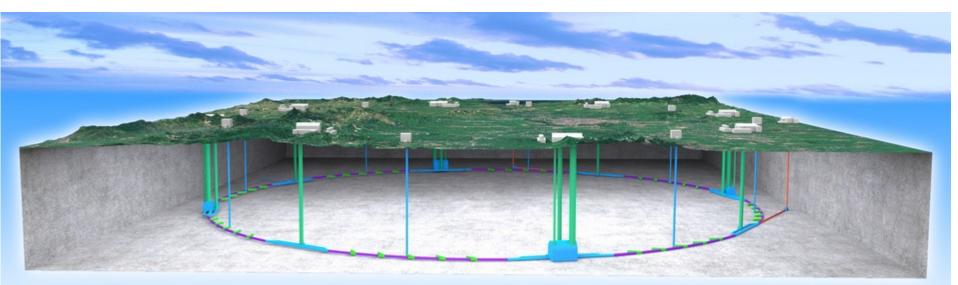


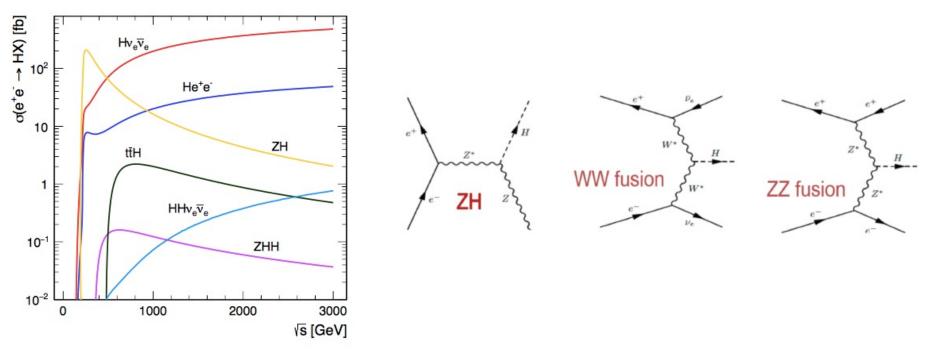
Higgs/top Physics at CEPC

Yaquan Fang (IHEP) HKUST IAS Program on High Energy Physics

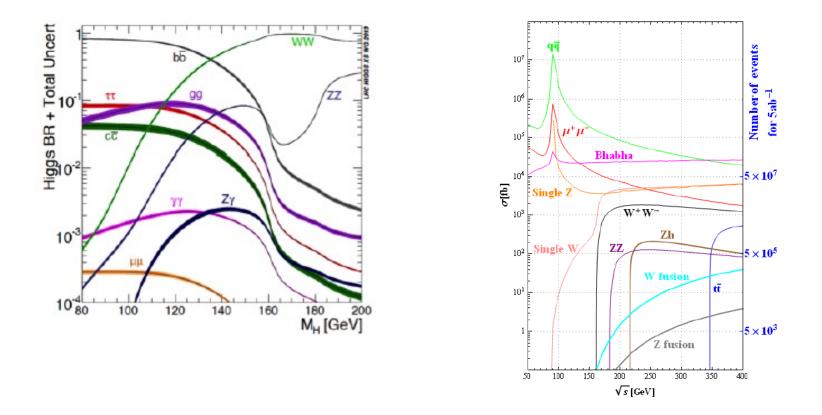

Why do we need e⁺e⁻ collider?

- For HL-LHC (3000 fb⁻¹), the precisions of measurements of Higgs coupling parameters are not better than a few percent.
 - Theoretical uncertainties start to be the dominant one.
- If the new physics is at the subpercent level, HL-LHC is not sensitive.
- Need e⁺e⁻ machine to precisely measure Higgs property as well as explore new physics.

