

Probing Heavy Neutral Leptons at Future Experiments

Juraj Klarić February 13th, 2023

Some puzzles for physics beyond the Standard Model

Neutrino masses

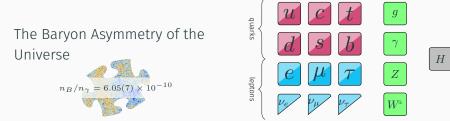
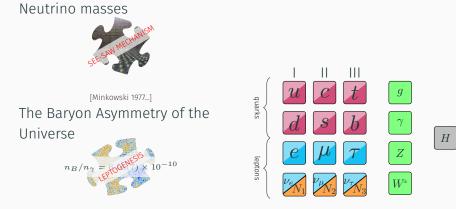
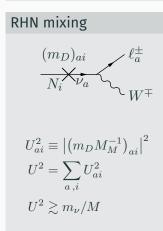
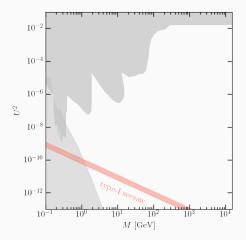



Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

Some puzzles for physics beyond the Standard Model

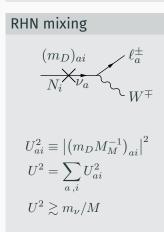

[Fukugita/Yanagida '86...]

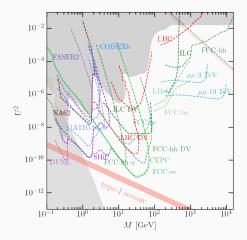

Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

Where to look for HNLs?

Active neutrino masses

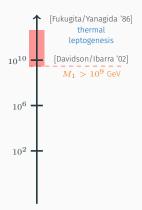
$$m_{\nu} = -m_D M_M^{-1} m_D^T$$




[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

Where to look for HNLs?

Active neutrino masses

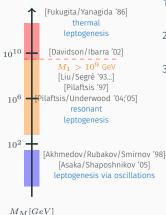

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

Low-scale leptogenesis


 $M_M[GeV]$

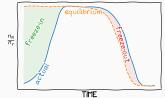
Sakharov conditions


- 1. Baryon number violation sphaleron processes
- 2. C and CP violation

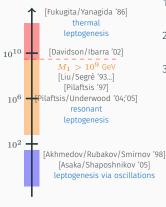
RHN decays and oscillations

3. Deviation from thermal equilibrium freeze-in and freeze-out of RHN

 \cdot for hierarchical RHN $M_1\gtrsim 10^9~{
m GeV}$


Sakharov conditions

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation

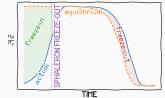

RHN decays and oscillations

3. Deviation from thermal equilibrium

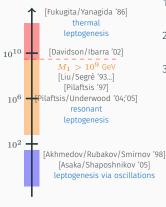
freeze-in and freeze-out of RHN

- for hierarchical RHN $M_1\gtrsim 10^9~{
 m GeV}$
- leptogenesis works in a wide range of RHN masses

 $M_M[GeV]$


Sakharov conditions

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation

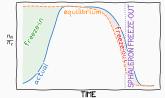

RHN decays and oscillations

3. Deviation from thermal equilibrium

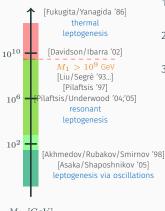
freeze-in and freeze-out of RHN

- + for hierarchical RHN $M_1\gtrsim 10^9~{
 m GeV}$
- leptogenesis works in a wide range of RHN masses

 $M_M[GeV]$


Sakharov conditions

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation

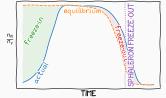

RHN decays and oscillations

3. Deviation from thermal equilibrium

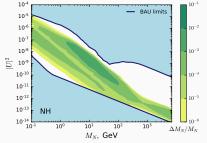
freeze-in and freeze-out of RHN

- + for hierarchical RHN $M_1\gtrsim 10^9~{
 m GeV}$
- leptogenesis works in a wide range of RHN masses

 $M_M[GeV]$


Sakharov conditions

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation

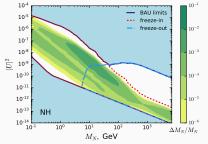

RHN decays and oscillations

3. Deviation from thermal equilibrium

- \cdot for hierarchical RHN $M_1\gtrsim 10^9~{
 m GeV}$
- leptogenesis works in a wide range of RHN masses
- how are the low-scale mechanisms connected?

