Status of CEPC Offline Software

Wenxing Fang, Xingtao Huang, Teng Li, Weidong Li,
Tao Lin, Jiaheng Zou

Feb. 13, 2023
IAS Program on High Energy Physics (HEP 2023)

Contents

<+ Introduction
+» Overview of CEPCSW
+ Status and new development of CEPCSW

< Summary

.0

.0

L)

&

.0

.0

L)

Introduction

The CEPC software development first started with the iLCSoft

Reused most software modules: Marlin, LCIO, MokkaC, Gear
Developed its own software components for simulation and reconstruction
Massive M.C. data produced for detector and physics potential studies

CDR was released in Nov, 2018, based on results from the iLCSoft

A new CEPC software (CEPCSW) prototype was proposed at the Oxford
workshop in April 2019

The consensus among CEPC, CLIC, FCC, ILC and other future experiments was
reached at the Bologna workshop in June 2019

Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments

Maximize the sharing of software components among different experiments

Further discussion on development of Key4hep at the 'Future Software
Implementations' session of the IAS program in Jan. 2020

Key4dhep

< HEP software usually consist of lots of applications

® Application layer of modules/algorithms /processors
performing physics task (PandoraPFA, Fastlet, ACTS,...)

e Data access and representation layer including EDM
e Experiment core orchestration layer (Gaudi, Marlin, ...)

e Specific components reused by many experiments (DD4hep,
Delphes, Pythia,...)

e Commonly used HEP core libraries (ROOT, Geant4, CLHEP, ...)

OS Kernel and Libraries
(Non-HEP specific)

e Commonly used tools and libraries (Python, CMake, boost,...)

Thomas Madlener,
Epiphany Conference 2021

< CEPCSW is being fully integrated with Key4hep to share software with other
future experiments

< |HEP and SDU are also involved in Key4hep development as non-EU members

Overview of CEPCSW

CEPCSW software structure

Core software

Applications: simulation, reconstruction and
analysis (see talks given by Weidong and
Shengshen)

External libraries

Core software

Gaudi/Gaudi Hive: defines interfaces to all
software components and controls their
execution.

EDM4hep: generic event data model
K4FWCore: manages the event data

DD4hep: geometry description

CEPC-specific framework software: generator,
Geant4 simulation, beam background mixing,
fast simulation, machine learning interface, etc.

https //github.com/cepc/CEPCSW

__

Generator CEPC
Applications
Simulation PP
Reconstruction Analysis
GeomSvc FWCore EDM4hep

Gaudi framework

Core Software

LCIO PODIO DD4hep
ROOT Geant4 CLHEP
Boost Python Cmake

Status of CEPCSW

< CEPCSW is under rapid development, and its latest version is v0.2.6

e Well supported detector simulation and reconstruction studies on the 4th
conceptual detector

<+ Lots of progress has been made on core software of CEPCSW since
last IAS meeting

e Optimizations on key components according to application requirements

Event Data Model
Detector Description
Simulation Framework

e Developments on adopting new technologies to boost CEPCSW performance

Multi-threaded Detector simulation

Heterogeneous Computing
Machine Learning Integration based on ONNX

Analysis framework based on RDataframe
Automated Validation System

Event Data Model

< EDM of CEPCSW is adopted from EDM4hep

e In different data processing stages

e For different sub-detectors

< Extension of EDM4hep is developed to accommodate the drift
chamber dN/dx study

® Also can be used for TPC detector

e Will be merged into EDM4hep soon (PR)

| EDM4hep DataModel Overview (v0.6) \ o _
Monte Carlo Digitization Reconstruction
RawCalorimeterHit ParticlelD _
SimCalorimeterHit, ‘\\;\wonme@m&\(? Y4 i e ek EDM4dc:ReglomzatmnCIuster
CaloHitContribution [: Rec Pulse = Rec ionization cluster
] // N EDMéhep:MCParticle N
MCParticle < y Par Association P ReconstructedParticle Clustr, onizaton, Pulse reconstruction Cluster reconstruction EDM4he 'TraCK
e | / pulse simulation p \
_ \ \ dN/dx reconstruction
. . ‘__d//;lTrackerHit ‘4//‘{% Vertex EDM4dc:S|mPrlmary EDM4dCZTraCkeI'Data
SimfTrackertit SCHE TrackerHitPlane _ lonizationCluster Waveform EDM4dc:RecDndx
Monte Carlo Raw Data |Digitization Recons"iﬁé‘fygi‘? Sim ionization and pulse Wm Simulaton Rec dN/dx

https://github.com/key4hep/EDM4hep/pull/179

Detector Description

< DD4hep is adopted to provide a full detector description with a single source of
information

