IAS Program on High Energy Physics

Lepton-flavour-violating Z and quarkonium decays

Lorenzo Calibbi

南間大學 Nankai University

HKUST, February 12th 2023

Motivation

In the SM, electroweak interactions are *lepton flavour universal* and (with massless neutrinos) lepton flavour conserving

Neutrino masses/oscillations $\iff X_e, X_\mu, X_\tau$

Lepton family numbers are not conserved: why not *charged* lepton flavour violation (CLFV): $\mu \to e\gamma$, $\tau \to \mu\gamma$, $\mu \to eee$, etc.?

In the SM + neutrino masses, CLFV rates suppressed by a factor

$$\left(\frac{\Delta m_{\nu}}{M_W}\right)^4 \approx 10^{-48}$$

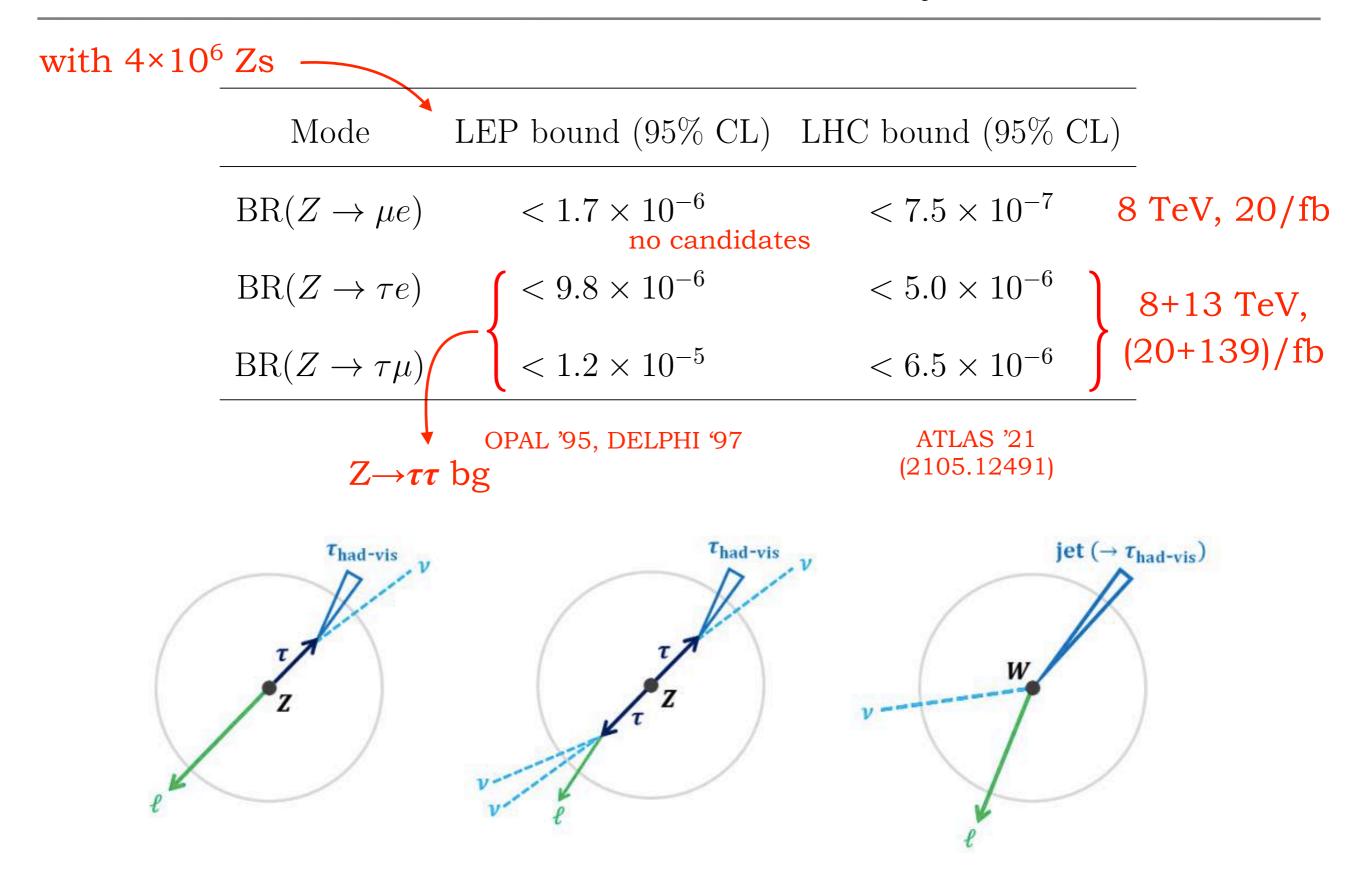
CLFV: clear signal of New Physics, stringent test of NP physics coupling to leptons, probe of scales way beyond the LHC reach

Z and quarkonium LFV

LFV decays of the Z

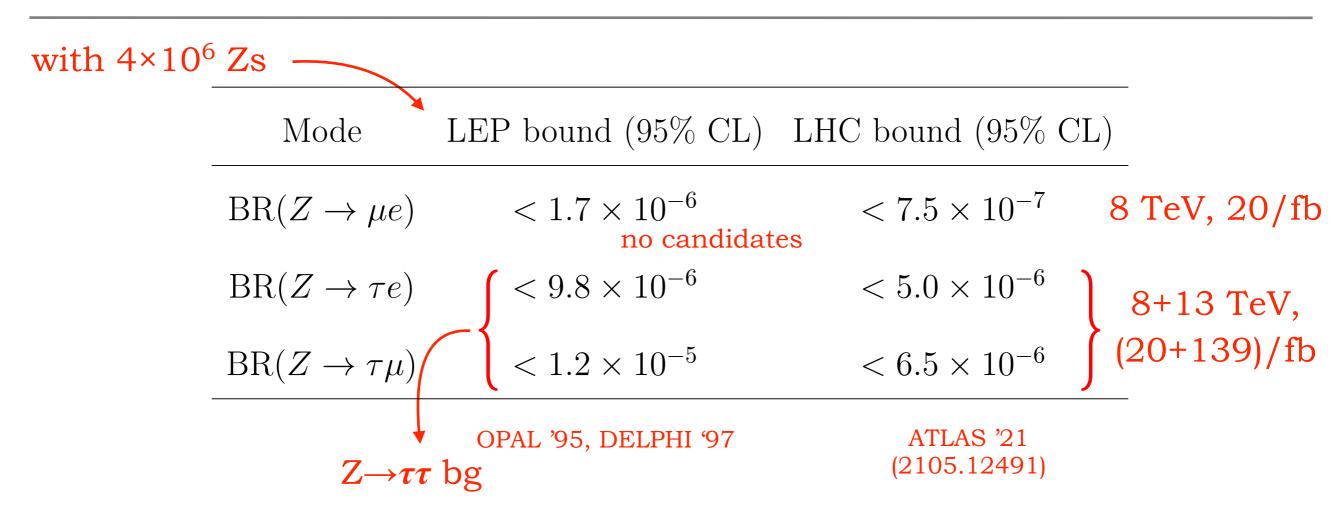
mainly based on LC, X. Marcano, J. Roy arXiv:2107.10273

Present limits on LFV Z decays



Z and quarkonium LFV

Present limits on LFV Z decays



LHC searches limited by backgrounds (in particular Z → ττ): max ~10 improvement can be expected at HL-LHC (3000/fb)
Operating as a "Tera-Z" factory (running at the Z pole and collecting ~10¹² Zs) CEPC/FCC-ee can definitely reach better sensitivities

Z and quarkonium LFV

Z LFV prospects

A study in the context of the FCC-ee (5×10^{12} Zs):

• $Z \rightarrow \mu e$:

In contrast to the LHC, no background from $Z \rightarrow \tau \tau$:

Z mass constraint much more effective (collision energy is known)

 \rightarrow background rate < 10⁻¹¹ (with a 0.1% momentum resolution at ~45 GeV)

Main issue: muons can release enough brems. energy in the ECAL to be misid as electrons. Mis-id probability measured by NA62 for a LKr ECAL: 4×10^{-6} (for $p_{\mu} \sim 45$ GeV)

Bg. from
$$Z \rightarrow \mu\mu$$
 + mis-id μ
(3×10⁻⁷ of all Z decays)
Sensitivity limited to: BR($Z \rightarrow \mu e$) ~ 10⁻⁸
(Improved e/ μ separation? Down to 10⁻¹⁰)

Z and quarkonium LFV

Lorenzo Calibbi (Nankai)

M. Dam @ Tau '18 & 1811.09408

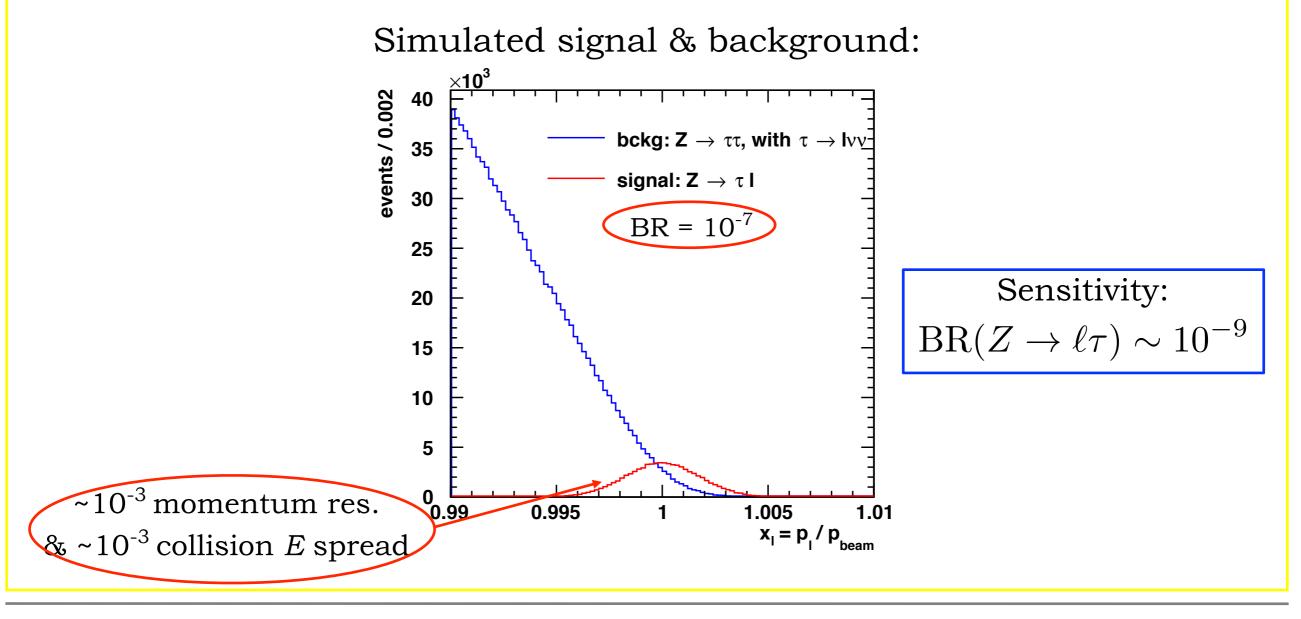
Z LFV prospects

A study in the context of the FCC-ee (5×10^{12} Zs):

• $Z \rightarrow \ell \tau$:

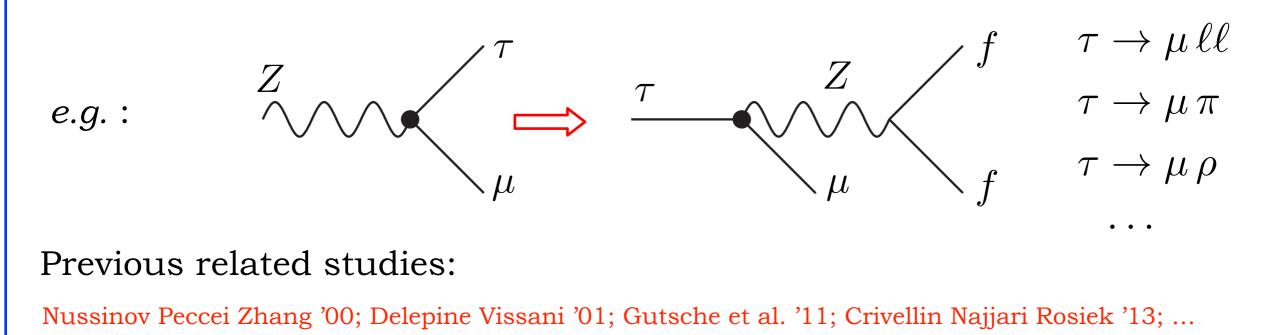
M. Dam @ Tau '18 & 1811.09408

To avoid mis-id, select one hadronic τ (≥3 prong, or reconstructed excl. mode) Main background from $Z \rightarrow \tau \tau$ (with one leptonic τ decay)