CEPC

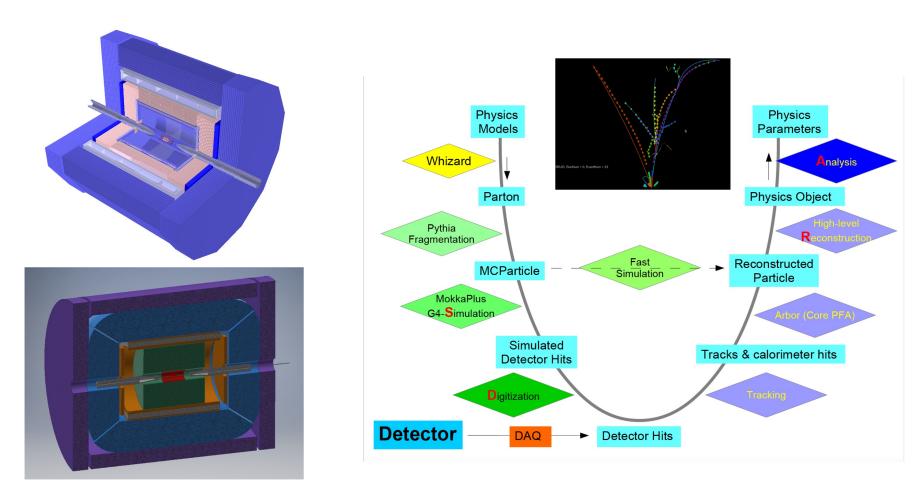

- Thanks to the low mass Higgs, CEPC+SPPC was proposed:
 - Circular e+e- collider(CEPC) has a higher luminosity
 - The tunnel can be re-used for Super proton-proton Collider(SppC), and AA, ep colliders in the far future:

First in the world to have such a proposal, reported at HF2012 at Fermilab

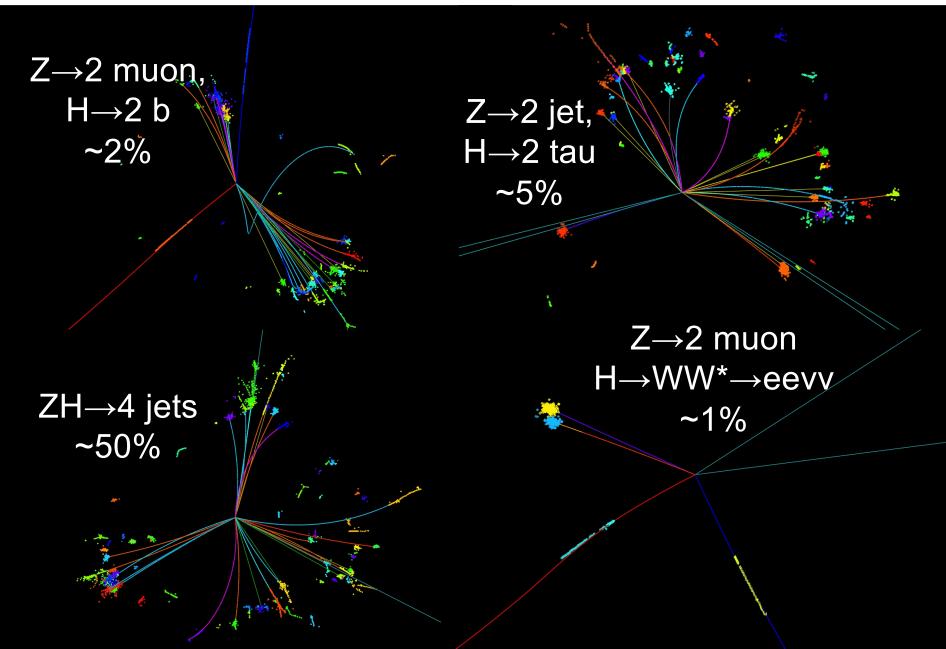

Baseline: 100 km, 30 MW; Upgradable to 50 MW

Higgs productions at e⁺e⁻ collider

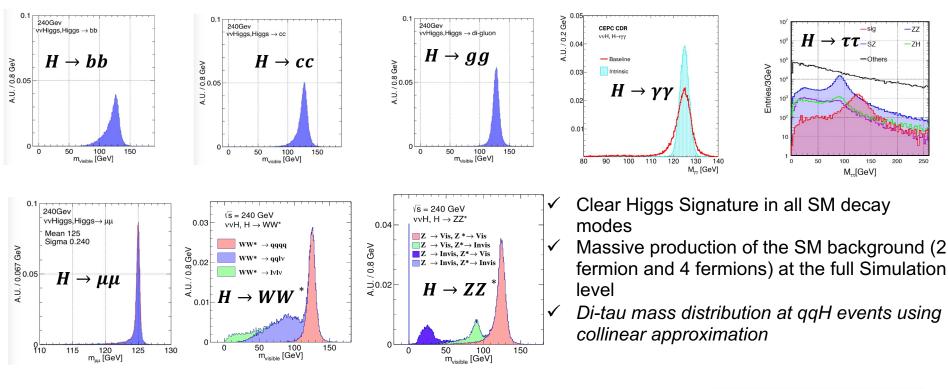
- With the increase of the energy, different Higgs related physics can be explored at e⁺e⁻ collider.
- With the energy around 240 GeV, ZH as well as ww/zz fusion can be intensively studied.
 - the dominant production is from HZ, the WW/ZZ fusions contribute a few percent of the total cross-section.


