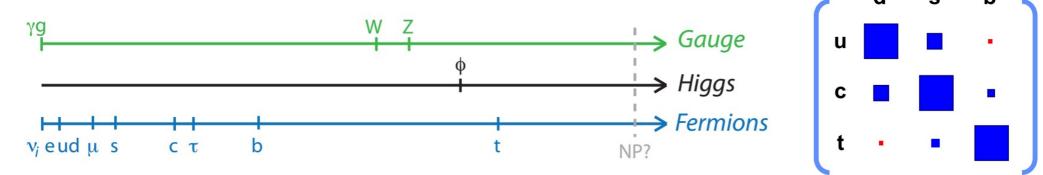
CKM global fits and new physics in meson mixing

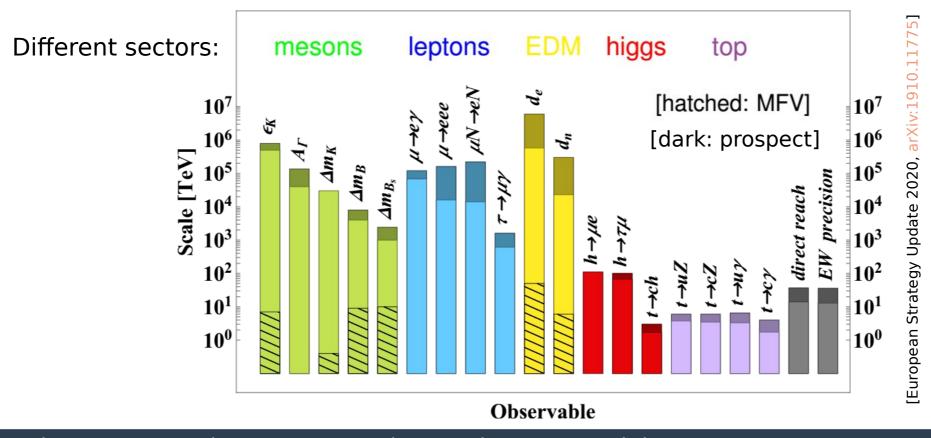
"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101031558"

Luiz VALE SILVA (IFIC, UV - CSIC)

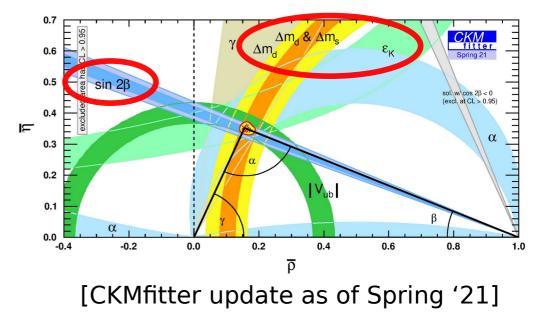

[Charles, Descotes-Genon, Ligeti, Monteil, Papucci, Trabelsi, LVS, PRD 102, 056023 (2020), arXiv:2006.04824]

Mini-workshop in Theory, IAS & HKUST, 13/02/2023

The Standard Model (SM) and Beyond

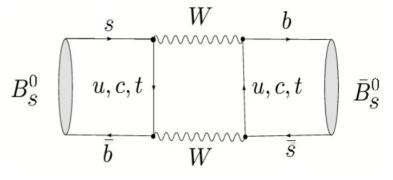

- Flavour physics played a central role in the formulation of the SM (new fermion generations, manifestation of CP Violation, etc.)
- Many flavour observables enjoy the status of precision physics, thanks to progress in different fronts (e.g. <u>QCD inputs</u>)
- Flavour physics can play a leading role in addressing the questions left open by the SM, and reveal New Physics sectors

Hierarchies in the spectrum of particles and CKM matrix:


Reach to New Physics (NP)

- Low-energy observables → probe <u>energies much beyond the reach of direct searches</u>
- The bounds on non-SM contributions shape NP candidates
- If deviation seen, possible NP manifestation!

