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Some puzzles for physics beyond the Standard Model

Neutrino masses
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Some puzzles for physics beyond the Standard Model
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Where to look for HNLs?
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Where to look for HN

Active neutrino masses
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Low-scale leptogenesis



Leptogenesis mec

Sakharov conditions

1. Baryon number violation
4 [Fukugita/Yanagida '86]
sphaleron processes

thermal
leptogenesis 2. Cand CP violation
1010 == [Davidson/Ibarra '02] RHN decays and oscillations
My > 107 Ge 3. Deviation from thermal equilibrium

freeze-in and freeze-out of RHN
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Leptogenesis mechanisms

Sakharov conditions

1. Baryon number violation
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sphaleron processes

thermal
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leptogenesis works in a wide range of RHN masses
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Leptogenesis mechanisms
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Results: The minimal model with 2 RHNs

10 T T T T 107

204 — BAU limits
o baryogenesis possible for all masses

. above 100 MeV!
10
S two main contributions to the BAU,

b o from freeze-in and freeze-out

0 - there is significant overlap of the
3 two regimes
101 E . s . N 0
10~ 10 10 10 10 AAI,\/AI‘V

My, GeV
[JK/Timiryasov/Shaposhnikov 2103:16545]

in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions
leptogenesis via oscillations is freeze-in dominated,
we neglect HNLs falling out of equilibrium
results depend on low-energy CP phases:
optimal phases § = 0and n = w /2

less overlap foreg. 6 = wandn =0
maximal AM/M < 10~ —»1073
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How is 3 # 2?

) Enhancement by level crossing
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Results: Leptogenesis with 3 RHNs

both freeze-in and
freeze-out leptogeneses
within reach of existing
experiments

all U? are allowed for
experimentally
accessible masses

- the maximal value of U?
depends on my
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
[leptogenesis bounds from JK/Timiryasov/Shaposhnikov 210316545

and Drewes/Georis/JK 210616226 | 6/20
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Discovering Heavy Neutral Leptons




How to find HN

Displaced Vertices
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[graphic by A. Golutvin] 7/20



How to find HNLs?

Displaced Vertices

Primary
Vertex (PV)

Displaced
F Vertex (OV)

[graphic by D. Trischuk]

LLP searches

HS decay to SM particles

(Absorber/sweeper) Decay volume Spectrometdr
Protons
~ M

[graphic by A. Golutvin]

1072 =
il 1 LHC prompt ]
10 . ;
A ]
107" . 4
@ M L
— \\ i
108 “. i
“LHC DV
10-10 - -
1072 -
PRI ETTT] B AR YTT] MRS S W TTT] MRS ST 1T AT |
107T i T 108 g

M [GeV]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[also see the the talk by S. Kulkarni] 7/20



How to find HN

Displaced Vertices

!
102k i =
£ | T
H i
+ ird FCC
i
______ HI : - -
> Pr —— "
Vertx () ~+

Displaced
F Vertex (OV)

W

[graphic by D. Trischuk] )
{ FCC-hh DV
LLP searches i
HS decay to SM particles 10-12 -
P! RS TTTY EEET B £ T MR
(Absorber/sweeper) e Spectromeddr 10T g 1 H 107 107
T N M [GeV]
Trre— SM

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[also see the the talk by S. Kulkarni]
[graphic by A. Golutvin] 7/20



How to find HN

Displaced Vertices

Primary
Vertex (PV)

Displaced
F Vertex (OV)

W

[graphic by D. Trischuk]

LLP searches

HS decay to SM particles

10-12 " nncnoal Ll
e Decayvotume | |Epectromedd 10T 107 107
Protons ;
M [GeV]
] SM

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[also see the the talk by S. Kulkarni]
[graphic by A. Golutvin] 7/20



Sensitivity of experiments highly depends on mixing ratios:
NA62 in beam dump mode
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Sensitivity of experiments highly depends on mixing ratios:

ATLAS

Normal hierarchy

Exclusion limits for:

Normal hierarchy 0.0 Inverted hierarchy =X= e mixing only
m Allowed by NUFIT (10) 10 m Allowed by NUFIT (10) 2 =3 U mixing only
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benchmark points
some parameters
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Constraints from the seesaw mechanism

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 51 200714792]

| 10NO
m20NO
30NO

m10l10
m20l10
3010

- in the minimal seesaw model the

flavour ratios are completely
determined by Upyrns

uncertainty dominated by Majorana
phase 7, Dirac phase § and 6a3

- allowed ratios become smaller as we

pin down the PMNS parameters

How to choose future-proof
benchmarks?
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Future sensitivity?

——— VFIT 5.1, CI 90%
»»»»»»»»»»»»» VFIT51,30

S23°

- significant improvement
expected with DUNE and HyperK

M DUNE, 5,:=0.58

B DUNE, 5,5%=0.42
- we can use the sensitivity

estimates to estimate how the
allowed flavor ratios change

-12 -10 -08 -06 -04 -02 0.0
ol

[NUFIT 51200714792

[DUNE TDR 2002.03005]
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New Benckmark Points

[Figure from 2207.02742]

W 10NO
m20NO
[13aNO

m1i0l0
m20l0
3010

new benchmarks prepared for the
HNL WG of the FIPs physics centre

- selection criteria:

1. consistency with v-osc. data
added value

symmetry considerations
simplicity

leptogenesis

Gu o= W [

- in addition to the single flavor

benchmarks, we propose the new

points:
FUZ2:U2:U2=0:1:1
c Uf:Uﬁ:Uf:l:l:l

- Common benchmarks can used to

compare the reach of different
searches
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New Benckmark Points
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From discovery to tests




Measuring flavor ratios at experiments

10, M = 30 GeV

- the HNL branching ratios are
constrained for a fixed U?

- large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U?

- similar sensitivity @ SHiP

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]
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Measuring flavor ratios at experiments

Mpy = 30 GeV @ FCC-ee

10, FCC-ee at / s=90 GeV

0.005

- the HNL branching ratios are
constrained for a fixed U?

0.010

0.020

Log(U?)

0.050

- large number of HNLs
possible at FCC-ee allow for B 0200
measurement of U2 /U*? 0500

- similar sensitivity @ SHiP oo e e e

UAIU?

0.100

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]
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Measuring flavor ratios at experiments

My =1 GeV @ SHiP

0.9 =
f,’,"fgaf 112 « X,=0.33
) ] =i X,=0.33
- the HNL branching ratios are 07 N=1000

. b
constrained for a fixed U? = Xg=0.34

- large number of HNLs
possible at FCC-ee allow for 03l . (&
measurement of U2 /U?

- similar sensitivity @ SHiP

[Snowmass HNL WP 2203.08039]
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Complementarity with neutrinoless double beta decay

+ mgg is a complementary probe of
the flavor mixing ratios for
My > 100MeV

- excluding mgg limits allowed
flavour ratios

Ue2/U?

.

160 192 224 256 288 3.20

[103ev]
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Complementarity with neutrinoless double beta decay
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HNL contribution to neutrinoless double 5 decay

[figure from 1910.04688]

* RHN can contribute to mgg

- large mass splitting is

required to have an
observable effect (not
always compatible with
leptogenesis)

- some leptogenesis

scenarios can already be
excluded by current results
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HNL contribution to neutrinoless double 5 decay

mgplGeV]
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[Eijima/Drewes 1606.06221,

Hernandez/Kekic/Lopez-Pavon/Salvado 1606.06719]
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leptogenesis)

- some leptogenesis
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HNL contribution to neutrinoless double

Normal Ordering
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Measuring the mass splitting in model with 2 HNLs

U2

Normal Ordering:
tusc"c[m]
10° 10 10® 1072

1077 10-12
1078 10-13
10-° 10-14 -
10710 ? 10-15 g
107" ) 10-16
10712 seesaw limit 1017
1072 108 10 10°
AMphys[GeV]
M = 30 GeV