Z and quarkonium LFV

- CEPC/FCC-ee can improve on present LHC (future HL-LHC) bounds up to 4 (3) orders of magnitude, at least for the $Z \rightarrow \tau \ell$ modes
- The question is: can we find new physics searching for these modes?
- It depends on the indirect constraints from other processes
- In particular low-energy LFV decays are unavoidably induced



LFV in the SM effective field theory

If NP scale
$$\Lambda \gg m_W$$
: $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_a C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_a C_a^{(6)} Q_a^{(6)} + \dots$

Di	mension-6 effective o	perators that car	n induce CLFV
	4-leptons operators	Di	ipole operators
$Q_{\ell\ell}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{L}_L \gamma^\mu L_L)$	Q_{eW}	$(\bar{L}_L \sigma^{\mu\nu} e_R) \tau_I \Phi W^I_{\mu\nu} (\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$
Q_{ee}	$(ar{e}_R\gamma_\mu e_R)(ar{e}_R\gamma^\mu e_R)$	Q_{eB}	$(\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$
$Q_{\ell e}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{e}_R \gamma^\mu e_R)$		
	2-leptor	n 2-quark operators	
$\overline{Q^{(1)}_{\ell q}}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{Q}_L \gamma^\mu Q_L)$	$Q_{\ell u}$	$(ar{L}_L\gamma_\mu L_L)(ar{u}_R\gamma^\mu u_R)$
$Q^{(3)}_{\ell q}$	$(ar{L}_L\gamma_\mu au_I L_L)(ar{Q}_L\gamma^\mu au_I Q_L)$	Q_{eu}	$(ar{e}_R\gamma_\mu e_R)(ar{u}_R\gamma^\mu u_R)$
Q_{eq}	$(ar{e}_R\gamma^\mu e_R)(ar{Q}_L\gamma_\mu Q_L)$	$Q_{\ell edq}$	$(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$
$Q_{\ell d}$	$(ar{L}_L\gamma_\mu L_L)(ar{d}_R\gamma^\mu d_R)$	$Q^{(1)}_{\ell equ}$	$(ar{L}_{L}^{a}e_{R})\epsilon_{ab}(ar{Q}_{L}^{b}u_{R})$
Q_{ed}	$(ar{e}_R\gamma_\mu e_R)(ar{d}_R\gamma^\mu d_R)$	$Q^{(3)}_{\ell equ}$	$(\bar{L}^a_i\sigma_{\mu\nu}e_R)\epsilon_{ab}(\bar{Q}^b_L\sigma^{\mu\nu}u_R)$
	Lepto	n-Higgs operators	
$Q^{(1)}_{\Phi\ell}$	$(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{L}\gamma^{\mu}L_{L})\ (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R}\gamma^{\mu}e_{R})$	$Q^{(3)}_{\Phi\ell}$	$(\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{L}_{L} \tau_{I} \gamma^{\mu} L_{L})$
$Q_{\Phi e}$	$(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R}\gamma^{\mu}e_{R})$	$Q_{e\Phi 3}$	$(ar{L}_L e_R \Phi)(\Phi^\dagger \Phi)$
		Grzadkowski et al. '1	0; Crivellin Najjari Rosiek '13

Z and quarkonium LFV

The couplings of Z to leptons are protected by the SM gauge symmetry \rightarrow LFV effects must be proportional to the EW breaking:

$$\operatorname{BR}(Z \to \ell \ell') \sim \operatorname{BR}(Z \to \ell \ell) \times C_{\operatorname{NP}}^2 \left(\frac{v}{\Lambda_{\operatorname{NP}}}\right)^2$$

In the SM EFT, only 5 operators contribute at the tree level:

$$\begin{split} Q_{\Phi\ell}^{(1)} &= (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}^{i} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}') \\ Q_{eW} &= (\bar{\ell}_{L} \sigma^{\mu\nu} \ell_{R}') \tau_{I} \Phi W_{\mu\nu}^{I}, \qquad Q_{eB} = (\bar{\ell}_{L} \sigma^{\mu\nu} \ell_{R}') \Phi B_{\mu\nu} \\ \\ \hline BR(Z \to \ell_{i} \ell_{j}) &= \frac{m_{Z}}{12\pi\Gamma_{Z}} \left\{ \left| g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right|^{2} + \left| g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right|^{2} + \frac{m_{Z}^{2}}{2} \left(\left| \delta g_{TR}^{ij} \right|^{2} + \left| \delta g_{TL}^{ij} \right|^{2} \right) \right\} \\ \mathcal{L}_{\text{eff}}^{Z} &= \left[\left(g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right) \left| \bar{\ell}_{i} \gamma^{\mu} P_{R} \ell_{j} + \left(g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right) \left| \bar{\ell}_{i} \gamma^{\mu} P_{L} \ell_{j} \right] Z_{\mu} + \left[\delta g_{TR}^{ij} \left| \bar{\ell}_{i} \sigma^{\mu\nu} P_{R} \ell_{j} + g_{TL}^{ij} \left| \bar{\ell}_{i} \sigma^{\mu\nu} P_{L} \ell_{j} \right] Z_{\mu\nu} + h.c. \,, \end{split}$$

Z and quarkonium LFV

The couplings of Z to leptons are protected by the SM gauge symmetry \rightarrow LFV effects must be proportional to the EW breaking:

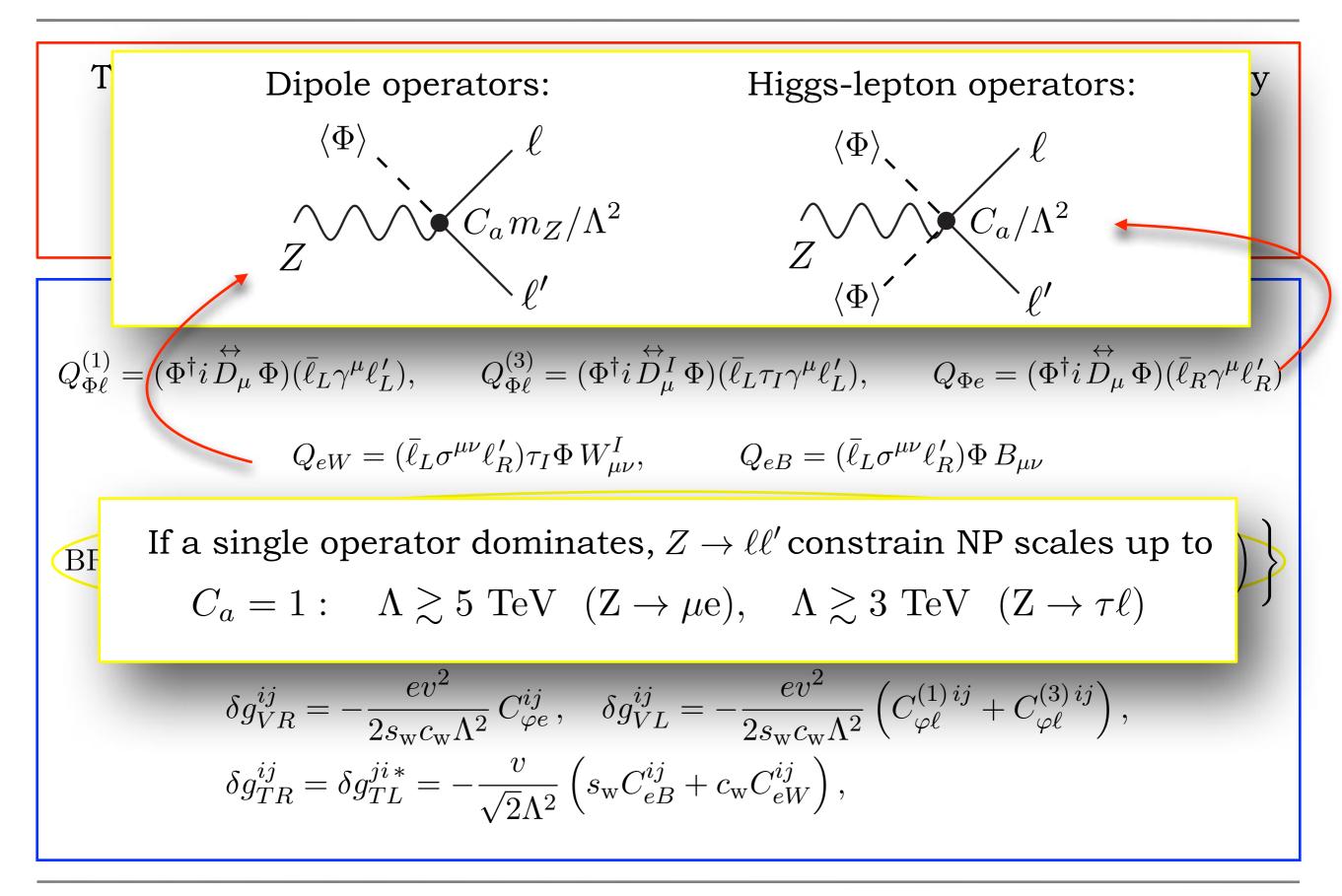
$$BR(Z \to \ell \ell') \sim BR(Z \to \ell \ell) \times C_{NP}^2 \left(\frac{v}{\Lambda_{NP}}\right)^4$$

In the SM EFT, only 5 operators contribute at the tree level:

 $Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{I} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}')$ $Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell'_R) \tau_I \Phi W^I_{\mu\nu}, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell'_R) \Phi B_{\mu\nu}$ $\operatorname{BR}\left(Z \to \ell_i \ell_j\right) = \frac{m_Z}{12\pi\Gamma_Z} \left\{ \left| g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right|^2 + \left| g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right|^2 + \frac{m_Z^2}{2} \left(\left| \delta g_{TR}^{ij} \right|^2 + \left| \delta g_{TL}^{ij} \right|^2 \right) \right\}$ $\delta g_{VR}^{ij} = -\frac{ev^2}{2s_{\rm w}c_{\rm w}\Lambda^2} C_{\varphi e}^{ij}, \quad \delta g_{VL}^{ij} = -\frac{ev^2}{2s_{\rm w}c_{\rm w}\Lambda^2} \left(C_{\varphi \ell}^{(1)\,ij} + C_{\varphi \ell}^{(3)\,ij} \right),$ $\delta g_{TR}^{ij} = \delta g_{TL}^{ji*} = -\frac{v}{\sqrt{2}\Lambda^2} \left(s_{\rm w} C_{eB}^{ij} + c_{\rm w} C_{eW}^{ij} \right),$

Z and quarkonium LFV

Z LFV in the SM EFT



Z and quarkonium LFV

• These operators give rise to low-energy lepton LFV too:

 $\mu e: \mu \to e\gamma, \ \mu \to eee, \ \mu \to e \text{ in nuclei}$

$$\tau \ell: \quad \tau \to \ell \gamma, \quad \tau \to \ell \ell' \ell', \quad \tau \to \ell \pi, \quad \tau \to \ell \rho, \ldots$$

• How large can LFV Z rates be without conflict with these bounds?