< Different detector design options are managed in git repository and easily to be
changed in CEPCSW

< The non-uniform magnetic field has also been implemented in CEPCSW

DetCRD

—

compact

sSrc

—

S

Coordinators Vs CRD_o1_v1.xml
CRD_o1_v1 < ECalBarrel_o2_v01.xml —
CRD_02_v1 InnerTracker_o2_v02.xml —|
CRD_oX_vYY

= _~ ECalBarrel_o1_v01.cpp
calorimeter
Q‘ ECalBarrel_o2_vO01.cpp <+

(» InnerTracker_o2_v01.cpp

tracker]
™ InnerTracker_o2_v02.cpp <
driftchamber Developers

(x1,y2) (x2,y2)
®(x.y)
(X1,y1) (X2,y1)

o -
[P

e 9 . [.
bilinear interpolation

CartesianField —

I

OverlayField GenericBFieldMapBrBz

T

CartesianField::
Object

1

| Calculate B-Field according to the data from provider

| Base class of the data provider |

| A data provider which load map from DB

| A data provider which load map from file /

T

IFieldMapProvider|

/ FieldMapFileProvider

\ FieldMapDBProvider

DD4hep

Geant4Field

DDG4

Gaud]

Detector Simulation

< The Geant4-based full detector simulation framework has been developed in
CEPCSW and supported sub-detectors simulations and their performances study

® including silicon detectors, time projection chamber, drift chamber and calorimeters.

< The region-based fast simulation interface is also developed to integrate
different fast simulation models into Geant4.

< CEPCSW provides an unified solution for different backgrounds’ simulation and
event mixing at the hit level

G4Region
.]13(eam ; MC Detector MC Hite Simulated
G4Fast . e oo ton Particles Simulation background
Simulation 2 oo ok IFastSimG4 event data
Tanansr Simulation Simulation Tool
9 Manager Model
Process
_____________________________________ Physics simulation and event mixing:
I
I
i | G4Fast/Param Fast/Param : S o Detect
d Simulation SimG4 ! YSICS . [Ciecior MC Hits Event Mixing
! Model Tool . Generator Particles Simulation
' |
I 1
i User Defined

Gaussino: a new experiment-independent simulation framework

. Ref: See Talk given by Michat Mazurek,
<+ Developed based on the LHCb Gauss and Gaussino, ICHEP 2022

simulation framework (Gauss)

Gauss Geant4
. . i i ““|G4 object
e Well Integrated multi-threaded functions Conligurble [Eetiies Belh
. sometr encDe SErACHBT Geometr SensDet UserAction
of Gaudi and Geant4 ER i LL
- SEe e
. o Gaudi Service ’///,-Jf"* —— |IGaworker]
e Achieved good scalability —— I
._ ‘,SimS\;c::simulate()‘ j‘ij A o] §43W:)"‘gg
< Key Features: |

e Multi-threaded interfaces to Event generator
(Pythia8) and detector simulation (Geant4MT)

Fast

m Supports parallel execution of multiple
events at the same time as well as for
parallelism within a single event.

e Dedicated fast simulation Interface to invoke fast
simulations for a given detector

http://cds.cern.ch/record/2815786/files/Gauss_and_Gaussino_ICHEP_2022.pdf
http://cds.cern.ch/record/2815786/files/Gauss_and_Gaussino_ICHEP_2022.pdf

CEPC detector simulation based on Gaussino

< Application of Gaussino to CEPC detector (i ~um (H— Sans

ParticleGun

. . . .
S I m u I a t I O n I S u n d e r go I n g /Event/Gen/HeaderPreGen /Event/Gen/Header /Event/Sim/G4Events