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/)K

1710.03744]

- large range of AM

consistent with
leptogenesis

- energy resolution of

planned experiments -
AM/M ~ O(few%)

- Higgs vev contribution to

RHN mass difference

A Myg practically implies
lower limit on the mass
splitting
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Measuring the mass splitting in model with 2 HNLs
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Measuring the mass splitting in model with 2 HNLs

- large range of AM
consistent with
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01 - energy resolution of
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Mass splittings with 3 HNLs
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Mass splittings with 3 HNLs
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Mass splittings with 3 HNLs
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Mass splittings with 3 HNLs
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Indirect probes: Charged LFV
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future p — e conversion experiments can probe a large part of the N = 3 parameter space
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Conclusions

- right-handed neutrinos can offer a minimal solution to
the origins of neutrino masses and the baryon asymmetry
of the Universe

- the existence right-handed neutrinos can be tested at
existing and near-future experiments

- there is synergy between high-energy and high-intensity
experiments!

- together they will cover a large portion of the low-scale
leptogenesis parameter space

- leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

- indirect searches can offer further insight
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Large mixing angles and approximate B-L symmetry

- large U2 require Pseudo-Dirac pairs

cancellations between , _
Ny + iNg N = N1 — iN2

different entries of the Ne=—0p@ M =—05
Yukawa matrices F

- this cancellation can be R
sccoaiEiad Wit & B-L parametrisation
approximate lepton o o
number symmetry MM—M< 9 A ;)

[Shaposhnikov hep-ph/0605047, Kersten Smirnov

0705.3221, Moffat Pascoli Weiland 1712.07611]

- symmetry broken by small
parameters e, €, u, 1/

1 Fe(1+€e) iFe(l_ee) Fgeé
F= Fu(l+eu) iFu(l—epu) FHE;L
7

V2Z\F (14+e) iFr(1—er) Fre



- if present, symmetries are manifest to all orders in p.t.

- In the case of a large B-L breaking, radiative corrections
can cause large neutrino masses

- we can use the size of radiative corrections to the light
neutrino masses to quantify tuning

Fine Tuning
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Slices of the parameter space
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Results: Leptogenesis with 3 RHN (Normal Ordering)

[ T T
>

10~

10-¢

.

S 1078
10—10?
= NO
10—127 . Lo - e
10! 1 10
Ml[GEV]
f.t.

10-¢ 10 1072 1

[Abada/Arcadi/Domcke/Drewes/)K/Lucente 1810.12463]



Hierarchy in the washout

2 RHNs:

- lepton asymmetry can
survive washout if hidden

W 10NO

in a particular flavor mzono

. m1010

- washout suppression
3010

o
- T U2
- for 2 RHN f > 5 X% 1073 [Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

- for 3 RHN § < 1 possible

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]
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Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression
Lo Us
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3 RHNs:
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Enhancement due to level crossing

- Inthe B — L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

- the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

- for T > Tgw, the pseudo-Dirac pair also has a thermal
mass

T>Tew T <Tew

107
10
1078
10712 /
107
:

10-1°
1074 0.001 0.010 0.100 1 —

envalues of (H) [GeV]




Enhancement due to level crossing

Heavy Neutrino Densities Lepton flavour asymmetries
1.0
08 1075
,N\Eo.e . 107
g 0.4 = 10°°
£ 0.
© —e
T 02 10-M u
0.0 ] —
10% 0001 0010  0.100 1 el OO0 TC SO 00 L
Tew/T Tew/T
Heavy Neutrino correlations Lepton number asymmetry
0.000 107
=3 -0.005 £ 10
2 £ 10710
g -o0t0 7 107t
S 0015 S 1072
£ 8 1013
-0.020 - 10-14
1074 0.001  0.010  0.100 1 107 0.001 0.010 0.100 1

Tew/T Tew/T



	Low-scale leptogenesis
	Discovering Heavy Neutral Leptons
	From discovery to tests
	Appendix