SM Higgs decay branching ratio, Bkg process

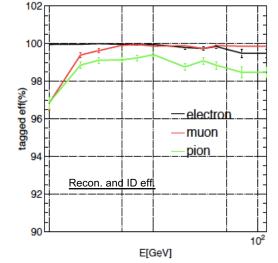
 \checkmark e⁺e⁻ collider provides a good opportunity to measure the jj, invisible decay of Higgs.

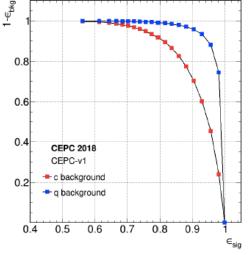

 \checkmark For 5.6 ab⁻¹ data with CEPC, 1M Higgs, 10M Z, 100M W are produced.

Detector & Software

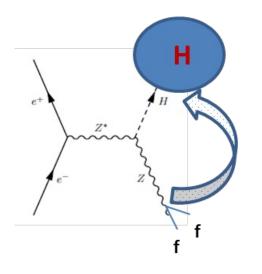


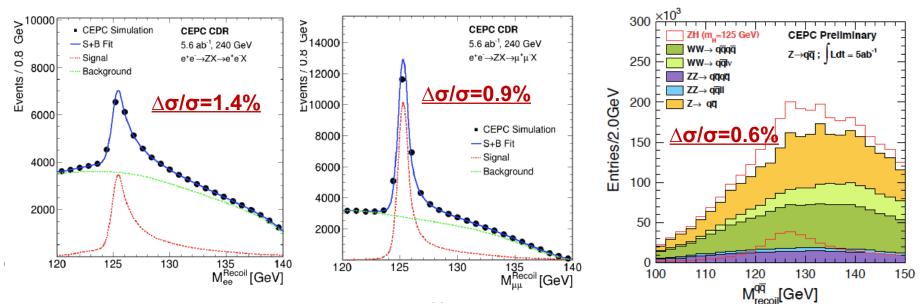
Full simulation reconstruction Chain functional, iterating/validation with hardware studies


Events Display for Higgs



Reminder: Recon. Higgs Signatures& Detector Performance@CDR


- ✓ Acceptance: $|\cos(\theta)| < 0.99$
- Tracks: Pt threshold, ~ 100 MeV
 δp/p ~ o(0.1%)
- ✓ Photons:
 - ✓ Energy threshold, ~ 100 MeV
 - ✓ δE/E: 3 15%/sqrt(E)
- ✓ BMR: 3.7%
- ✓ b-tagging: eff*purity @ Z→qq: 70%
- ✓ c-tagging: eff*purity @ Z→qq: 40%


Direct measurement of Higgs cross-section

$$M_{\rm recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2$$

- ✓ For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event.
- ✓ The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg is expected to smooth.
- ✓ The best resolution can be achieved from Z(→ e^+e^- , $\mu^+\mu^-$).

Direct measurement of Higgs cross-section and m_H

- ✓ The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$
- ✓ Similar sub-percent level for ILC/FCC-ee
- ✓ The mass of Higgs can be measured with a precision 5.9 MeV combining Z→ee (14 MeV) and Z→µµ (6.5 MeV)

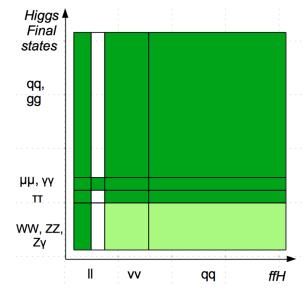
Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)} \qquad \text{Precision : 5.1\%}$$

- But the uncertainty of pr(n->22) is relatively high due to low statistics.
- Method 2: It can also be measured through:

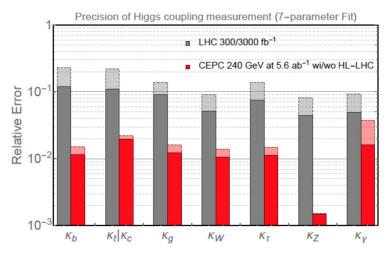
$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$


$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision.

Combined Precision : 2.9%

In practice, a combined fit is implemented to extract it.


Reminder: Physics Potential@ CDR

Property	Estimated Precision
m_H	5.9 MeV
Γ_H	3.1%
$\sigma(ZH)$	0.5%
$\sigma(uar{ u}H)$	3.2%

_

Decay mode	$\sigma(ZH) imes BR$	BR
$H \rightarrow b \bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
H ightarrow gg	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H \to \gamma \gamma$	6.8%	6.9%
$H \to Z \gamma$	15%	15%
$H \to \tau^+ \tau^-$	0.8%	1.0%
$H ightarrow \mu^+ \mu^-$	17%	17%
$H \to \mathrm{inv}$	—	< 0.30%