LHCb:: LHCb::
GenHeader GenHeader

G4EventProxies

. Idea: reuse the eXiSting COde and use GaUSSino aS a /Event/Gen/BeamParameters /Event/Gen/HepMCEvent /Event/MC/Truths

blaCk bOX. LHCb:: LHCb:: Gaussino::
BeamParametes GenEventPtrs MCTruthPtrs

e Challenge: how to integrate the existing CEPC e
detector geometry. n

Collisions

e Two possible methods:
Method 1:
O DD4hepDetectorConstructionFAC decides which object will be created for detector construction

O DD4hepDetectorConstruction is responsible to construct CEPC detector with DD4hep

Method 2:
O GiGaMTDetectorConstructionFAC creates geometry by invoking GeoSvc
O DD4hepCnvSvc will be used to create geometry with DD4hep
e A prototype for CEPC detector simulation with the method 1 is under developing

11

Heterogeneous Computing

Utilizing heterogeneous resource is one of possible ways to copy with the
increasing HEP data processing/analysis.

Lots of efforts has been devoted on heterogeneous computing, for example

e TRACCC is a project below ACTS to demonstrate tracking chain on different kinds of
computing hardware (CPU/GPU/FPGA).

The strategies:

SYCL enables the definition of data parallel functions by providing required APIs and runtime

libraries

OneAPI can provide a unified programming model and enables code reuse across
heterogeneous devices (CPU/GPU/FPGA)

E] Seeding

Track finding

Track fitting

APPLICATIO!

[

VECTOR

N WORKLOADS NEED DIVERSE HARDWARE

SPATIAL

L

INITIATIVE

Track Finding

Param. Est.
Seeding
biming

BinsM

—— Lol

26—, Jm; \\i:feeds Bt Bty s b R
Spacepoints ~Binning 1

-6—Y o Se_dmg

/ e Seeding e

Param, Est.

https://github.com/acts-project/traccc

https://github.com/acts-project/traccc

Heterogeneous Computing

< Activities in CEPCSW

e We are able to run TRACCC in a standalone environment and managed
to build/run TRACCC on both CPU/GPU.

Config Hardware oS Compiler SYCL Bulid Run
backend traccc traccc
1 Intel CPU CentOS 7.8 LCG 101 (GCC 10.3 + clang 12) CPU OK OK
(IHEP login node) + oneAPI DPC++
2 Intel CPU + NVIDIA CentOS79 LCG101 (GCC111) + CUDA OK OK
RTX 8000 (workstation) intel/llvm (2021-12) 11.2

e Now the TRACCC seeding algorithm has been integrated within CEPCSW

by developing middleware between Gaudi algorithm and SYCL based
algorithm.

Gaudi w (- SYCL based }

Algorithm J ’L Algorithm

A component library A shared library

CEPCSW + GCC Intel oneAP| + DPC++ 13

Machine Learning Integration

< Machine Learning becomes more and more important in HEP data processing
e Different tasks may use different Machine learning libraries and produce different models

e We need an unified way to integrate different models in CEPCSW and run inference easily

o%

» ONNX is an open format built to represent machine learning models.

e Support to convert from other models to ONNX, such as Tensorflow, PyTorch etc.

e Easy to run inference on different platforms, such as ONNX Runtime, ONNX MLIR etc.

e Some applications of ONNX in HEP
m Fast simulation in Geant4 using ONNX inference interface [1]

m Fast Inference for Machine Learning in ROOT TMVA [2]

< ONNX Runtime is a cross-platform inference and training accelerator

e Accelerate inference on different hardware platform (CPUs/GPU/FPGA)

[11 Anna Zaborowska et al., Fast Simulation : from Classical to Machine Learning Models
[2] Sitong An et al., Fast Inference for Machine Learning in ROOT/TMVA

14

https://indico.cern.ch/event/1052654/contributions/4525299/attachments/2310881/3932468/Geant4_Collaboration_16_09_2021.pdf
https://indico.cern.ch/event/773049/contributions/3476168/attachments/1937600/3211545/TMVA_Fast_Inference_Poster.pdf

4

L)

Machine Learning Integration

0 — e

Ort::MemoryInfo info("Cpu", OrtDeviceAllocator, @, OrtMemTypeDefault);

auto input_tensor = Ort::Value::CreateTensor(info,

ONNX/ONNX Runtime have been
integrated with CEPCSW ke 25260,

dims.data(),
dims.size());
std: :vector<Ort::Value> input_tensors;