- To calculate this, we have to adopt the standard procedure:
 - (i) Running of the operators from Λ to the electroweak scale $\sim m_Z$
 - \rightarrow operator mixing
 - (ii) Matching at m_Z to the low-energy EFT $\mathcal{O}_{\psi\chi,\alpha\beta\gamma\delta}^{A,XY} = (\overline{\psi_{\alpha}}\Gamma_A P_X \psi_{\beta})(\overline{\chi_{\gamma}}\Gamma_A P_Y \chi_{\delta})$
 - (i.e. integrating out Higgs & EW gauge bosons)
 - (iii) QED×QCD running from m_Z down to $m_{\tau/\mu}$

(iv) Compute the low-energy observables

Let's start switching on *only one* operator at the time at the scale Λ

Dipole operators can not play a major role, as they directly contribute to $\ell \to \ell' \gamma$ through $\mathcal{L} \supset \frac{C_{e\gamma}}{\Lambda^2} \frac{v}{\sqrt{2}} (\bar{\ell}_L \sigma^{\mu\nu} \ell'_R) F_{\mu\nu}, \quad C_{e\gamma} \approx \cos \theta_W C_{eB} - \sin \theta_W C_{eW}$

if dominant LFV effects stem from C_{eB} , C_{eW} :

$$\begin{split} & \mathrm{BR}(\mu \to e\gamma) \lesssim 4.2 \times 10^{-13} \quad [\mathrm{MEG~'16}] \quad \Rightarrow \quad \mathrm{BR}(Z \to \mu e) \lesssim 10^{-23} - 10^{-22} \\ & \mathrm{BR}(\tau \to e\gamma) \lesssim 3.3 \times 10^{-8} \quad [\mathrm{BaBar~'10}] \quad \Rightarrow \quad \mathrm{BR}(Z \to \tau e) \lesssim 10^{-15} - 10^{-14} \\ & \mathrm{BR}(\tau \to \mu \gamma) \lesssim 4.4 \times 10^{-8} \quad [\mathrm{BaBar~'10}] \quad \Rightarrow \quad \mathrm{BR}(Z \to \tau \mu) \lesssim 10^{-15} - 10^{-14} \end{split}$$

(BRs suppressed by the large Z width, compared to lepton decays)

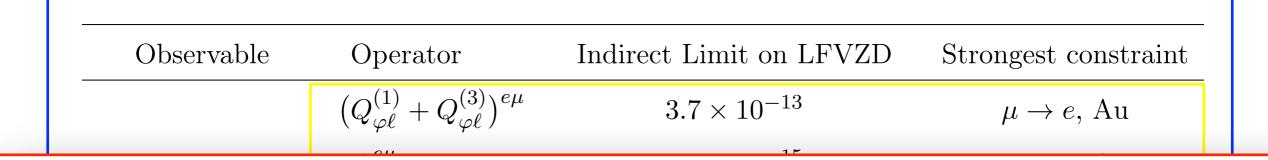
One operator dominance: Higgs currents

Observable	Operator	Indirect Limit on LFVZD	Strongest constrain
	$\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\mu}$	3.7×10^{-13}	$\mu \to e, \mathrm{Au}$
$BR(Z \to \mu e)$	$Q^{e\mu}_{arphi e}$	9.4×10^{-15}	$\mu \to e, \mathrm{Au}$
$\operatorname{DR}(Z \to \mu e)$	$Q^{e\mu}_{eB}$	1.4×10^{-23}	$\mu ightarrow e \gamma$
	$Q^{e\mu}_{eW}$	1.6×10^{-22}	$\mu ightarrow e \gamma$
	$\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\tau}$	$6.3 imes 10^{-8}$	$\tau \to \rho e$
$BR(Z \to \tau e)$	$Q^{e au}_{arphi e}$	$6.3 imes 10^{-8}$	$\tau \to \rho e$
$\operatorname{DR}(Z \to T e)$	$Q^{e au}_{eB}$	1.2×10^{-15}	$\tau \to e \gamma$
	$Q^{e au}_{eW}$	1.3×10^{-14}	$\tau \to e \gamma$
	$\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{\mu\tau}$	4.3×10^{-8}	$\tau \to \rho \mu$
$BR(Z \to \tau \mu)$	$Q^{\mu au}_{arphi e}$	4.3×10^{-8}	$\tau \to \rho \mu$
	$Q^{\mu au}_{eB}$	1.5×10^{-15}	$\tau \to \mu \gamma$
	$Q^{\mu au}_{eW}$	1.7×10^{-14}	$ au o \mu \gamma$

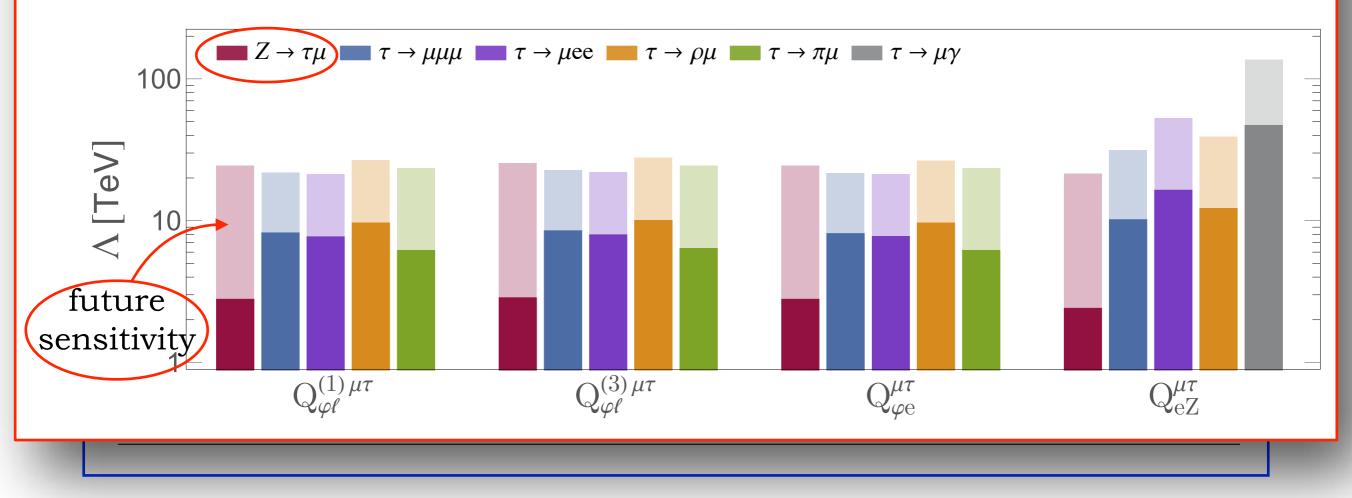
Wilson (Aebischer Kumar Straub '18) and Flavio (Straub '18) packages

Z and quarkonium LFV

One operator dominance: Higgs currents



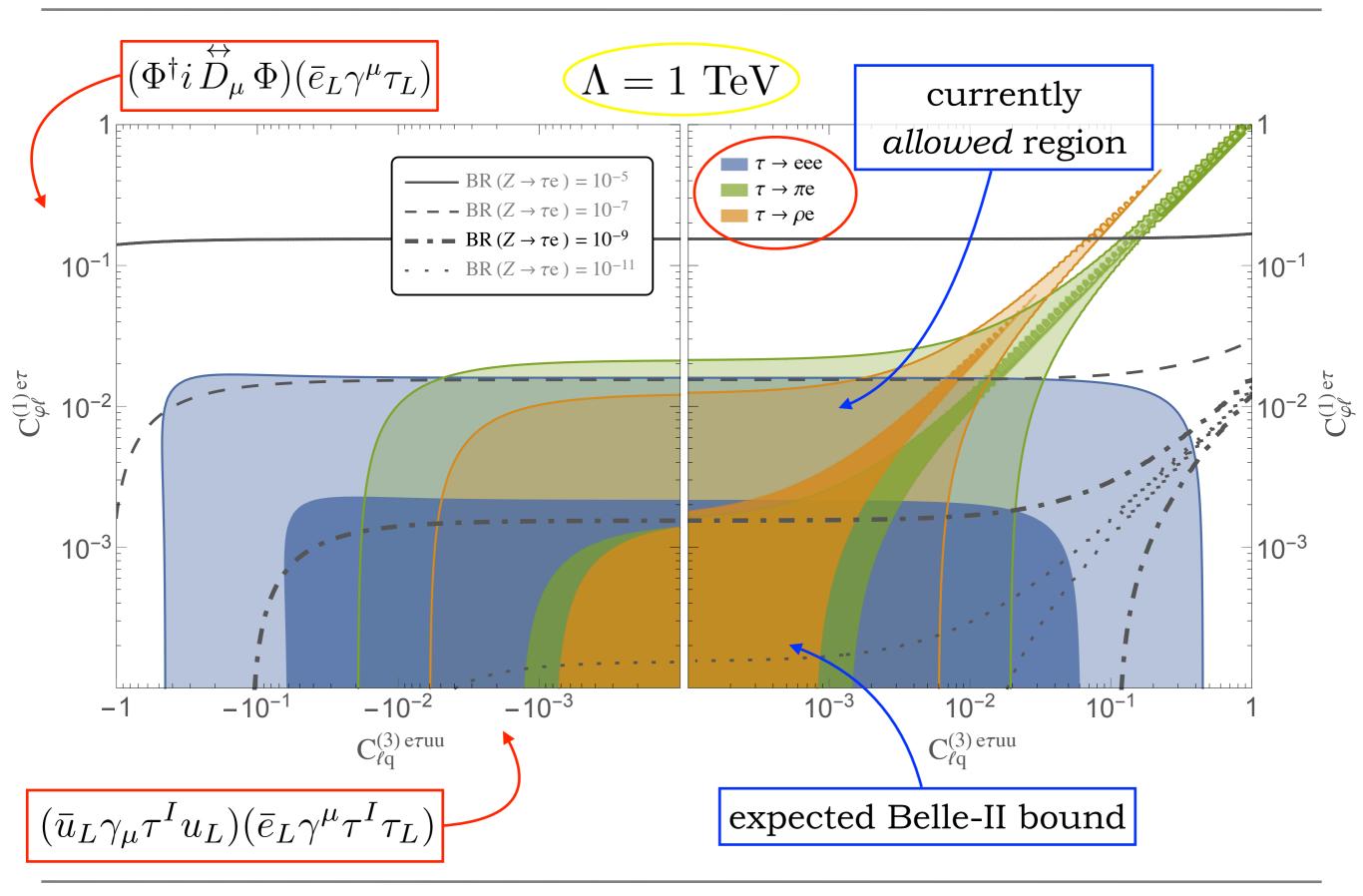
• A Tera Z can test LFV new physics scales searching for $Z \rightarrow \tau \ell$ at the level of what Belle II will do through LFV tau decays (or better)