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

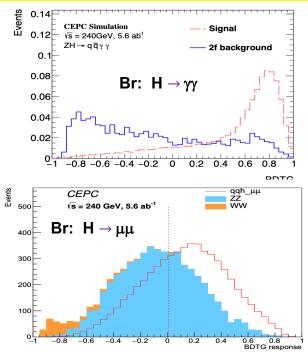
\sqrt{s} (GeV)	24	240		5
Luminosity (ab ⁻¹)	5	;	1.	5
$\delta(\sigma BR)/\sigma BR(\%)$	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
$\rm H \rightarrow any$	± 0.5		± 0.9	
${\rm H} \rightarrow {\rm b}\bar{\rm b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
$\mathrm{H} \to \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

Fcc-ee has similar results as CEPC but including a 365 GeV run improving the measurement of Higgs width.

Higgs Studies postCDR

Publications post CDR

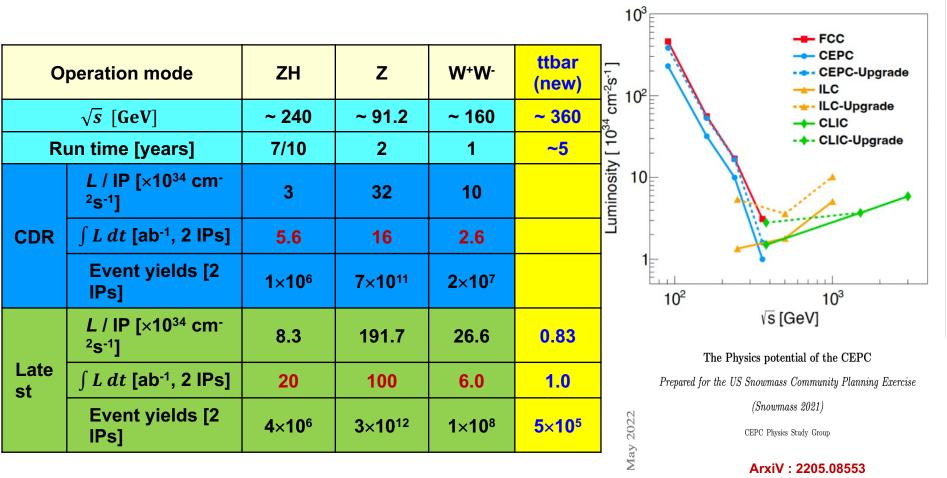
H→ *bb*, *cc*, *gg*: CPC Vol. 44, No.1 (2020)013001 H→ *ZZ* : *EPJC* 81, 879 (2021) H→ *invisible*: CPC Vol. 44, No.1 (2020)123001 H→ $\tau\tau$: Euro. Phys. J. C(2020) 80:7


Higgs Global Analysis: CPC 46 (11) (2022) 113001 (Gang's talk) Higgs CP: ArXiv: 2203.11707, EPJC (2022)82:981 (Bo's talk) H→ $\gamma\gamma$: ArXiv:2205.13269, Accepted by CPC Update on H→ *bb*, *cc*, *gg*: ArXiv:2203.01469, JHEP 11 (2022) 100 H→ μμ: CPC 46 (9) (2022) 093001.

Higgs property studies (CP):

 e^+e^- Collider $e^+e^$ $e^+e^$ рр E (GeV) 14,000 3000 240 240 $\mathcal{L}(\mathrm{fb}^{-1})$ 3000 5000 5600 20,000 [-0.22, 0.22][-0.18, 0.18][-0.30, 0.27][-0.16, 0.14] $\tilde{c}_{Z\nu}(1\sigma)$ $\tilde{c}_{ZZ}(1\sigma)$ [-0.33, 0.33][-0.12, 0.12][-0.06, 0.06][-0.03, 0.03]

Table 3 Summary of 1 σ bounds on $\tilde{c}_{Z\gamma}$ and \tilde{c}_{ZZ} from various analyses considered in our study, HL-LHC analysis, and CLIC analysis

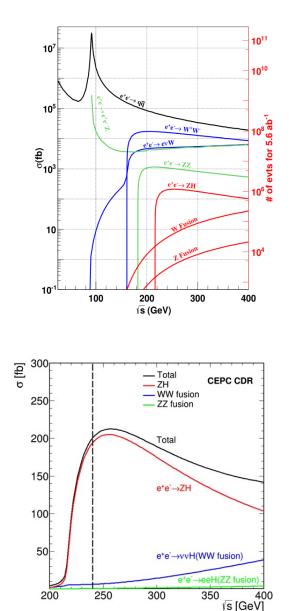

Machine Learning widely used:

Revisit & expand the analyses:

Z decay mode	$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$
$Z ightarrow e^+e^-$	1.57%	14.43%	10.31%
$Z ightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
Z o q ar q	0.35%	7.74%	3.96%
$Z o \nu \bar{\nu}$	0.49%	5.75%	1.82%
combination	0.27%	4.03%	1.56%

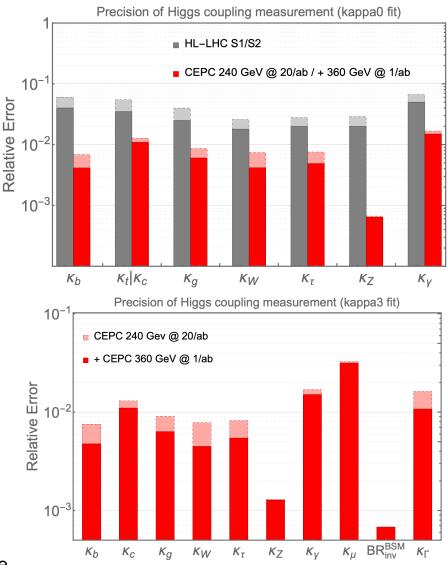
Latest Setups of Runs at CEPC

✓ The luminosity of Higgs run can be upgradable from 5.6 ab⁻¹ to 20 ab⁻¹.
 ✓ In addition to W/Z run improvement, CEPC is also upgradable to have top run with 1 ab⁻¹.


Cross Sections of Signal/Bkg Change from 240 GeV to 360 GeV

Kaili Zhang

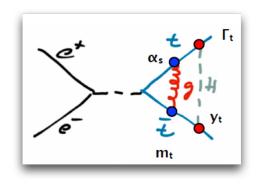
- 240GeV:
 - ZH: 196.9; vvH: 6.2; (Z → vv) H: vvH = 6.4:1
- 360GeV: vvH / Z(\rightarrow vv)H ~ 117% ; eeH/Z(\rightarrow ee)H ~ 67%

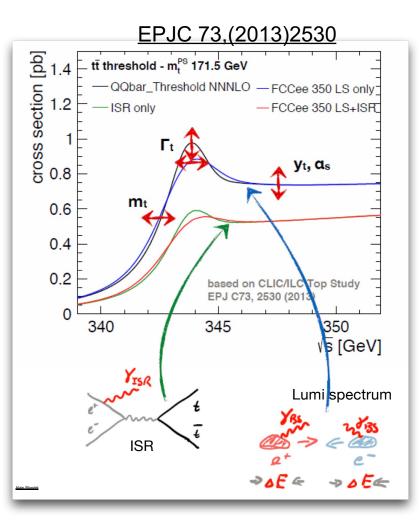

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	4.1M		0.16M		

- ✓ In total ~4.3M Higgs events will be collected in CEPC for 240 (20 ab⁻¹) +360 GeV (1 ab⁻¹) runs.
- ✓ Substantial fusion events are expected and even eeH is not negligible with 360GeV run.

Impact of the updated running plans on Higgs

- 1 ab⁻¹@360 GeV
- Improvement on Higgs width with 360 GeV run :
 - 1.65% →1.1%. vs. CDR 2.9%

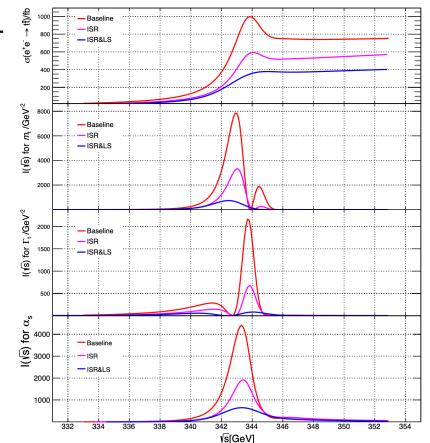

Kaili Zhang Zhen Liu


	240 GeV	$V, 20 \text{ ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	ZH	$\mathbf{v}\mathbf{v}\mathbf{H}$	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%		1.10%		

The precision of the Higgs width is 1.3% for Fcc-ee.

Top measurement @ CEPC

- Study possible solutions for CEPC of top quark measurements with tt threshold scans
- ee-colliders provide not only the top reconstruction method but also the tt threshold scan
- The scan is made against sqrt{s} and crosssection is the direct observable
- This brings measurements of top mass and a bunch of other parameters
 - Top width
 - Top Yukawa coupling
 - alpha_S

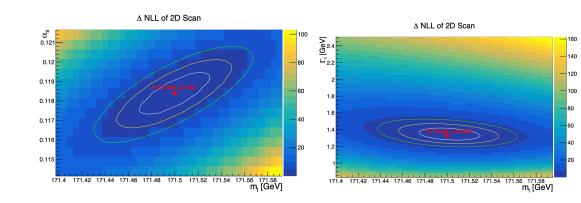


Top measurement at CEPC (cont.)