Current status of flavour


 Overall agreement w/ the SM, but some existing tensions (e.g., incl. vs excl. |V_{xb}|)

- Flavour is one of the main physics cases for <u>future experiments</u>
- Future data will guide the field, testing present anomalies and possibly revealing new ones

NP in B meson mixing

- HERE: address present and future bounds on NP in $|\Delta B|=2$, and discuss future limitations
- |\[\triangle B|=2: NP competes with suppressions in the SM (loop/CKM), and enjoys the status of precision physics

Not discussing D meson mixing

[K meson mixing: PRD 89, 033016 (2014), arxiv:1309.2293]

• Combine projections for future data: need global fit including "tree" and "loop" observables

[see e.g. CKMfitter]

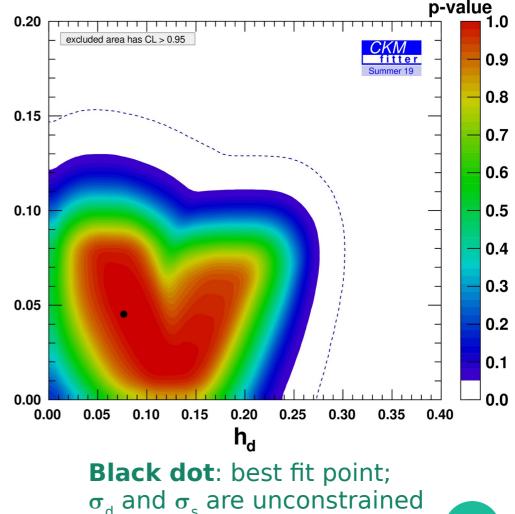
NP in B meson mixing

- NP in $|\Delta B|=2$: h_d and h_s set sizes
- Assumptions:
 - No NP in $|\Delta F|=1$: tree level in SM (γ , $|V_{ub}|$, $|V_{cb}|$, ...) free of NP
 - NP is short-distance
 - Unitarity of the CKM 3x3 matrix
 - Unrelated NP in B_d and B_s systems [See: PRD 89, 033016 (2014), arxiv:1309.2293]
- SMEFT: four-quark operators of different chiral structures

a=d. s

CKM (in presence of NP),

bag parameters,


 $M_{12} = M_{12}^{\rm SM} \times (1 + \frac{h}{2} e^{2i\sigma})$

 \downarrow decay constants

Present status of NP in B meson mixing

- Agreement with the SM ($h_d = h_s = 0$) at $\sim 1\sigma$
- Allowed size for NP at the level of O(20%)! ⁻
- Extractions of ρ and η (Wolfenstein parm.) degrade by factor ~3

Status as of Summer '19

New era of flavour ahead

		LHC era	HL-LHC era			
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)	
ATLAS, CMS	25 fb ⁻¹	150 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹	
LHCb	3 fb ⁻¹	9 fb ^{−1}	23 fb ⁻¹	50 fb ⁻¹	*300 fb ⁻¹	

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2x10³⁴ cm⁻²s⁻¹

[^ See arXiv:1808.08865]

- Expression of interest for an LHCb Upgrade II
- Belle II: 50x the Belle and nearly 100x the BaBar data sets; ongoing discussions about upgrade

Benchmarks for the future

- Phase I: LHCb-upgrade I 50/fb, & Belle II 50/ab
- Phase II: LHCb-upgrade II 300/fb, & Belle II upgrade 250/ab
- Phase III: Phase II + FCC-ee

FCC-ee: initial phase of FCC; operates at <u>different EW thresholds</u>: **5x10¹² Z bosons**, **10⁸ WW pairs**, >10⁶ Higgses, >10⁶ tt pairs

Attribute	$\Upsilon(4S)$	pp	Z^0	Particle species	B^0	B^+	$B^0_{\mathfrak{s}}$	Λ_b	B_c^+	$c\overline{c}$	$\tau^-\tau^+$
All hadron species		\checkmark	\checkmark	$\frac{1}{\text{Yield } (\times 10^9)}$	310	310	75	65	1.5	600	170
High boost		\checkmark	\checkmark		510	510	10	00	1.0	000	110
Enormous production cross-section		\checkmark					C				1
Negligible trigger losses	1		1	[FCC Physics Op	portu	nities,	Cond	ceptu	ial De	sign R	eport
Low backgrounds	1		1	[Flavour ca	ses: E	EPJPlus	136, 8	337 <mark>a</mark> r	Xiv:21	06.012	259,
Initial energy constraint	1		(\checkmark)	and EPJF		-					-