Wilson (Aebischer Kumar Straub '18) and Flavio (Straub '18) packages

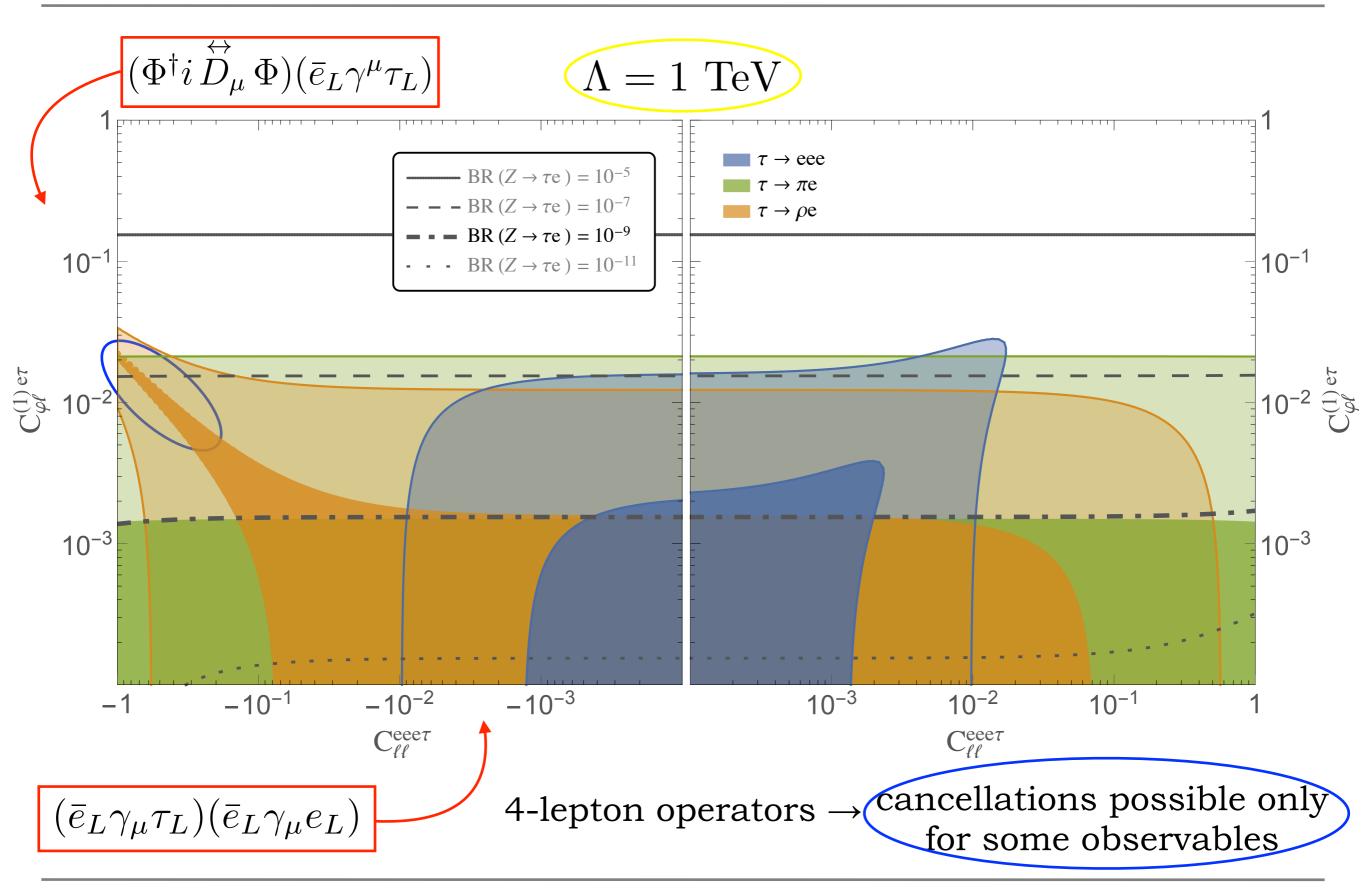
Z and quarkonium LFV

Two operators



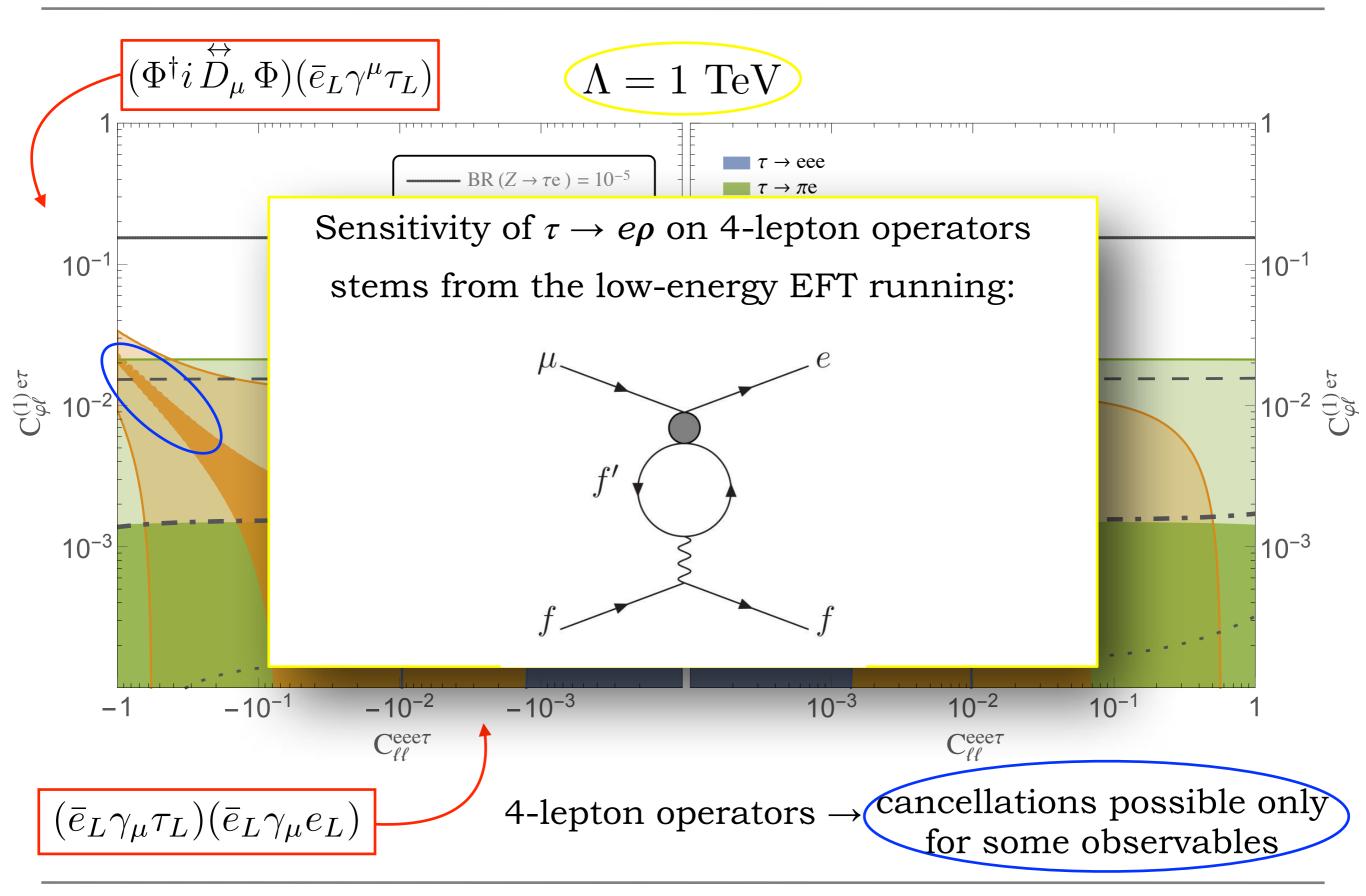
Z and quarkonium LFV

Two operators



Z and quarkonium LFV

Two operators



Z and quarkonium LFV

 μ -*e* LFV in Z decays seems to be beyond CEPC sensitivity

SMEFT dipole operators severely constrained, unlike (2 combinations of) Higgs-lepton operators

 $BR(Z \rightarrow \tau \ell) \approx 10^{-7}$ still compatible with bounds from tau decays (future Belle-II limits may push the indirect limit down to 10^{-9})

Different operator dependence of different observables tends to cover possible cancellations in the NP parameter space

Still plenty of room to discover (tau) LFV at a Tera Z (and complementarity with B-factory searches)

LFV quarkonium decays

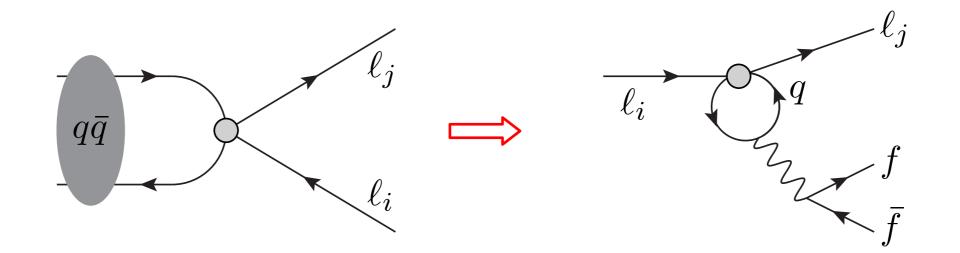
mainly based on LC, T. Li, X. Marcano, M. Schmidt arXiv:2207.10913

LFVQD	Present hou	unds on BR (90%)	(\mathbf{CL})
		, , , , , , , , , , , , , , , , , , ,	,
$J/\psi ightarrow e\mu$	4.5×10^{-9}	BESIII (2022)	[16]
$\Upsilon(1S) \to e\mu$	3.6×10^{-7}	Belle (2022)	[17]
$\Upsilon(1S) \to e \mu \gamma$	4.2×10^{-7}	Belle (2022)	[17]
$J/\psi \to e \tau$	$7.5 imes 10^{-8}$	BESIII (2021)	[18]
$\Upsilon(1S) \to e\tau$	2.4×10^{-6}	Belle (2022)	[17]
$\Upsilon(1S) \to e \tau \gamma$	$6.5 imes 10^{-6}$	Belle (2022)	[17]
$\Upsilon(2S) \to e\tau$	3.2×10^{-6}	BaBar (2010)	[19]
$\Upsilon(3S) \to e\tau$	4.2×10^{-6}	BaBar (2010)	[19]
$J/\psi o \mu \tau$	2.0×10^{-6}	BES (2004)	[20]
$\Upsilon(1S) \to \mu \tau$	2.6×10^{-6}	Belle (2022)	[17]
$\Upsilon(1S) \to \mu \tau \gamma$	$6.1 imes 10^{-6}$	Belle (2022)	[17]
$\Upsilon(2S) \to \mu \tau$	$3.3 imes 10^{-6}$	BaBar (2010)	[19]
$\Upsilon(3S) \to \mu \tau$	3.1×10^{-6}	BaBar (2010)	[19]

Table 1: Present 90% CL upper limits on vector quarkonium LFV decays.No limit is currentlyavailable for LFV decays of (pseudo)scalar or other vector resonances.

BESIII continues taking data, a high-lumi Super Tau-Charm Factory (STCF) is being discussed with c.o.m. $E \sim 2-7$ GeV that could produce $\sim 10^{13} \text{ J/}\psi$ (1000x current BESIII), Belle II will collect 50-100x the data of Belle/BaBar

- In principle, ideal modes to test $2q2\ell$ operators involving heavy quarks (that could stem *e.g.* from by Z'/LQs with MFV-like couplings)
- Searches for radiative modes and decays of (pseudo)scalar resonances would be sensitive to different LEFT operators than the vector ones
- Again, strongly limited by indirect constraints from tau/mu processes:



Effect summarised by the RGE running of the LEFT operators

Indirect constraints on quarkonium LFV

 $\begin{aligned} \mathcal{L}_{2q2\ell} &= C_{eq,prst}^{V,LL} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_L q_t) + C_{eq,prst}^{V,RR} \left(\bar{\ell}_p \gamma^{\mu} P_R \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) \\ &+ C_{eq,prst}^{V,LR} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) + C_{qe,prst}^{V,LR} \left(\bar{q}_p \gamma_{\mu} P_L q_r \right) (\bar{\ell}_s \gamma^{\mu} P_R \ell_t) \\ &+ \left[C_{eq,prst}^{S,RL} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_L q_t) + C_{eq,prst}^{S,RR} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_R q_t) \\ &+ C_{eq,prst}^{T,RR} \left(\bar{\ell}_p \sigma_{\mu\nu} P_R \ell_r \right) (\bar{q}_s \sigma^{\mu\nu} P_R q_t) + h.c. \right], \end{aligned}$

Oranatan	Cturre most a constant	Indirect upper	[·] limits on BR
Operator	Strongest constraint	$J/\psi ightarrow \ell\ell'$	$\psi(2S) \to \ell \ell'$
$C^{V,LL}_{eu,\mu ecc}$	$\mu \rightarrow e, \mathrm{Au}$	$[1.6 - 0.07] \times 10^{-15}$	$[2.8 - 0.2] \times 10^{-16}$
$C^{V,LR}_{eu,\mu ecc}$	$\mu \to e, \mathrm{Au}$	$[1.5 - 0.07] \times 10^{-15}$	$[2.8 - 0.2] \times 10^{-16}$
$C_{eu,\mu ecc}^{T,RR}$	$\mu ightarrow e \gamma$	$[3.4 - 0.5] \times 10^{-21}$	$[7.8 - 1.4] \times 10^{-22}$
$C_{e\gamma,\mu e}$	$\mu ightarrow e \gamma$	$[2.6 - 2.5] \times 10^{-26}$	$[6.3 - 0.5] \times 10^{-27}$
$C^{V,LL}_{eu, au ecc}$	$\tau \to \rho e$	$[6.6 - 0.1] \times 10^{-9}$	$[1.2 - 0.05] \times 10^{-9}$
$C^{V,LR}_{eu, au ecc}$	au o ho e	$[6.5 - 0.1] \times 10^{-9}$	$[1.2 - 0.04] \times 10^{-9}$
$C_{eu,\tau ecc}^{T,RR}$	$ au o e\gamma$	$[1.2 - 0.05] \times 10^{-12}$	$[2.3 - 0.2] \times 10^{-13}$
$C_{e\gamma,\tau e}$	$\tau \to e \gamma$	$[1.7 - 1.6] \times 10^{-18}$	$[4.7 - 3.5] \times 10^{-19}$
$C^{V,LL}_{eu, au\mu cc}$	$ au o ho \mu$	$[4.5 - 0.09] \times 10^{-9}$	$[7.9 - 0.3] \times 10^{-10}$
$C^{V,LR}_{eu, au\mu cc}$	$ au o ho \mu$	$[4.4 - 0.09] \times 10^{-9}$	$[7.9 - 0.3] \times 10^{-10}$
$C^{T,RR}_{eu, au\mu cc}$	$ au o \mu \gamma$	$[1.6 - 0.07] \times 10^{-12}$	$[2.9 - 0.3] \times 10^{-13}$
$C_{e\gamma,\tau\mu}$	$ au o \mu \gamma$	$[2.2 - 2.1] \times 10^{-18}$	$[6.1 - 4.5] \times 10^{-19}$

(a) Vector and tensor operators. The operators $C_{eu,ijcc}^{V,RR}$, $C_{ue,ccij}^{V,LR}$, $C_{eu,jicc}^{T,RR}$ and $C_{e\gamma,ji}$ lead, respectively, to the same results as $C_{eu,ijcc}^{V,LL}$, $C_{eu,ijcc}^{V,LR}$, $C_{eu,ijcc}^{T,RR}$ and $C_{e\gamma,ij}$.