 Construct Fisher information out of the crosssection curve

$$\begin{split} I(\sqrt{s}) &= \int (\frac{\partial log(G(\sigma | \sigma_0(\sqrt{s}, \theta), \sqrt{\sigma_0(\sqrt{s}, \theta)}))}{\partial \theta})^2 \\ &\times G(\sigma | \sigma_0(\sqrt{s}, \theta), \sqrt{\sigma_0(\sqrt{s}, \theta)}) d\sigma \end{split}$$

- The larger the Y value is, the more sensitive the energy point will be to the top mass, width and alpha_S, respectively
- This is used as a guide of locating the energy point that is most sensitive to the measurement



Top measurement at CEPC (cont.)

- Studied in details the uncertainties of top mass measurements in the 1D scan using one energy point
 - Theory, alpha_S, width and background can be leading factors
 - The luminosity spectrum does not impact much mostly due to its good resolution in circular colliders
 - A quick energy scan with low luminosity to find the optimal energy point
- Performed 2D scans as well
 - Using two energy points
 - Measuring two parameters simultaneously is possible
- Available at arXiv:2207.12177
 - submitted to EPJC

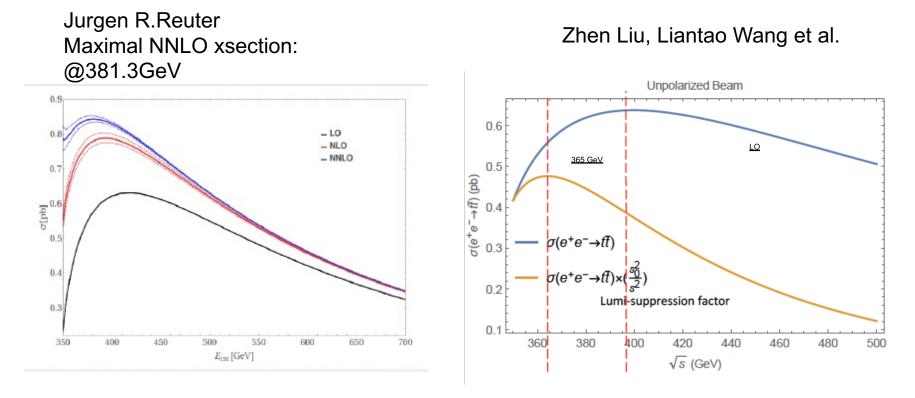
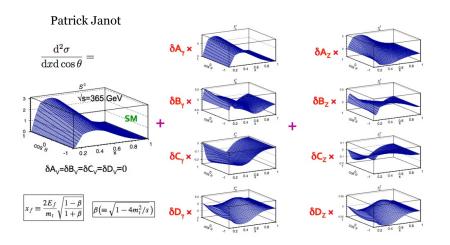

Source	m_{top} precision (MeV)			
	Optimistic	Conservative		
Statistics	9	9		
Theory	9	26		
$lpha_S$	17	17		
Top width	10	10		
Background	4	18		
Beam energy	2	2		
Luminosity spectrum	3	5		
Total	24	39		

Table 6: The expected statistical and systematical uncertainties of the top quark mass measurement in optimistic and conservative scenarios at CEPC.

Zhan Li, Xiaohu Sun et al.

Top coupling measurements: why choosing 360 GeV?



- ✤ With the NNLO calcuation, the highest xsection is at the energy of 381.3 GeV
- Considering the Lumi-suppression factor when going to higher energy,
- ✤ the effective highest xsection is around 365 GeV (Fcc-ee).
- The effective xsection from 360 GeV is not much different from that of 365 GeV.
- If we choose higher order correction, the peak could be even lower than 360 GeV.

Top quark and Higgs EFT $O_{Hq}^{(1)}$, $O_{Hq}^{(3)}$, O_{Ht}

Zhen Liu

At or above $t\bar{t}$ threshold at lepton colliders, one immediately again great sensitivities to the top gauge couplings.