Experimental and theoretical inputs

	Central		Reference			
	values	Current [28]	Phase I	Phase II	Phase III	Phases I-III
Vud	0.97437	± 0.00021	id	id	id	[28]
$ V_{us} f_+^{K\to\pi}(0)$	0.2177	± 0.0004	id	id	id	[28]
V _{cd}	0.2248	± 0.0043	± 0.003	id	id	[40,41]
V _{cs}	0.9735	± 0.0094	id	id	id	[28,40,41]
$\Delta m_d \text{ [ps}^{-1}\text{]}$	0.5065	± 0.0019	id	id	id	[17]
$\Delta m_s \text{ [ps}^{-1}\text{]}$	17.757	± 0.021	id	id	id	[17]
$V_{cb} _{SL} \times 10^3$	42.26	± 0.58	± 0.60	± 0.44	id	[29]
$V_{cb} _{W \to cb} \times 10^3$	42.20				± 0.17	[34-36]
$V_{ub} _{SL} \times 10^3$	3.56	± 0.22	± 0.042	± 0.032	id	[29]
V_{ub}/V_{cb} (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id	[30]
$\mathcal{B}(B \to \tau \nu) \times 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009	[29,34]
$\mathcal{B}(B \to \mu \nu) \times 10^6$	0.37		± 0.03	± 0.02	id	[29]
$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008	[29,30,34]
α[°] (mod 180°)	91.9	± 4.4	± 0.6	id	id	[29]
[°] (mod 180°)	66.7	± 5.6	± 1	± 0.25	± 0.20	[29,30,34]
s[rad]	-0.035	± 0.021	± 0.014	± 0.004	± 0.002	[30,34]
$M_{SL}^d \times 10^4$	-6	±19	± 5	± 2	± 0.25	[14,17,34,37]
$s_{\rm SL}^s \times 10^5$	3	± 300	± 70	±30	±2.5	[14,17,34,37]
\bar{n}_t [GeV]	165.30	±0.32	id	id	± 0.020	[28,34]
$\alpha_s(m_Z)$	0.1185	± 0.0011	id	id	± 0.00003	[28,34]
$f_{+}^{K \to \pi}(0)$	0.9681	± 0.0026	± 0.0012	id	id	[30]
f_K [GeV]	0.1552	± 0.0006	± 0.0005	id	id	[30]
f_{B_s} [GeV]	0.2315	± 0.0020	± 0.0011	id	id	[30]
B_{B_s}	1.219	± 0.034	± 0.010	± 0.007	id	[30]
f_{B_s}/f_{B_d}	1.204	± 0.007	± 0.005	id	id	[30]
B_{B_s}/B_{B_d}	1.054	± 0.019	± 0.005	± 0.003	id	[30]
$\tilde{B}_{B_s}/\tilde{B}_{B_d}$	1.02	± 0.05	± 0.013	id	id	[30,42,43]
\tilde{B}_{B_s}	0.98	± 0.12	± 0.035	id	id	[30,42,43]
η_B	0.5522	± 0.0022	id	id	id	[44]