Z and quarkonium LFV

Lorenzo Calibbi (Nankai)

Single operator at $\mu = [q\overline{q} - M_Z]$

Indirect constraints on quarkonium LFV

$$\begin{aligned} \mathcal{L}_{2q2\ell} &= C_{eq,prst}^{V,LL} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_L q_t) + C_{eq,prst}^{V,RR} \left(\bar{\ell}_p \gamma^{\mu} P_R \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) \\ &+ C_{eq,prst}^{V,LR} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) + C_{qe,prst}^{V,LR} \left(\bar{q}_p \gamma_{\mu} P_L q_r \right) (\bar{\ell}_s \gamma^{\mu} P_R \ell_t) \\ &+ \left[C_{eq,prst}^{S,RL} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_L q_t) + C_{eq,prst}^{S,RR} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_R q_t) \\ &+ C_{eq,prst}^{T,RR} \left(\bar{\ell}_p \sigma_{\mu\nu} P_R \ell_r \right) (\bar{q}_s \sigma^{\mu\nu} P_R q_t) + h.c. \right], \end{aligned}$$

Operator	Str. const.	Indirect upper limits on BR			
		$J/\psi ightarrow \ell \ell' \gamma$	$\eta_c \to \ell \ell'$	$\chi_{c0}(1P) \to \ell \ell'$	
$C^{S,RR}_{eu,\mu ecc}$	$\mu \rightarrow e, \mathrm{Au}$	$[1.5 - 1.4] \times 10^{-21}$	$[2.0 - 1.9] \times 10^{-20}$	$[3.4 - 3.2] \times 10^{-19}$	
$C_{eu,\mu ecc}^{S,RL}$	$\mu \rightarrow e, \mathrm{Au}$	$[1.5 - 1.4] \times 10^{-21}$	$[2.0 - 1.9] \times 10^{-20}$	$[3.4 - 3.2] \times 10^{-19}$	
$C^{S,RR}_{eu, au ecc}$	$\tau \to e \gamma$	$[1.7 - 0.003] \times 10^{-10}$	$[6.8 - 0.01] \times 10^{-9}$	$[1.5 - 0.003] \times 10^{-7}$	
$C_{eu,\tau ecc}^{S,RL}$	$\tau \to e \gamma$	$[2.0 - 0.09] \times 10^{-10}$	$[9.2 - 0.4] \times 10^{-9}$	$[1.3 - 0.08] \times 10^{-7}$	
$C^{S,RR}_{eu, au\mu cc}$	$\tau \to \mu \gamma$	$[2.2 - 0.004] \times 10^{-10}$	$[8.7 - 0.02] \times 10^{-9}$	$[1.9 - 0.003] \times 10^{-7}$	
$C^{S,RL}_{eu, au\mu cc}$	$\tau \to \mu \gamma$	$[2.6 - 0.1] \times 10^{-10}$	$[1.2 - 0.05] \times 10^{-8}$	$[1.7 - 0.1] \times 10^{-7}$	

(b) Scalar operators. We find similar limits for $\psi(2S) \to \ell \ell' \gamma$, about a factor of 4 (2) stronger for the $\mu e(\tau \ell)$ channels. See text for details on how the indirect upper limits have been estimated.

(LEFT 2q2l ops:)

Indirect constraints on quarkonium LFV

$$\begin{aligned} \mathcal{L}_{2q2\ell} &= C_{eq,prst}^{V,LL} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_L q_t) + C_{eq,prst}^{V,RR} \left(\bar{\ell}_p \gamma^{\mu} P_R \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) \\ &+ C_{eq,prst}^{V,LR} \left(\bar{\ell}_p \gamma^{\mu} P_L \ell_r \right) (\bar{q}_s \gamma_{\mu} P_R q_t) + C_{qe,prst}^{V,LR} \left(\bar{q}_p \gamma_{\mu} P_L q_r \right) (\bar{\ell}_s \gamma^{\mu} P_R \ell_t) \\ &+ \left[C_{eq,prst}^{S,RL} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_L q_t) + C_{eq,prst}^{S,RR} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_R q_t) \\ &+ C_{eq,prst}^{T,RR} \left(\bar{\ell}_p \sigma_{\mu\nu} P_R \ell_r \right) (\bar{q}_s \sigma^{\mu\nu} P_R q_t) + h.c. \right], \end{aligned}$$

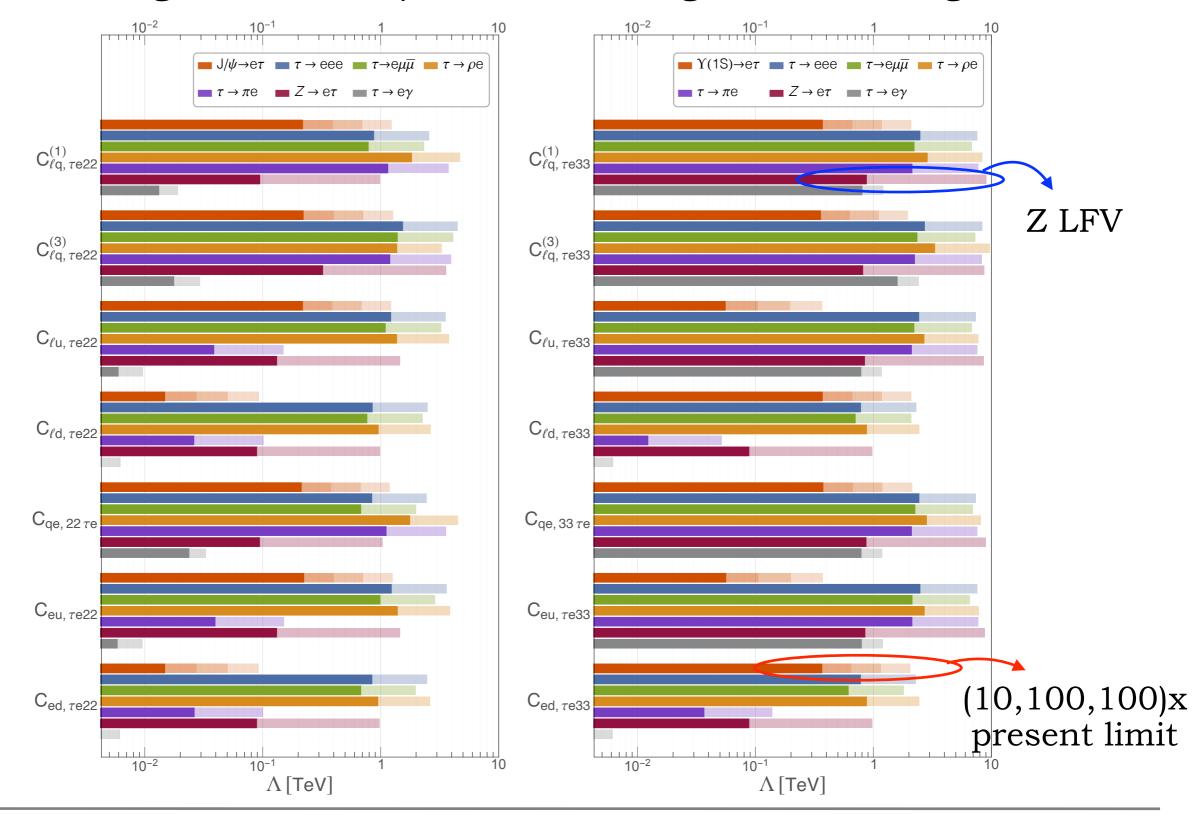
Operator	Str. const	Ind	irect upper limits on	BR
Operator	Str. const.	$\Upsilon(1S) \to \ell \ell'$	$\Upsilon(2S) \to \ell \ell'$	$\Upsilon(3S) \to \ell \ell'$
$C^{V,LL}_{ed,\mu ebb}$	$\mu \to e, \mathrm{Au}$	$[1.1 - 0.08] \times 10^{-12}$	$[9.9 - 0.8] \times 10^{-13}$	$[1.1 - 0.1] \times 10^{-12}$
$C^{V,LR}_{ed,\mu ebb}$	$\mu \rightarrow e, \mathrm{Au}$	$[1.1 - 0.08] \times 10^{-12}$	$[9.9 - 0.8] \times 10^{-13}$	$[1.1 - 0.1] \times 10^{-12}$
$C_{ed,\mu ebb}^{T,RR}$	$\mu \to e \gamma$	$[4.7 - 0.7] \times 10^{-19}$	$[4.3 - 0.7] \times 10^{-19}$	$[4.8 - 0.9] \times 10^{-19}$
$C_{e\gamma,\mu e}$	$\mu \to e \gamma$	1.6×10^{-25}	1.5×10^{-25}	1.6×10^{-25}
$C^{V,LL}_{ed, au ebb}$	$\tau \to \rho e$	$[3.1 - 0.2] \times 10^{-6}$	$[2.8 - 0.2] \times 10^{-6}$	$[3.0 - 0.3] \times 10^{-6}$
$C^{V,LR}_{ed, au ebb}$	$\tau \rightarrow \rho e$	$[3.1 - 0.2] \times 10^{-6}$	$[2.8$ - $0.2] \times 10^{-6}$	$[3.0 - 0.3] \times 10^{-6}$
$C_{ed, au ebb}^{T,RR}$	$\tau \to e \gamma$	$[4.0 - 0.6] \times 10^{-11}$	$[3.7 - 0.6] \times 10^{-11}$	$[4.1 - 0.8] \times 10^{-11}$
$C_{e\gamma,\tau e}$	$\tau \to e \gamma$	1.4×10^{-17}	1.3×10^{-17}	1.4×10^{-17}
$C^{V,LL}_{ed, au\mu bb}$	$ au o ho \mu$	$[2.1 - 0.2] \times 10^{-6}$	$[1.9 - 0.2] \times 10^{-6}$	$[2.1 - 0.2] \times 10^{-6}$
$C^{V,LR}_{ed, au\mu bb}$	$ au o ho \mu$	$[2.1 - 0.2] \times 10^{-6}$	$[1.9 - 0.3] \times 10^{-6}$	$[2.1 - 0.2] \times 10^{-6}$
$C^{T,RR}_{ed, au\mu bb}$	$\tau \to \mu \gamma$	$[5.2 - 0.7] \times 10^{-11}$	$[4.8 - 0.7] \times 10^{-11}$	$[5.3 - 0.9] \times 10^{-11}$
$C_{e\gamma, au\mu}$	$\tau \to \mu \gamma$	1.8×10^{-17}	1.6×10^{-17}	1.8×10^{-17}

(a) Vector and tensor operators. The operators $C_{ed,ijbb}^{V,RR}$, $C_{de,bbij}^{V,LR}$, $C_{ed,jibb}^{T,RR}$ and $C_{e\gamma,ji}$ lead, respectively to the same results as $C_{ed,ijbb}^{V,LL}$, $C_{ed,ijbb}^{V,LR}$, $C_{ed,ijbb}^{T,RR}$ and $C_{e\gamma,ij}$.