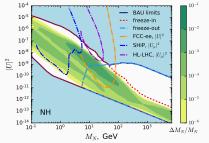
- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

[JK/Timiryasov/Shaposhnikov 2103.16545]


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta=0$ and $\eta=\pi/2$
 - \cdot less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

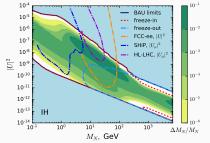
- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

[JK/Timiryasov/Shaposhnikov 2103.16545]


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta=0$ and $\eta=\pi/2$
 - \cdot less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

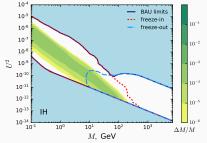
- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

[JK/Timiryasov/Shaposhnikov 2103.16545]


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta=0$ and $\eta=\pi/2$
 - \cdot less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

[JK/Timiryasov/Shaposhnikov 2103.16545]


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

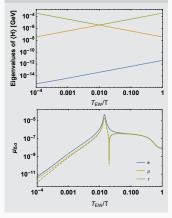
[JK/Timiryasov/Shaposhnikov 2103.16545]

- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

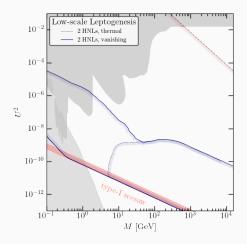
• baryogenesis possible for all masses above 100 MeV!

- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

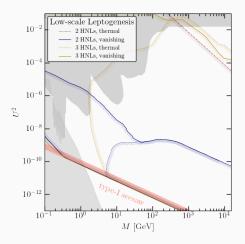
[JK/Timiryasov/Shaposhnikov 2103.16545]

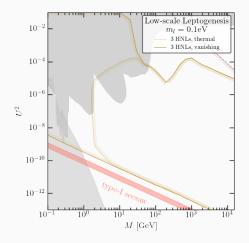

- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - + optimal phases $\delta = 0$ and $\eta = \pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$

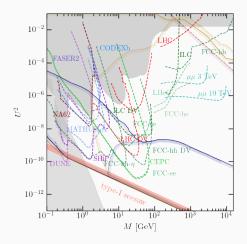
asymmetry can be generated even without washout

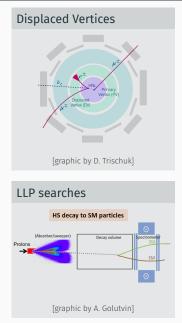

[Akhmedov/Rubakov/Smirnov hep-ph/9803255]

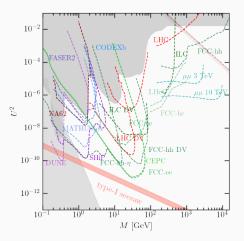
- Sakharov II: CP
- * more CP phases than in the case with two RHN
- large hierarchy in the washout is possible [Canetti/Drewes/Garbrecht 1404.7144]
 - Sakharov III: non-equilibrium
- level crossing between the heavy neutrinos [Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]
 - Sakharov II: CP


Enhancement by level crossing

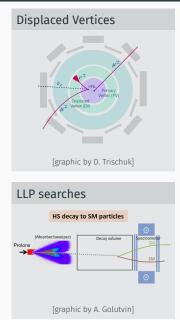

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U² are allowed for experimentally accessible masses
- the maximal value of U^2 depends on m_1

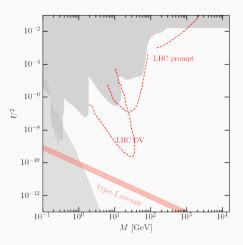

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U^2 are allowed for experimentally accessible masses
- the maximal value of U^2 depends on m_1

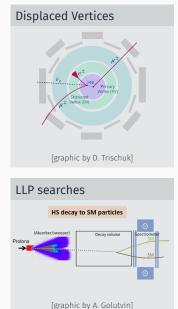

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U^2 are allowed for experimentally accessible masses
- the maximal value of U^2 depends on m_1

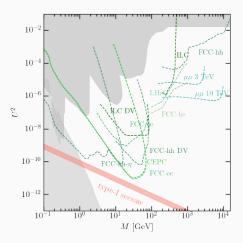


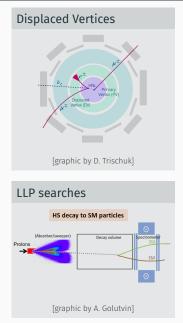
- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U² are allowed for experimentally accessible masses
- the maximal value of U^2 depends on m_1