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

168 6.01

arXiv:2106.12 arXiv:2

912 30,

also EPJPlus 1 EPJPlus 136, 9

anda

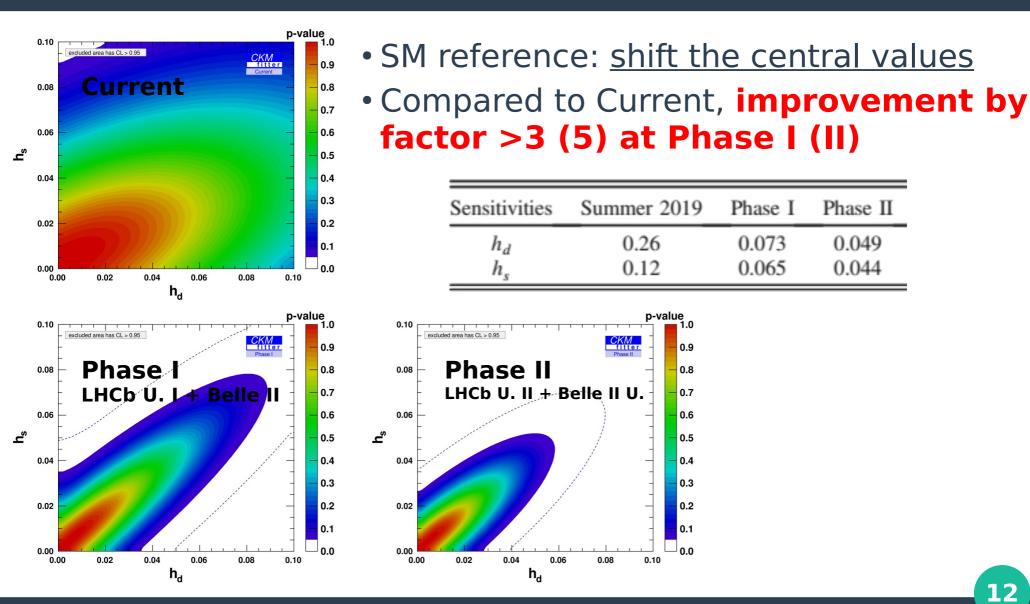
Experimental and theoretical inputs

- **Caveat**: experimental sensitivity studies for FCC still in progress...
- $|V_{ub}|_{SL} \& |V_{cb}|_{SL}$: respectively 0.9% & 1.0% @ Phase II (Belle II U.)

 $|V_{cb}|$ accuracy ~0.4% @ FCC-ee: W \rightarrow bc [Schune, Monteil]

[incl. vs excl. inputs and impact on extraction of NP in $|\Delta F|=2$: De Bruyn, Fleischer, Malami, van Vliet] [recent B_c to $\tau\nu$ @ Tera-Z: Zheng, Xu, Cao, Yu, Wang, Prell, Cheung, Ruan; Amhis, Hartmann, Helsens, Hill, Sumensari]

- Future stat. accuracy in angles (a, β , β_{s} , γ) ~< 1°


At this level of exp. accuracy: need for theo. studies of isospin breaking corrections, penguin pollution, etc.

[recent dedicated α @ Tera-Z (B⁰ to $\pi^0\pi^0$): Wang, Descotes-Genon, Deschamps, Li, Chen, Zhu, Ruan] [recent Tera-Z studies of β_s , etc.: Aleksan, Oliver, Perez; Aleksan, Oliver, Perez; Li, Ruan, Zhao]

 Phases I and II uncs. for Lattice QCD (decay constants, bag parameters) < 1%

Literature discusses Lattice QCD projections up to Phase II

Future improvements

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

Phase I

0.073

0.065

0.9

0.8

0.7

0.6

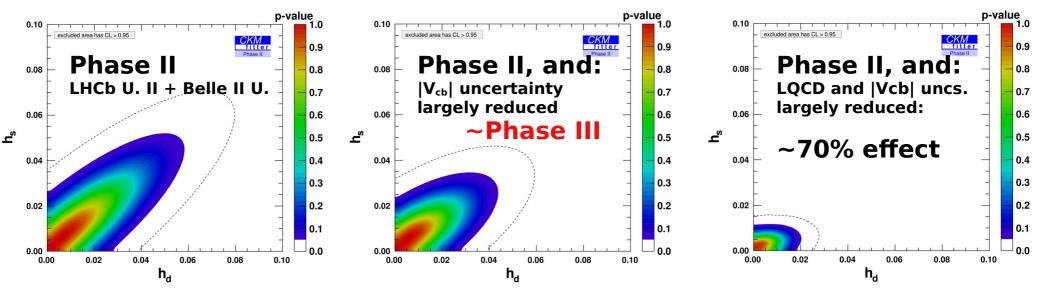
0.5 0.4

0.3 0.2

0.1

0.0

Phase II


0.049

0.044

Bottlenecks

Necessary improvements beyond current expectations for enhancing sensitivity to NP:

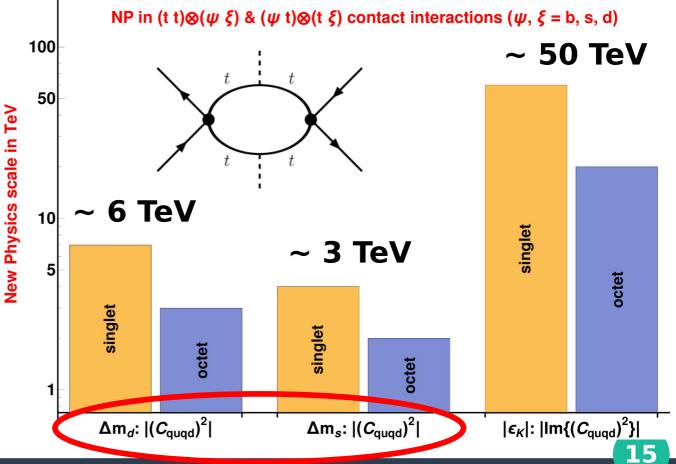
- Lattice QCD (also short-distance QCD corrections)
- **V**_{cb}, overall normalization (Wolfenstein parameter A)
- Individual impacts on h_d and h_s : O(20-30)%

Future reach to NP in B meson mixing

$$\frac{C_{ij}^2}{\Lambda^2} (\bar{q}_{i,L} \gamma_\mu q_{j,L})^2, \qquad h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2, \\ \sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$$

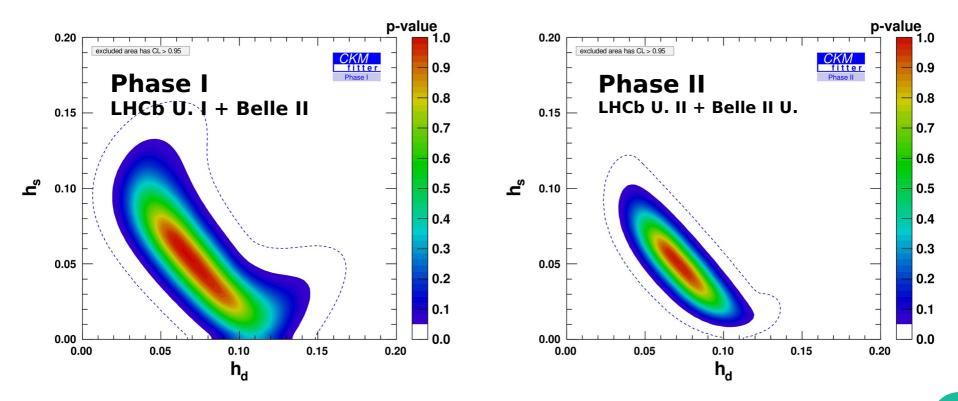
- In the absence of suppressions: NP scale >> TeV
- Possible flavour and loop suppressions: alleviate bounds on NP

		Sensitivity for Sur	mmer 2019 [TeV]	Phase I Sens	itivity [TeV]	Phase II Sensitivity [TeV]		
Couplings	NP loop order	B_d mixing	B_s mixing	B_d mixing	B_s mixing	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	Tree level	9	13	17	18	20	21	
(CKM-like)	One loop	0.7	1.0	1.3	1.4	1.6	1.7	
$ C_{ij} = 1$	Tree level	1×10^{3}	3×10^2	2×10^3	4×10^2	2×10^3	5×10^2	
(No hierarchy)	One loop	80	20	2×10^2	30	2×10^2	40	


Sensitivity to SMEFT operators

- |ΔF|=2 dim.-6 operators: previous slide set bounds for (V-A)x(V-A)
- (|ΔF|=1 dim.-6)²=(|ΔF|=2 dim.-8 operators)
- |ΔF|=1 quqd-operator does not change global fit analysis