Z and quarkonium LFV

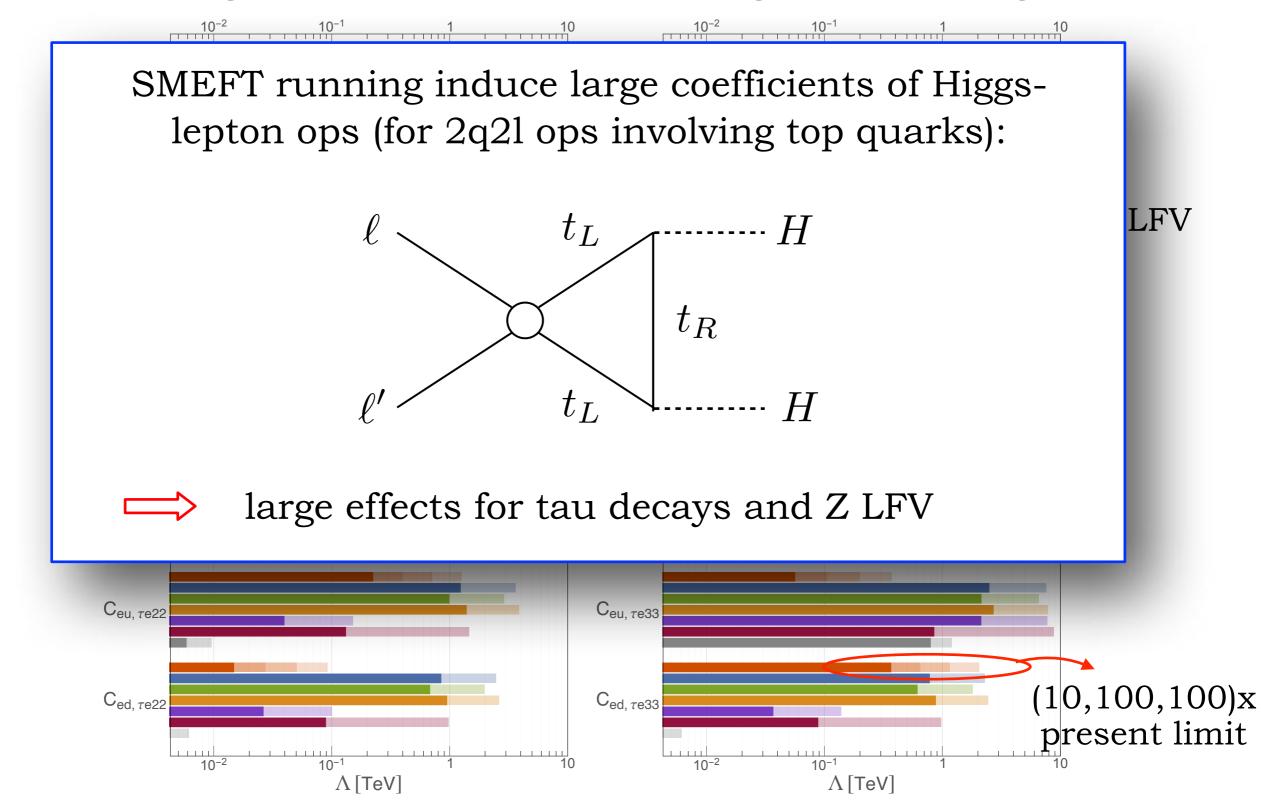
(LEFT 2q2l ops:)

SMEFT running and SMEFT/LEFT matching induce stronger bounds:



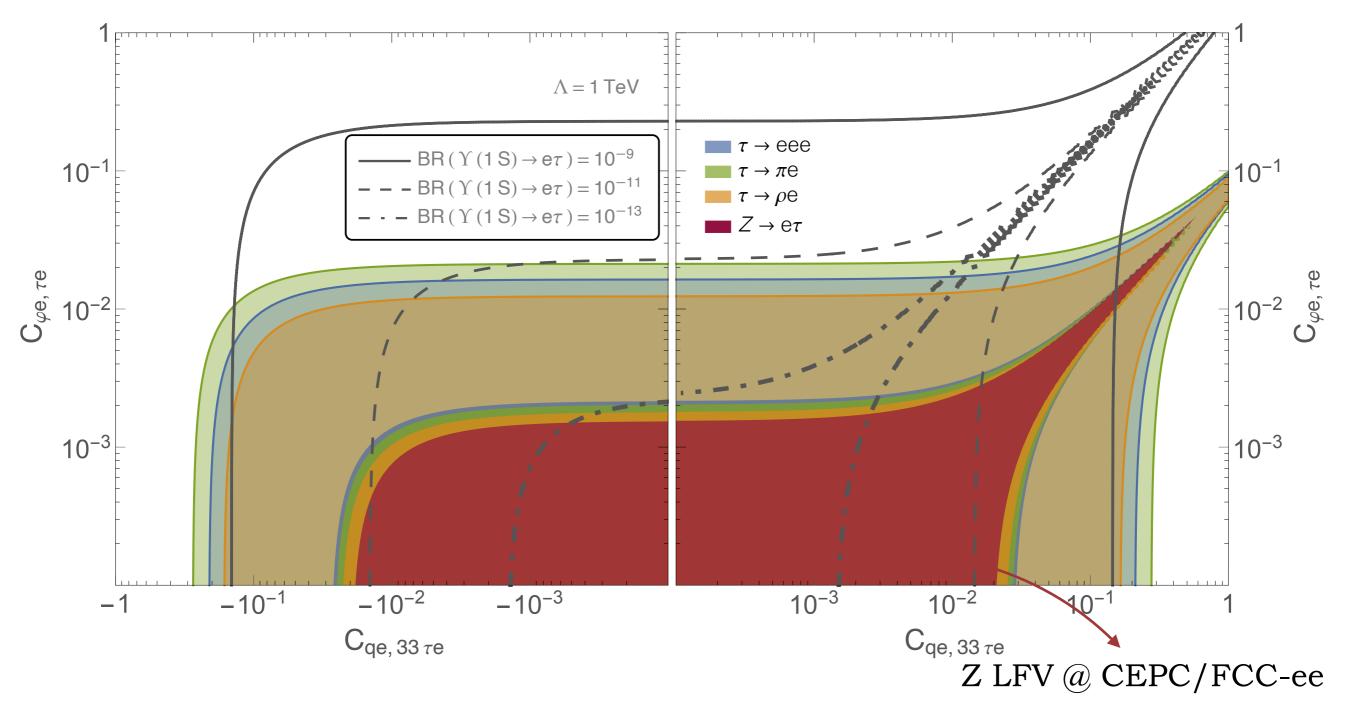
Z and quarkonium LFV

SMEFT running and SMEFT/LEFT matching induce stronger bounds:



Z and quarkonium LFV

Flat directions are possible along which all indirect constraint vanish:



(similar situation for operators involving LH leptonic currents)

Z and quarkonium LFV

Again, searches for quarkonium LFV decays are not sensitive to μ -*e* LFV due to the strong indirect constraints

In the most optimistic case, charmonium LFV rates are 1-2 orders below current BESIII bounds (partially within STFC sensitivity)

Indirect bounds on bottomonium LFV are at the level of present B-factory limits

SMEFT RGEs makes indirect bounds more important (especially for ops involving tops) $\rightarrow \sim 1000x$ increase of sensitivity needed

Flat directions are possible that only *Y* LFV decays could probe

CEPC Physics Program

CEP	C Operation mode	ZH	Z	W+W-	ttbar
		~ 240	~ 91.2	~ 160	~ 360
F	Run time [years]	7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	[ab-1, 2 IPs]	5.6	16	2.6	-
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107	-
Run time [years]		10	2	1	5
_	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.83
Latest (50MW)	[ab-1, 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4 × 10 ⁶	4×10 ¹²	5×107	5×105

Large physics samples: ~10⁶ Higgs, ~10¹² Z, ~10⁸ W bosons, ~10⁶ top quarks

Talk by J. Guimarães Costa @ CEPC workshop 2022

The Z-peak run of CEPC/FCC-ee can deliver a few×10¹² visible Z decays

Z and quarkonium LFV

Plenty of flavour physics opportunities from $Z \rightarrow bb$, $Z \rightarrow cc$, $Z \rightarrow \tau \tau$:

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	3×10^{13}
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \mathrm{ on} \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	$3 \times 10^8 ~(5 \mathrm{ab^{-1}} \text{ on } \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
$ au^+$	3×10^{10}	$5 \times 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	
10^{12} Z decays		CEPC Stu	idy Group ai
	Se	ee also the Snowmass report: The P	hysics poten

Z and quarkonium LFV

Advantages of a high-energy e^+e^- collider as flavour factory:

Luminosity

 $\mathcal{L}=100/ab$, O(10¹²) Z decays \Rightarrow O(10¹¹) *bb*, *cc*, and $\tau\tau$ pairs

Energy

besides producing states unaccessible at Belle II $M_Z \gg 2m_b, 2m_\tau, 2m_c \Rightarrow$ surplus energy, boosted decay products (better tracking and tagging, lower vertex uncertainty etc.)

Cleanliness

as for any leptonic machine, full knowledge of the initial state
(e.g. Z mass constraint on invariant masses more powerful)
⇒ it enables searches involving neutral/invisible particles

Z and quarkonium LFV

Summary of the tau and Z prospects

Measurement	Current [126]	FCC [115]	Tera- Z Prelim. [127]	Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		from 3-prong decays, stat. limited
$\mathrm{BR}(\tau \to \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		$0.1 \times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\text{track}})$ limited
${\rm BR}(\tau\to 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau \to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau^{\pm} \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau^{\pm} \to \mu e e)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_{\gamma})$ limited
$\mathrm{BR}(\tau \to e \gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$BR(Z \to \tau \mu)$	$< 1.2 \times 10^{-5}$	$\mathcal{O}(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$BR(Z \to \tau e)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$\mathrm{BR}(Z\to \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
$BR(Z \to \pi^+ \pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\rm track})$ limited, good PID
$BR(Z \to \pi^+ \pi^- \pi^0)$)		$\mathcal{O}(10^{-9})$	au au bkg
$BR(Z \to J/\psi \gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma$ bkg
${\rm BR}(Z\to\rho\gamma)$	$<2.5\times10^{-5}$		$\mathcal{O}(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

From the Snowmass report: The Physics potential of the CEPC

Quarkonium LFV decay widths

$$\begin{split} \text{LEFT 2q2l ops:} \quad \mathcal{L}_{2q2l} = C_{eq,pret}^{VLL}(\bar{\ell}_{p}\gamma^{\mu}P_{L}\ell_{l})(\bar{q}_{s}\gamma_{\mu}P_{R}q_{l}) + C_{eq,pret}^{VRR}(\bar{\ell}_{p}\gamma^{\mu}P_{R}\ell_{r})(\bar{q}_{s}\gamma_{\mu}P_{R}q_{l}) \\ + C_{eq,pret}^{VLR}(\bar{\ell}_{p}\gamma^{\mu}P_{L}\ell_{r})(\bar{q}_{s}\gamma_{\mu}P_{R}q_{l}) + C_{eq,pret}^{VLR}(\bar{\ell}_{p}\gamma^{\mu}P_{R}\ell_{r})(\bar{\ell}_{s}\gamma^{\mu}P_{R}\ell_{l}) \\ + C_{eq,pret}^{VLR}(\bar{\ell}_{p}\gamma_{R}\ell_{r})(\bar{q}_{s}\gamma_{L}P_{R}q_{l}) + C_{eq,pret}^{SLR}(\bar{\ell}_{p}\gamma^{\mu}P_{R}\ell_{r})(\bar{q}_{s}\gamma^{\mu}P_{R}q_{l}) \\ + C_{eq,pret}^{VLR}(\bar{\ell}_{p}\gamma_{R}\ell_{r})(\bar{q}_{s}\sigma^{\mu\nu}P_{R}q_{l}) + h.c.], \end{split}$$