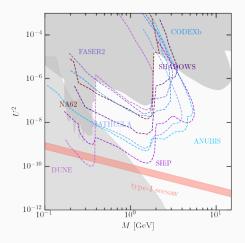


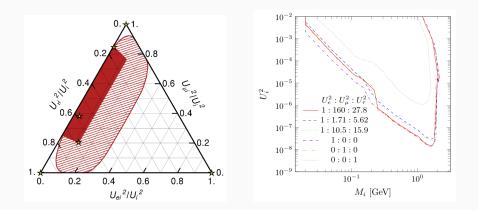

Discovering Heavy Neutral Leptons

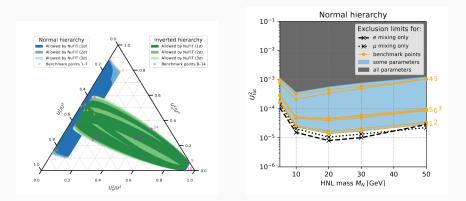



[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

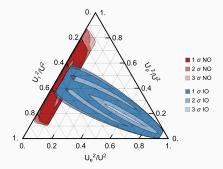



[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

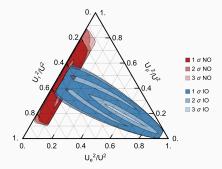
Sensitivity of experiments highly depends on mixing ratios: NA62 in beam dump mode


[[]Drewes/Hajer/JK/Lanfranchi 1801.04207]

Sensitivity of experiments highly depends on mixing ratios: ATLAS

[Tastet/Ruchayskiy/Timiryasov 2107.12980]

Constraints from the seesaw mechanism

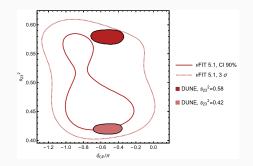


[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the flavour ratios are completely determined by U_{PMNS}
- uncertainty dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

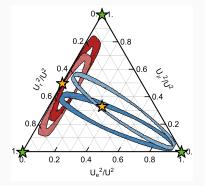
Constraints from the seesaw mechanism

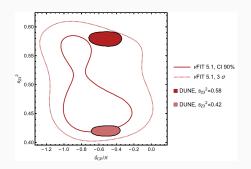

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the flavour ratios are completely determined by U_{PMNS}
- uncertainty dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

Future sensitivity?

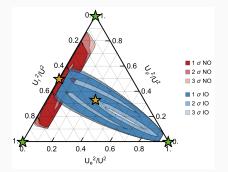

- significant improvement expected with DUNE and HyperK
- we can use the sensitivity estimates to estimate how the allowed flavor ratios change



[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

Future sensitivity?

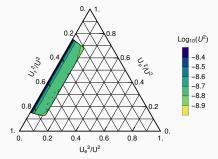


[nuFIT 5.1 2007.14792]

[Drewes/JK/Lopez-Pavon 2207.02742]

[DUNE TDR 2002.03005]

New Benckmark Points

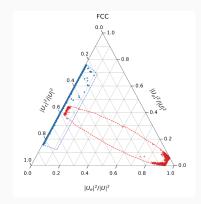


[Figure from 2207.02742]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$
 - $U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

New Benckmark Points

NO, M = 30 GeV



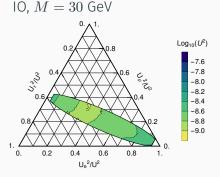
[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$
 - $U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

New Benckmark Points

 $\Delta M/M = 10^{-2}$

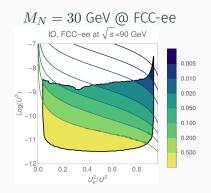

[Hernandez/Lopez-Pavon/Rius/Sandner 2207.01651]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0: 1: 1$
 - $U_e^2: U_\mu^2: U_\tau^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

From discovery to tests

Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of $U_e^2/U^2\,$
- similar sensitivity @ SHiP

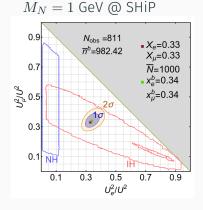


[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

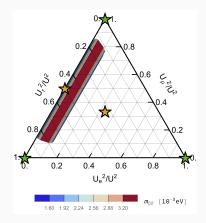
Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of $U_e^2/U^2\,$
- similar sensitivity @ SHiP