NP bag parameters: [ETM '15, HPQCD '19]


[LVS, arXiv:2201.03038]

|ΔF|=2 dim.-8: sensitivity to multi-TeV NP effects

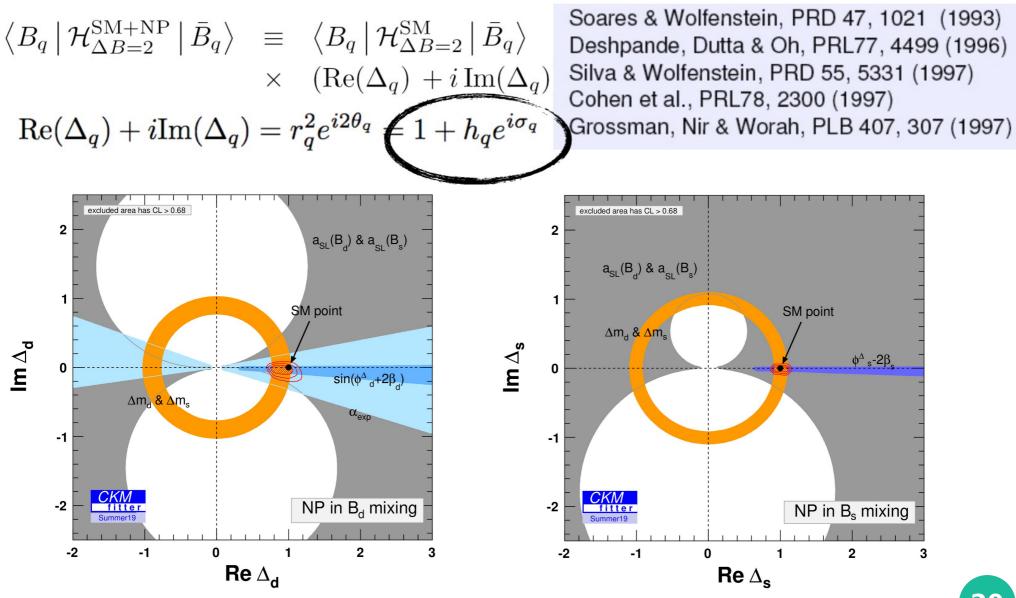
Discovery prospects

B meson mixing observables also provide potential **discovery for NP**

Conclusions

- Flavour physics: crucial in shaping the SM, but also in looking for candidates of NP
- $|\Delta B| = 2$: <u>only one flavour aspect</u> of future experimental and theoretical progress
- Allowed NP in B meson mixing still large: bounds will largely improve
- Identified future limitations in Phase II:
 LQCD and |V_{cb}|
- FCC-ee (Tera-Z) partially addresses |V_{cb}| bottleneck

BACK UP!


Experimental quantities vs. theoretical ones

Observables considered in the fit that are modified by NP in $|\Delta B|=2$:

$$\Delta_q = |\Delta_q| e^{i2\Phi_q^{\rm NP}}$$

parameter	prediction in the presence of NP
Δm_q	$ \Delta_q^{\rm NP} imes \Delta m_q^{ m SM}$
2eta	$2\beta^{\rm SM} + \Phi^{\rm NP}_d$
$2\beta_s$	$2\beta_s^{\text{SM}} - \Phi_s^{\text{NP}}$
2α	$2(\pi - \beta^{\text{SM}} - \gamma) - \Phi^{\text{NP}}_d$
$\Phi_{12,q} = \operatorname{Arg}\left[-\frac{M_{12,q}}{\Gamma_{12,q}}\right]$	$\Phi_{12,q}^{\scriptscriptstyle\mathrm{SM}}+\Phi_q^{\scriptscriptstyle\mathrm{NP}}$
A^q_{SL}	$\frac{\Gamma_{12,q}}{M_{12,q}^{\text{SM}}} \times \frac{\sin(\Phi_{12,q}^{\text{SM}} + \Phi_q^{\text{NP}})}{ \Delta_q^{\text{NP}} }$
$\Delta\Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\rm SM} + \Phi_q^{\rm NP})$

Different representation