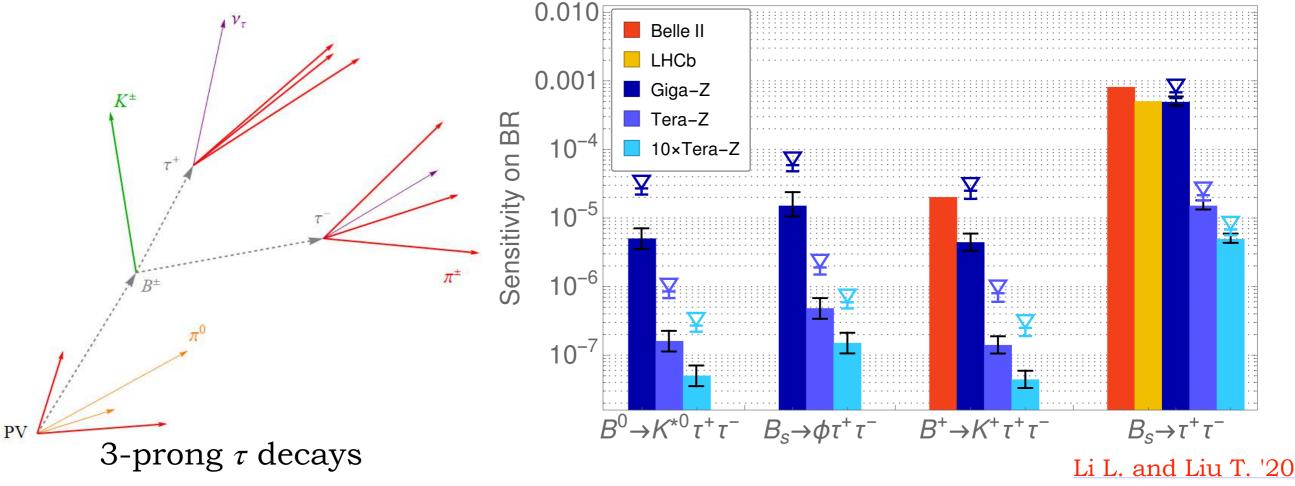
Vector resonances:
$$BR(V \rightarrow \ell_{i}^{-}\ell_{j}^{+}) = \frac{m_{V}\lambda^{1/2}(1,y_{i}^{2},y_{j}^{2})}{\Gamma_{V}} \frac{\left[|V_{L}|^{2} + |V_{R}|^{2}}{12} \left(2 - y_{i}^{2} - y_{j}^{2} - (y_{i}^{2} - y_{j}^{2})^{2}\right) \\ + \frac{4}{3} \left(|T_{L}|^{2} + |T_{R}|^{2}\right) \left(1 + y_{i}^{2} + y_{j}^{2} - 2(y_{i}^{2} - y_{j}^{2})^{2}\right) \\ + y_{i}y_{j} \left(Re(V_{L}V_{R}^{*}) + 16 Re(T_{R}T_{L}^{*})\right) \\ V_{L} = f_{V}m_{V} \left(C_{eq,ijq}^{VLR} + \frac{2c^{2}Q_{q}Q_{i}\delta_{ij}}{m_{v}^{2}}\right), \quad T_{L} = m_{V}f_{V}C_{eq,ijqe}^{TRRe} - cQ_{q}f_{V}C_{eq,ij}, \\ + 2y_{i} \left(1 + y_{j}^{2} - y_{j}^{2}\right) Re(V_{L}T_{R}^{*} + V_{L}T_{R}^{*}) \\ V_{R} = f_{V}m_{V} \left(C_{eq,ijqe}^{VLR} + \frac{2c^{2}Q_{q}Q_{i}\delta_{ij}}{m_{v}^{2}}\right), \quad T_{R} = m_{V}f_{V}C_{eq,ijqe}^{TRRe} - cQ_{q}f_{V}C_{eq,ij}, \\ + 2y_{i} \left(1 + y_{i}^{2} - y_{j}^{2}\right) Re(V_{L}T_{R}^{*} + V_{L}T_{R}^{*}) \\ N_{R} = f_{V}m_{V} \left(C_{eq,ijqe}^{VLR} + \frac{2c^{2}Q_{q}Q_{i}\delta_{ij}}{m_{v}^{2}}\right), \quad T_{R} = m_{V}f_{V}C_{eq,ijqe}^{TRRe} - cQ_{q}f_{V}C_{eq,ij}, \\ + 2y_{j} \left(1 + y_{i}^{2} - y_{j}^{2}\right) Re(V_{L}T_{R}^{*} + V_{R}T_{L}^{*}) \right], \\ N_{R} = f_{V}m_{V} \left(C_{eq,ijqe}^{VLR} - C_{eq,ijqe}^{C} - C_{eq,ijqe}^{C} - C_{eq,ijqe}^{C} - C_{eq,ijq}^{C} - C_{eq,ijq}^{VLR}}\right) + m_{i} \left(C_{eq,ijqe}^{VRR} - C_{eq,ijq}^{VLR}\right) + \frac{1}{2}\left[m_{i}\left(C_{eq,ijqe}^{VLR} - C_{eq,ijq}^{VLR}\right) + m_{i}\left(C_{eq,ijqe}^{VRR} - C_{eq,ijq}^{VLR}\right) + \frac{1}{2}\left[m_{i}\left(C_{eq,ijqe}^{VLR} - C_{eq,ijqe}^{VLR}\right) + m_{i}\left(C_{eq,ijqe}^{RR} - C_{eq,ijq}^{VRR}\right)\right] \\ + i\frac{4\pi}{a_{x}}}n_{F}C_{eq,ijqq}^{C}} - C_{eq,ijqq}^{C}\right)^{2} \left[m_{i}\left(C_{eq,ijqe}^{R$$

Z and quarkonium LFV

$\text{Example:} b \to s \tau \tau$

 $BR(B_s \to \tau \tau)_{SM} = (7.7 \pm 0.5) \times 10^{-7} \text{ (Bobeth et al. 1311.0903)}$ $BR(B \to K \tau \tau)_{SM} = (1.2 \pm 0.1) \times 10^{-7} \text{ (Du et al. 1510.02349)}$

- Unobserved, weakly constrained (~10⁻⁴-10⁻³ by Belle, Belle II can provide an O(10) increased sensitivity)
- They can have a large new-physics enhancement
- Tera Z prospects:

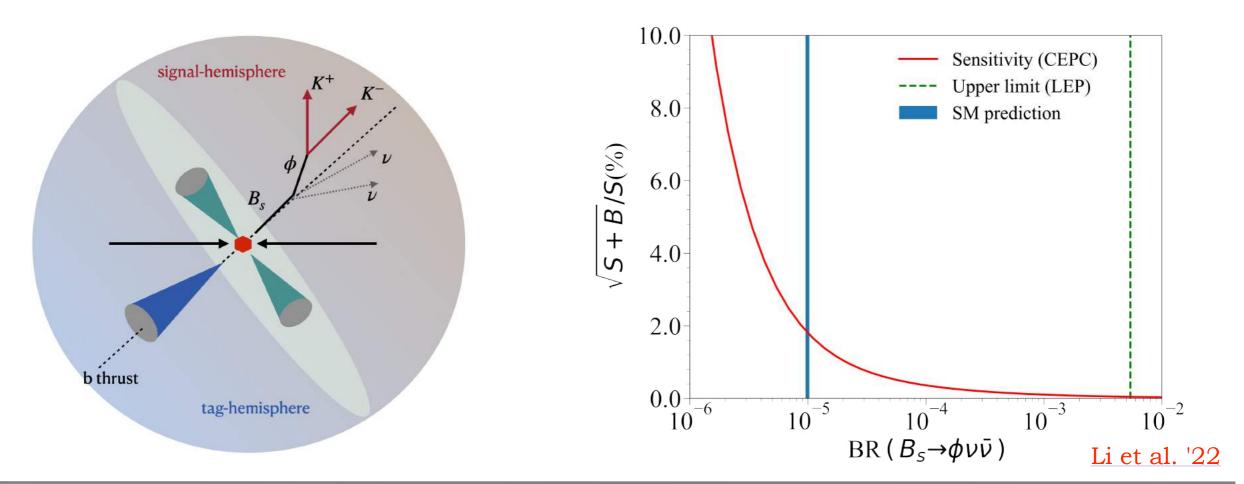


Z and quarkonium LFV

$\text{Example:} b \to s \nu \nu$

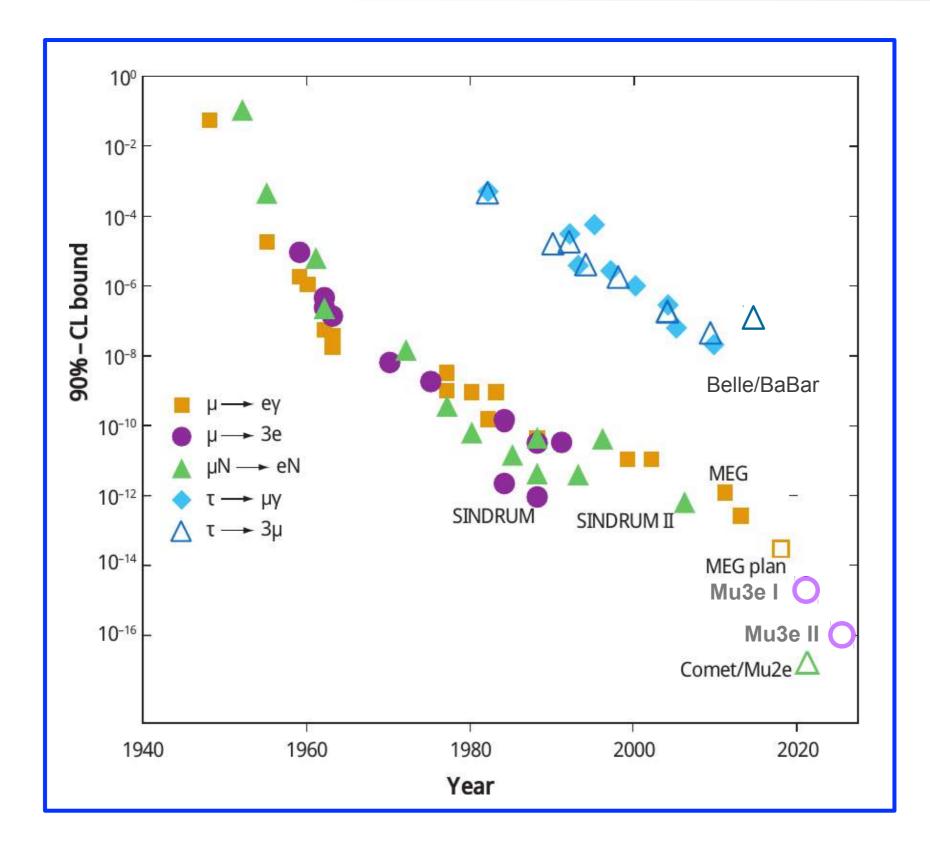
			Li et al. '22
	Current Limit	Detector	SM Prediction
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 \times 10^{-5}$ [3]	BELLE	$(3.69 \pm 0.44) \times 10^{-6}$ [1]
$BR(B^0 \to K^{*0} \nu \bar{\nu})$	$< 1.8 \times 10^{-5}$ [3]	BELLE	$(9.19 \pm 0.99) \times 10^{-6}$ [1]
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 \times 10^{-5}$ [4]	BABAR	$(3.98 \pm 0.47) \times 10^{-6}$ [1]
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 \times 10^{-5}$ [5]	BELLE	$(9.83 \pm 1.06) \times 10^{-6}$ [1]
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$ [6]	DELPHI	$(9.93 \pm 0.72) \times 10^{-6}$

- Also these modes can be greatly enhanced by new physics responsible for the B anomalies see e.g. <u>LC Crivellin Ota '15</u>
- A Tera Z can measure $B_s \rightarrow \phi \nu \nu$ with a percent level precision:



Z and quarkonium LFV

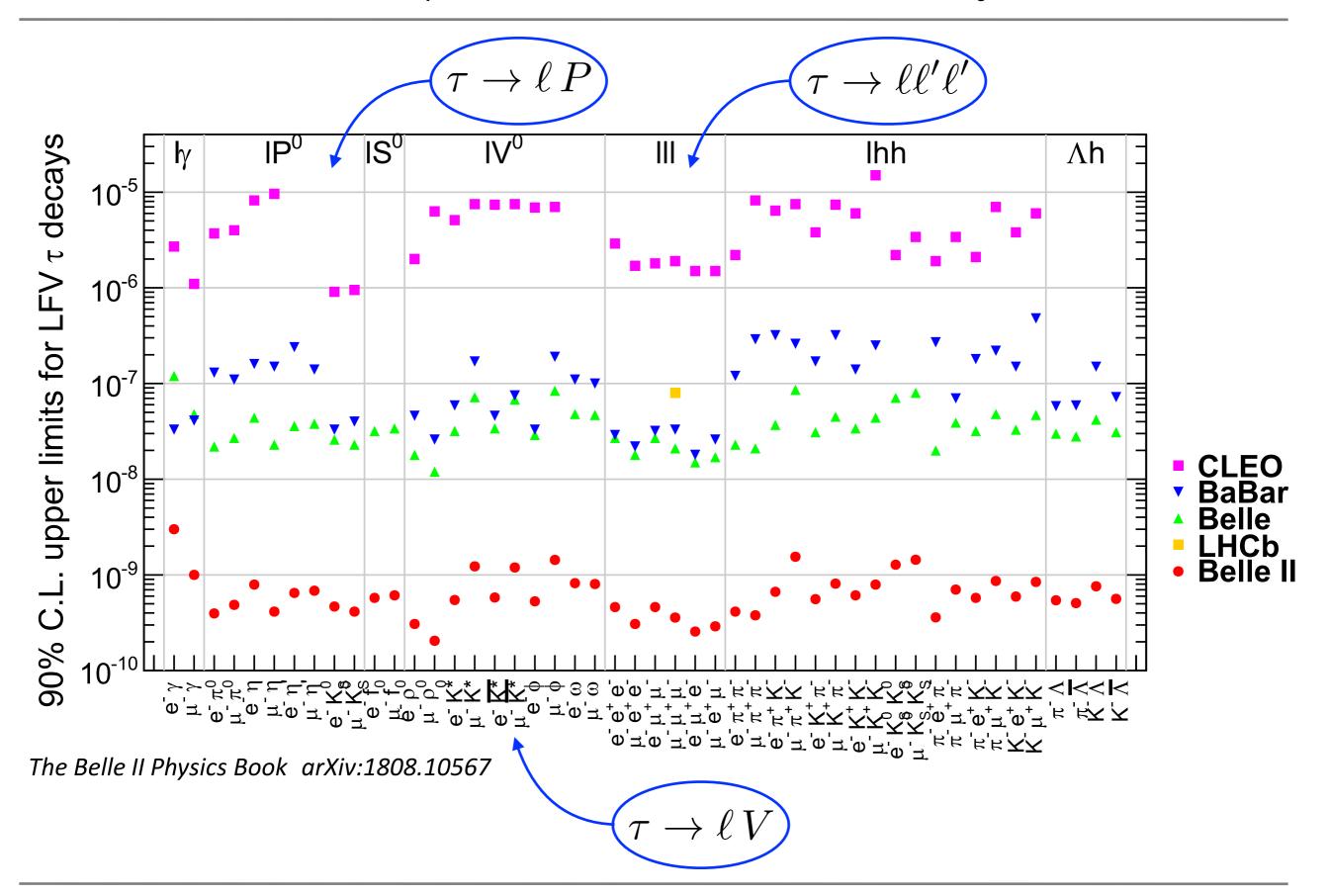
Present/future limits on LFV muon decays