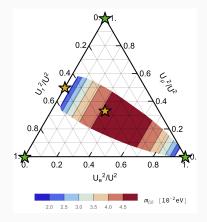


[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

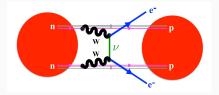
1710.03744]


Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP

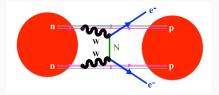

[Snowmass HNL WP 2203.08039]

Complementarity with neutrinoless double beta decay

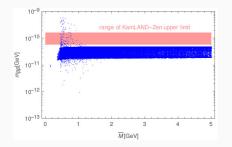


- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding m_{etaeta} limits allowed flavour ratios

Complementarity with neutrinoless double beta decay

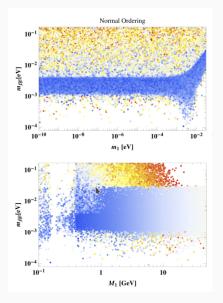


- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding m_{etaeta} limits allowed flavour ratios

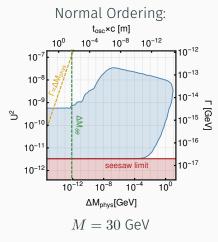

[figure from 1910.04688]

- + RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

[figure from 1910.04688]


- + RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

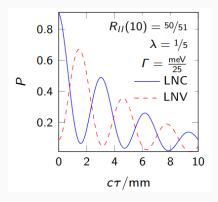
[Eijima/Drewes 1606.06221,


Hernández/Kekic/López-Pavón/Salvado 1606.06719]

- RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

- RHN can contribute to $m_{\beta\beta}$
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

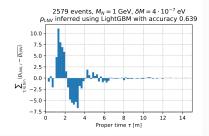
Measuring the mass splitting in model with 2 HNLs



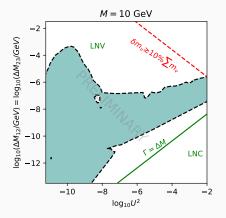
[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

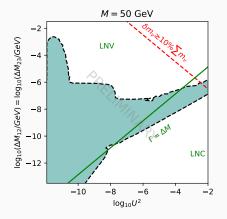
- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting


Measuring the mass splitting in model with 2 HNLs

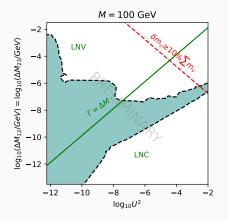
[Antusch/Hajer/Rosskopp 2210.10738]

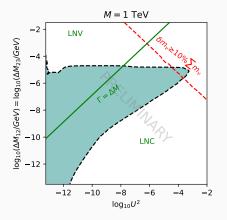

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

Measuring the mass splitting in model with 2 HNLs

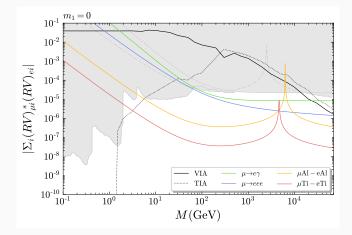


[Tastet/Timiryasov 1912.05520]


- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

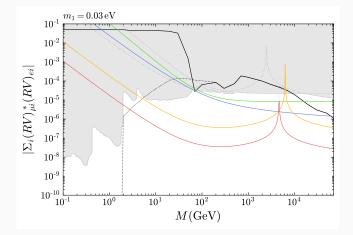

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters



- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U^2 arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U_{\alpha I}^2/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters


Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- $\cdot \;$ future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space

Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- $\cdot \;$ future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space

Conclusions

- right-handed neutrinos can offer a minimal solution to the origins of neutrino masses and the baryon asymmetry of the Universe
- the existence right-handed neutrinos can be tested at existing and near-future experiments
 - there is synergy between high-energy and high-intensity experiments!
 - together they will cover a large portion of the low-scale leptogenesis parameter space
- leptogenesis is a viable baryogenesis mechanism for all heavy neutrino masses above the $\mathcal{O}(100)$ MeV scale
- indirect searches can offer further insight

Thank you!

Large mixing angles and approximate B-L symmetry

- large U² require cancellations between different entries of the Yukawa matrices F
- this cancellation can be associated with an approximate lepton number symmetry

[Shaposhnikov hep-ph/0605047, Kersten Smirnov

0705.3221, Moffat Pascoli Weiland 1712.07611]

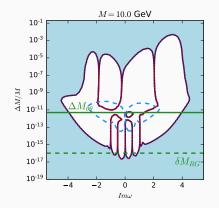
• symmetry broken by small parameters $\epsilon, \epsilon', \mu, \mu'$

Pseudo-Dirac pairs

$$N_s = \frac{N_1 + iN_2}{\sqrt{2}}, N_w = \frac{N_1 - iN_2}{\sqrt{2}}$$

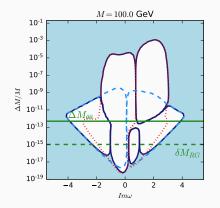
B-L parametrisation

$$M_M = \bar{M} \begin{pmatrix} 1 - \mu & 0 & 0 \\ 0 & 1 + \mu & 0 \\ 0 & 0 & \mu' \end{pmatrix}$$

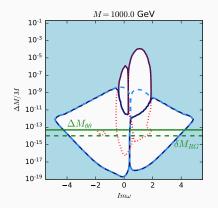

$$F = \frac{1}{\sqrt{2}} \begin{pmatrix} Fe(1+\epsilon_e) & iFe(1-\epsilon_e) & Fe\epsilon'_e \\ F_\mu(1+\epsilon_\mu) & iF_\mu(1-\epsilon_\mu) & F_\mu\epsilon'_\mu \\ F_\tau(1+\epsilon_\tau) & iF_\tau(1-\epsilon_\tau) & F_\tau\epsilon'_\tau \end{pmatrix}$$

- if present, symmetries are manifest to all orders in p.t.
- in the case of a large B-L breaking, radiative corrections can cause large neutrino masses
- we can use the size of radiative corrections to the light neutrino masses to quantify tuning

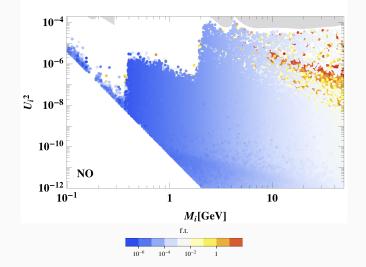
Fine Tuning


$$f.t.(m_{\nu}) = \sqrt{\sum_{i=1}^{3} \left(\frac{m_i^{\text{loop}} - m_i^{\text{tree}}}{m_i^{\text{loop}}}\right)^2}$$

Slices of the parameter space


- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- mass splitting induced by RG running δM_{RG}

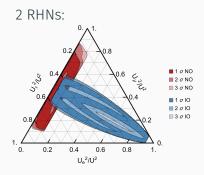
Slices of the parameter space


- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- mass splitting induced by RG running δM_{RG}

Slices of the parameter space

- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- \cdot mass splitting induced by RG running δM_{RG}

Results: Leptogenesis with 3 RHN (Normal Ordering)


[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

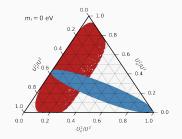
Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

[Snowmass White Paper 2203.08039] [Drewes/Garbrecht/Gueter/JK 1609.09069] [Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]

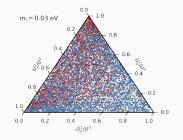

Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

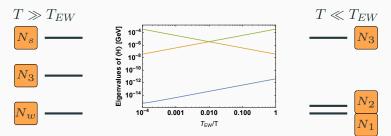
[Drewes/Georis/JK 220x.xxxx] [Chrzaszcz/Drewes/Gonzalo/Harz/Krishnamurthy/Weniger 1908.02302]

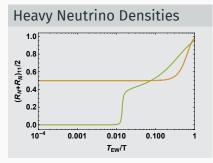

Hierarchy in the washout

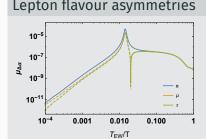
- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

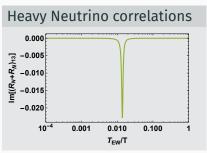
- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

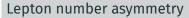

3 RHNs:

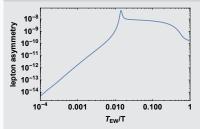

[Drewes/Georis/JK 220x.xxxx] [Chrzaszcz/Drewes/Gonzalo/Harz/Krishnamurthy/Weniger 1908.02302]


Enhancement due to level crossing

- in the B L symmetric limit two heavy neutrinos form a pseudo-Dirac pair
- the "3rd" heavy neutrino can be heavier than the pseudo-Dirac pair
- for $T \gg T_{EW}$, the pseudo-Dirac pair also has a thermal mass




Enhancement due to level crossing



Lepton flavour asymmetries