Provided an example' Ortlnfe renceAIg’ input_tensors.push_back(std: :move(input_tensor));

auto output_tensors = m_session->Run(Ort::RunOptions{ nullptr },
m_input_node_names.data(),

o |n initialize() input_tensors.data(),

input_tensors.size(),
m_output_node_names.data(),
m_output_node_names.size());

m Create a session object of ONNX runtime

for (int i = @; i < output_tensors.size(); ++i) {
LogInfo << "[" << i << "]"

<< " output name: " << m_output_node_names[i]
u Load and run an ONNX mOdeI << " results (first 10 elements): ™
<< std::endl;

const auto& output_tensor = output_tensors[i];

* = G - .
o |n execute() const float* v_output = output_tensor.GetTensorData<float>();

. for (int j = @; j < 10; ++j) {
= Compute output for an input data LognFo < "[* << 4 << "1"

<< v_output[j]
<< std::endl;

T ——————

bool OrtInferenceAlg::initialize() {

m_env = std::make shared<Ort::Env>(ORT_LOGGING_LEVEL_ WARNING, "ENV");
m_seesion_options = std::make shared<Ort::SessionOptions>();
m_seesion_options->SetIntraOpNumThreads(m_intra_op_nthreads);
m_seesion_options->SetInterOpNumThreads(m inter op nthreads);

m_session std: :make_ shared<Ort::Session>(*m_env, m_model file.c_str(), *m_seesion_options);

15

Analysis toolkit based on RDataFrame

< Developing a new toolkit based on new technologies of software and hardware
is very crucial to rapidly analyze drastically increasing data

< RDataFrame provides powerful and flexible way analyzing data
e Support declarative programming and parallel workflow
® Support analysis in both Python and C++
e Already support reading EDM4hep root files
e Actively used by FCC-ee for flavour, higgs and top physics

< Development of analysis tool for CEPC
e Large data samples have been produced with Marlin for CDR in LCIO format
e Use K4LCIOReader to generate EDM4hep data from LCIO data

e Developed common components (functions) for analyzing EDM4hep data
Analysis functions in C++: event selection, filtering, producing ROOT n-tuples, etc.
Python for configuration: define analysis functions, input samples, output variables, etc.

16

Analysis toolkit based on RDataFrame

< Started with Higgs recoil analysis in e+e-->Z H and Z-> pu
® Basic functionalities are tested: same results obtained from Marlin and RDataframe

e Multi-threading Performance testing shows that RDataframe has good scalability

< Key analysis functions are being implemented IR T
300~ — signal CEPC_
® PI D | Background Preliminar;_z

200 — =

Events

e Kinematic fitting

100 — -

® \ertexing

17

Automated Validation System

< An automated validation system is developed for software
validation at different levels

e Unit test, integrated test, performance profiling, physical validation etc.

<+ A toolkit is developed for building software validation workflow
e Provide interfaces to define and run unit tests
e Provide toolkit for performance profiling
e Support results validation based on statistical methods

< Automated physical validation system based on massive data
production (run via DIRAC resource) is being developed

SimTest |0 Operations 2400

18

Automated Validation System

< The validation system is integrated with the Github Action system
e Full validation workflow can be triggered by commit/merge-request

e A web-based monitoring dashboard is also being developed

< ~ 0(200) cores are now available for running validation jobs

READY
Request il installation CVMFS
Performance
Commit) Dioehszs Testing
GitHub
Code Acti Central
ctions
Database
I
Build Test I | Kubernetes DIRAC |,
Servers Servers Web 1 | (dedicated) (shared) |,
Portal L]

Summary

«» CEPCSW is being developed in collaboration with the
Key4dhep project

+» Key components of the CEPCSW core software are in
nlace and keeps optimized to well support detector
simulation and reconstruction studies

L)

+ Lots of efforts are devoted to adopt new technologies
to boost CEPCSW performance

e Multi-threaded Detector simulation based on Gaussino

e Heterogeneous computing
e Integration of Machine Learning
e Parallel Analysis framework based RDataFrame

e Automated validation system

20

Thanks for your attention!

Welcomed to joining CEPCSW and working together!

https://github.com/cepc/cepcsw

https://github.com/cepc/cepcsw