Lorenzo Calibbi (Nankai)

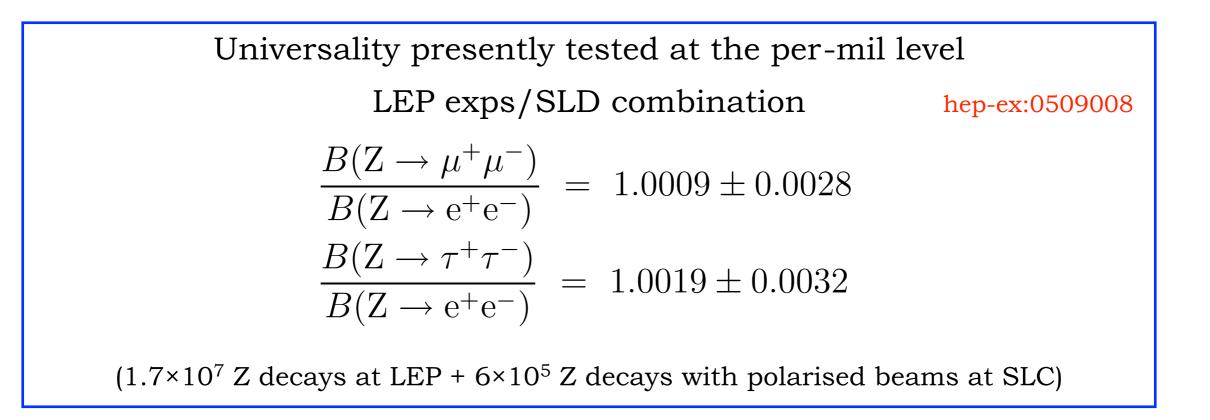
Z and quarkonium LFV

Present/future limits on LFV tau decays



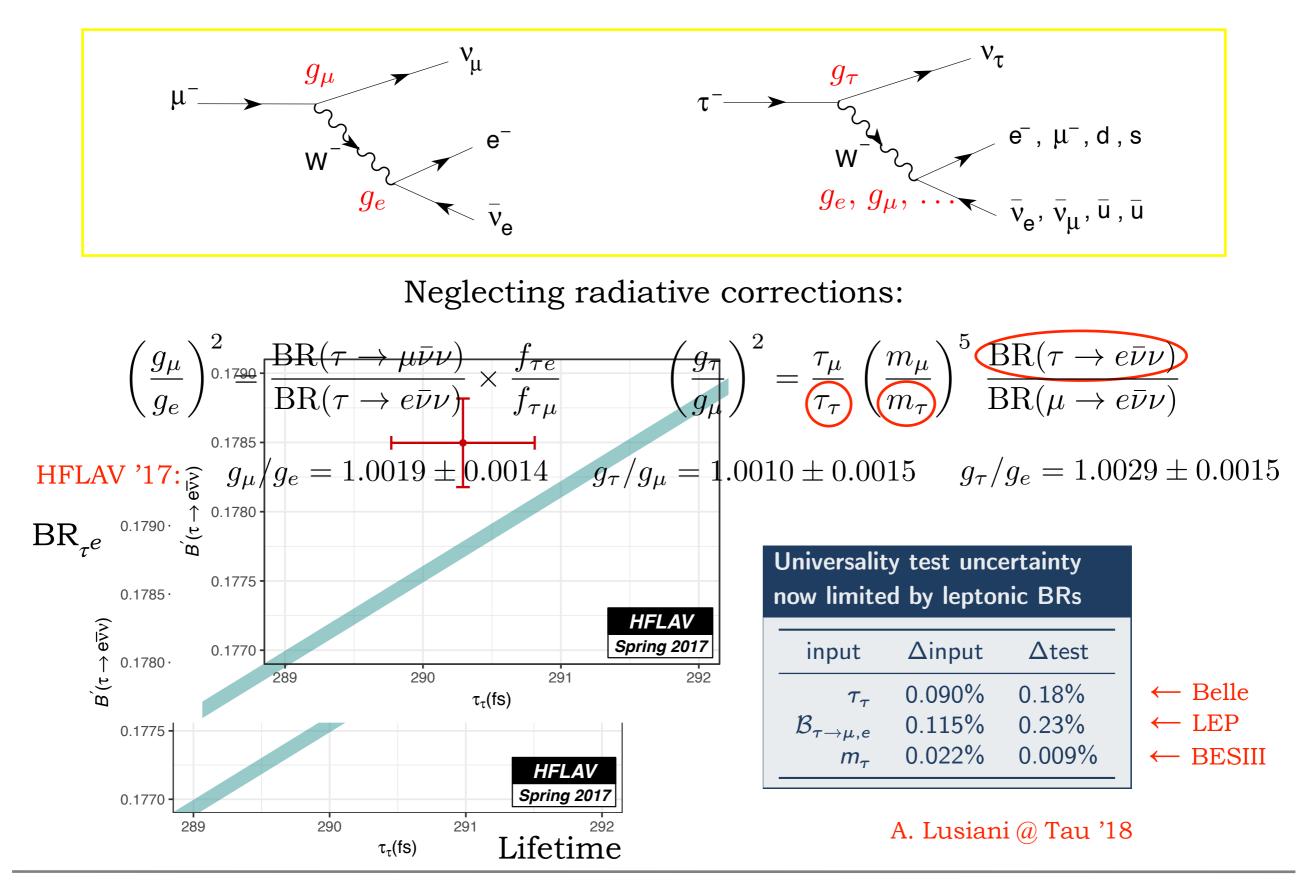
Z and quarkonium LFV

Z LFU tests



- Very important test in view of the LFU anomalies in B decays
- With 10¹² Z, CEPC/FCC-ee has no problem of statistics
- Can systematics (lepton-id efficiencies? what else?) be controlled so as to measure BRs with e.g. 10⁻⁴ precision?

LFU tests in tau decays



Z and quarkonium LFV

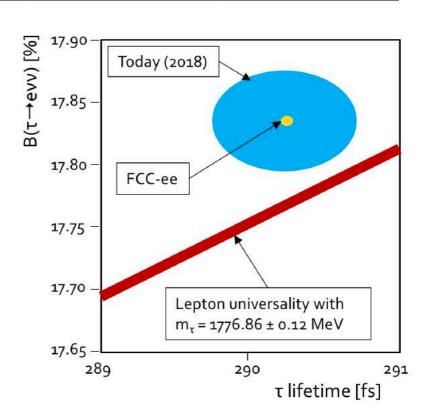
Tau LFU prospects

Preliminary study for the FCC-ee (10¹¹ tau pairs):

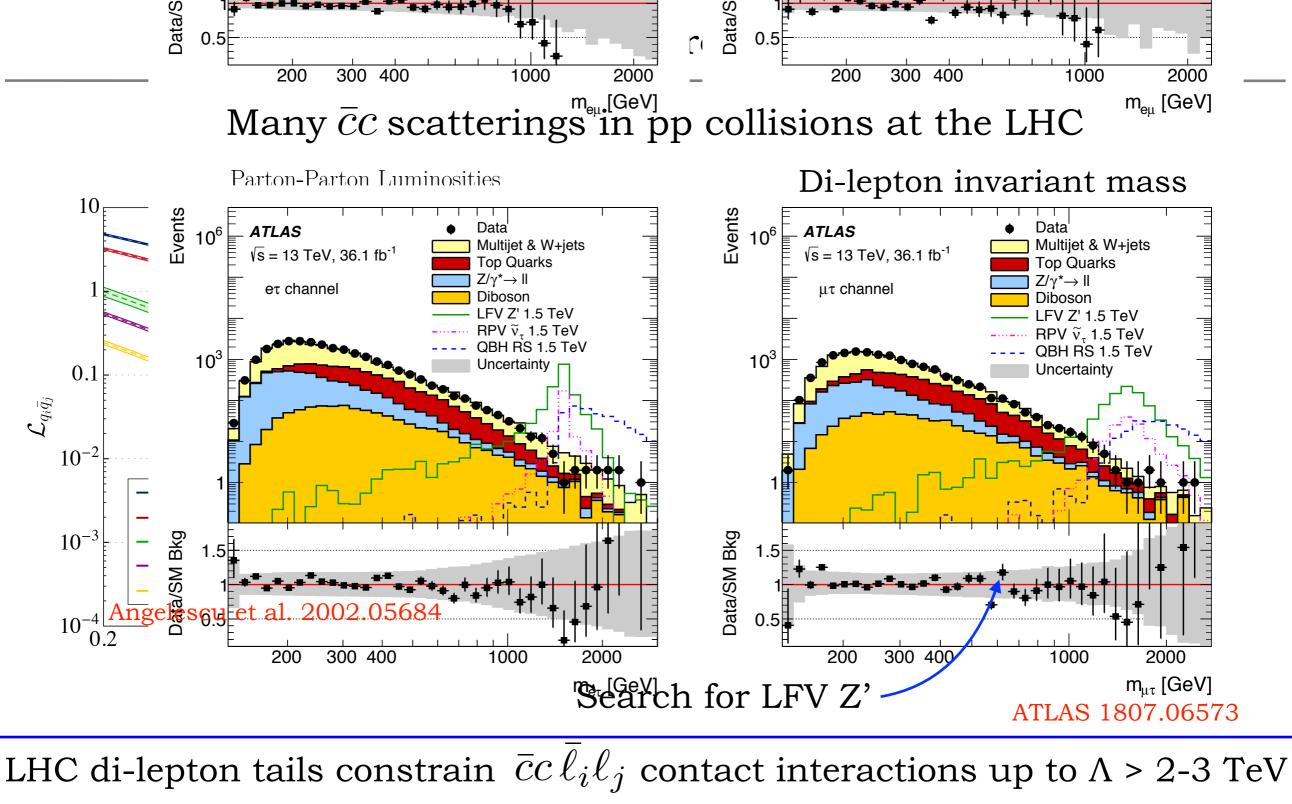
Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _τ [MeV]	Threshold / inv. mass endpoint	1776.86 ± 0.12	0.005	0.12	Mass scale
τ _τ [fs]	Flight distance	290.3 ± 0.5 fs	0.005	< 0.040	Vertex detector alignment
Β(τ→eνν) [%]	Selection of <code>t+t-,</code> identification of final	17.82 ± 0.05	0.0001	No estimate;	Efficiency, bkg,
Β(τ→μνν) [%]	state	17.39 ± 0.05	0.0001 (possibly 0.003	Particle ID

Lepton U	niversality Test	:S:	
Quantity	Measurement	Current precision	FCC-ee precision
g _µ /g _e	$\Gamma_{\tau ightarrow \mu}/\Gamma_{\tau ightarrow e}$	1.0018 ± 0.0015	Improvement by a
g _τ /g _μ	$\Gamma_{\tau ightarrow e}/\Gamma_{\mu ightarrow e}$	1.0030 ± 0.0015	therefore the destroyed a

With the precise FCC-ee measurements of lifetime and BRs, m_{τ} could become the limiting measurement in the universality test



M. Dam @ Tau '18 & 1811.09408



 \Rightarrow Indirect LHC bounds (if EFT is valid):

$$\begin{split} \text{BR}(J/\psi \to e\mu) < 10^{-11}, \quad \text{BR}(J/\psi \to e\tau) < 6 \times 10^{-11}, \quad \text{BR}(J/\psi \to \mu\tau) < 7 \times 10^{-11} \\ \text{Angelescu et al. } 2002.05684 \end{split}$$

Z and quarkonium LFV

Comparison of indirect constraints



Z and quarkonium LFV

That's not the case for charmonium decays:

