAL resolution significantly w.r.t. Baseline, at single particle level 12/1/2023 HKIAS HEP 2023

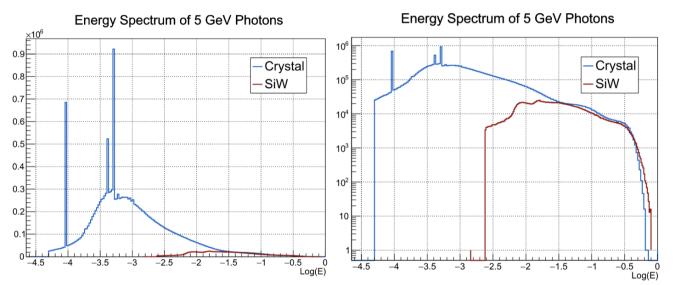
Single Particle @ GS HCAL


D. Du

Performance improves almost linearly at lower energy threshold, and larger sampling fraction


HCAL @ BMR

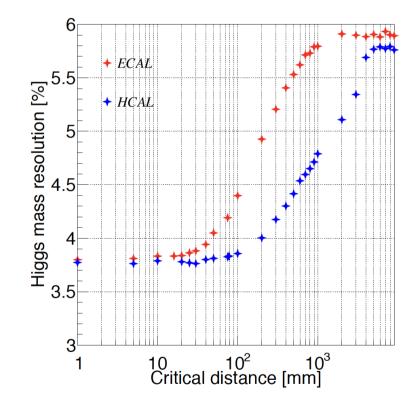
P. Hu & YX. Wang



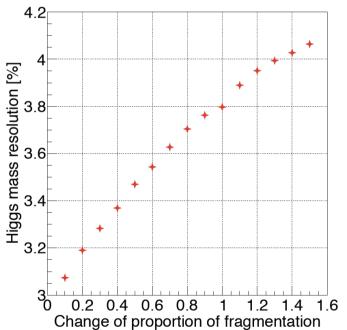
- Fits well with the model...
- Yet, a lot more to be understood

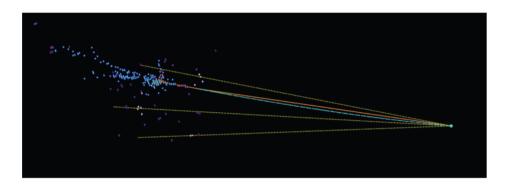
Tracker: tracking & Pid

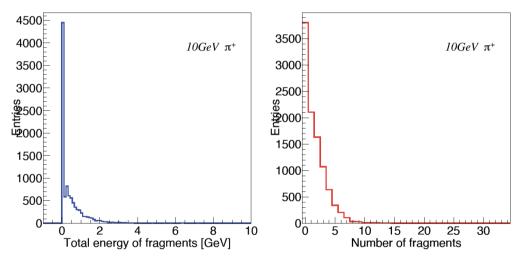
- BMR insensitive to Tracker unless tracker is bad
 - Pid & Lower the threshold shall leads to small improve, by correcting hadron mass
- Baseline set a good reference. Move toward better realizability & performance
- Performance show the differential one!
 - Momentum resolution ~ 0.1%
 - Threshold ~ 0.1 MeV or lower & Larger Solid Angle Coverage!
 - dEdx or dNdx, if provided, better than 3% in barrel region for GeV level hadron (PS, very doubt for an DC inner radius of 600 mm... or larger)


- Original energy spectrum, 10k events, threshold 50 keV
- A large number of low energy hits in crystal ECAL

 Threshold (0.3 MIP): <u>SiW</u> 50 keV, crystal 3 MeV


二、粒子流重建算法中误差源的拆解分析与模型构建


- ▶ 依赖关系分析——临近粒子分离能力
 - ▶ 分离能力越差, BMR 越大, 最终趋于强子能量分辨
 - ≻ 左侧拐点
 - ▶ 电磁簇射 < 20mm
 - ▶强子簇射 < 100mm
 - ▶基线临界分离距离
 - ▶ 电磁簇射~16mm
 - ▶强子簇射~78mm
 - ▶ 基本满足需求



三、粒子流重建算法中误差源的拆解分析与模型构建

- ▶ 依赖关系分析——带电强子碎裂簇团
 - > 对 BMR 的影响最显著
 > 若能完全消除: BMR ~3.8% → 3%
 > 消除一半: BMR ~3.8% → 3.5%