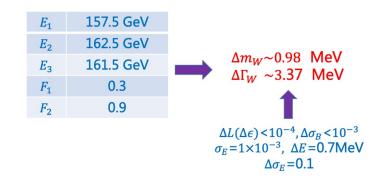
- $\Delta \mathbf{g}_L^t / \mathbf{g}_L^t$ (%) -100. -80. -60. -40. -20. 0. 40. 250. ttZ@ LHC 300.3000 fb⁻¹ ttW (4)@ LHC 200. 10 3000 fb⁻ 150. 100. (TeV², M²) 0 50.2 ttW (3.)@ LHC $\Delta g_{a}^{t}/g_{a}^{t}$ 3000 fb^{-1} 0. £€ $e^{\dagger}e^{\dagger}$ 50. 365-500 G eV 100. 150. -10 -5 $C_{Hg}^{(3)} - C_{Hg}^{(1)}$ (TeV²/ Λ^2) $\Delta g_l^t / g_l^t (\%)$ 0. 5. 10. -20. 1.0 e⁺e⁻ 500 GeV - 0.5 ab⁻¹ 10. 0.5 C⁽¹⁾ (TeV²/Λ²) 00 5 $\Delta g_R^t/g_R^t(\%)$ e+e- 365 GeV -0.5 10 — 1.5 ab⁻¹ -- 0.5 ab⁻¹ -1.0 1.5 ab⁻¹ opt. obs -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 $C_{H_0}^{(3)} - C_{H_0}^{(1)} (\text{TeV}^2/\Lambda^2)$
- Note that the opt. obs. Analysis is a rescaling of the study from Janot, we are working on CEPC simulation and analysis
- Expect to be consistent with FCC-ee.

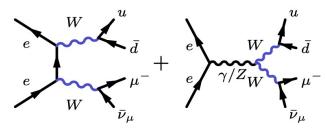
Conclusion

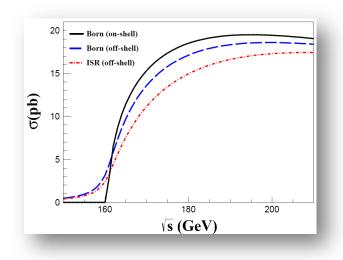
- After the Higgs white paper and CDR are done, analyses from individual channels have been documented. Several publications of them are available now.
- •With the upgradable running plans, the expected results have been updated.
 - Can bring some improvements in Higgs precision measurement in addition to top coupling measurements.
 - Significant enhancement on Higgs width measurement.
 - The impacts of 360GeV/1 ab⁻¹ on Higgs are studied.
 - Top mass measurements have been studied.

backup Slides

W mass measurement at


CEPC


 scan the threshold to measurement the W mass, similar as top mass measurement.


✓ The scenario of 1-3 energy points are tested :

✓ With most systematics taken into account except the theoretical ones, 1 MeV and 3 MeV uncertainties for W mass and width could be achieved, respectively.

✓ Challenges for theorists : σ_{ww} of ~O(0.01)%

Data-taking scheme	mass or width	ass or width δ_{stat} (MeV)		$\delta_{\rm sys}$ (MeV)			
-		ΔE	$\Delta\sigma_E$	δ_B	δ_c		
One point	Δm_W	0.65	0.37	_	0.17	0.34	0.84
Two points	Δm_W	0.80	0.38	_	0.21	0.33	0.97
	$\Delta\Gamma_W$	2.92	0.54	0.56	1.38	0.20	3.32
Three points	Δm_W	0.81	0.30	_	0.23	0.29	0.98
	$\Delta\Gamma_W$	2.93	0.52	0.55	1.38	0.20	3.37

Gang LI

23

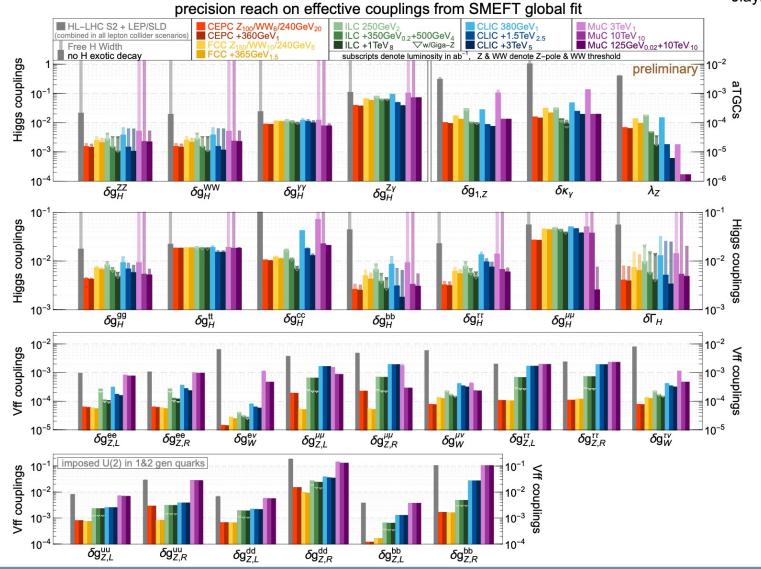
Z mass measurement at

Sudong Wang

Data-taking strategy

A preliminary data-taking scheme:

$\sqrt{s} \; (\text{GeV})$	$\mathcal{L} \; (ab^{-1})$	$\sqrt{s}~({\rm GeV})$	$\mathcal{L}\left(ab^{-1} ight)$	$\sqrt{s}~({\rm GeV})$	$\mathcal{L}(ab^{-1})$
$E_1 = 84.6$	$\mathcal{L}_1=0.09$	$E_{6} = 90.4$	$\mathcal{L}_6 = 0.50$	$E_{10} = 93.2$	$\mathcal{L}_{10} = 0.25$
$E_2 = 85.6$	$\mathcal{L}_2=0.13$	$E_7 = 91.2$	$\mathcal{L}_7 = 5.00$	$E_{11} = 94.3$	$\mathcal{L}_{11} = 0.18$
$E_3 = 87.9$	$\mathcal{L}_3=0.18$	$E_8 = 92.0$	$\mathcal{L}_8 = 0.50$	$E_{12} = 95.3$	$\mathcal{L}_{12} = 0.13$
$E_4 = 88.7$	$\mathcal{L}_4=0.25$	$E_9 = 92.5$	$\mathcal{L}_9 = 0.35$	$E_{13} = 96.2$	$\mathcal{L}_{13} = 0.09$
$E_5 = 89.9$	$\mathcal{L}_5=0.35$				

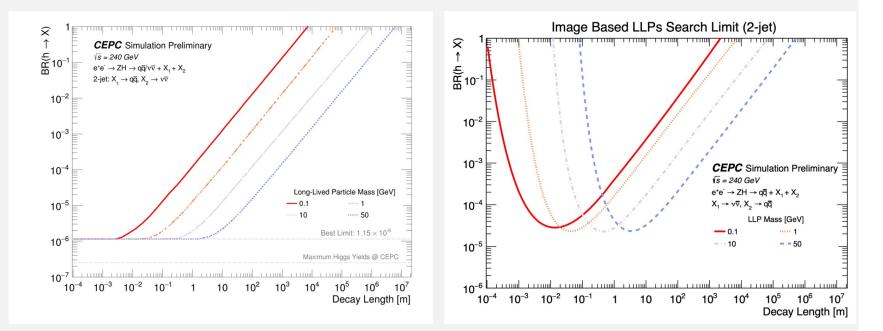

Uncertainties

CEPC

Parameter	$\delta_{ m stat}$	$\delta_{ m total}$	
$M_{\rm Z}$ (KeV)	7	66	Systematic dominant
$\Gamma_{\rm Z}$ (KeV)	13	126	
$\sigma_{\rm had}^0$ (pb)	0.09	1.73	

(ISR effect not considered due to technical problems)

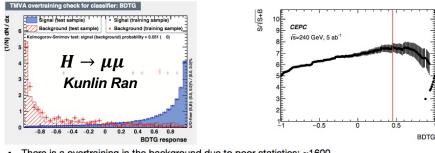
Jiayin Gu


Jiayin Gu (顾嘉荫)

Fudan University

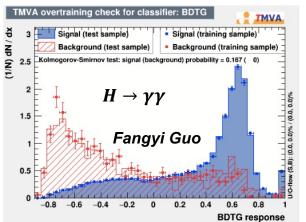
$H \rightarrow long \ lived \ particles$

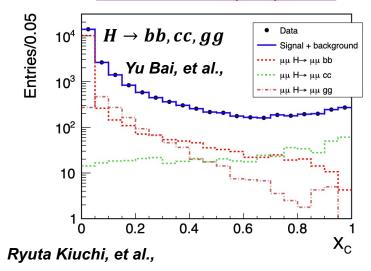
Yulei Zhang


Sensitivity (compared with previous 2-jet analysis)

- Previous best limit: ~1 × 10⁻⁵ (5.6 ab⁻¹), Current best limit: ~1 × 10⁻⁶ (20 ab⁻¹)
- Main improvement on geometry acceptance: r_{decay} from [1,6] to (0,6]

MVA methods widely used Higgs analyses

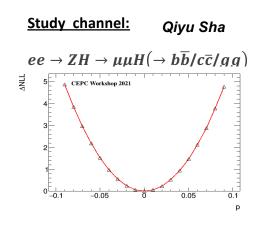

After training with 6 variables: cosθ_{ee}, cosθ_{μμ}, Δ_{μ,μ}, M_{qq}, E_{ee}, E_{qqµµ}, get the BDTG response


- There is a overtraining in the background due to poor statistics: ~1600
- Scan the total sensitivity $(S/\sqrt{S+B})$ vs BDTG to find the optimal BDTG point
- The sensitivity is estimated in the 90% signal coverage region

	Sig yield	Bkg yield	Sensitivity	Mass range (GeV)
BDTG > 0.45	86.20 +/- 0.51	198.20 +/- 19.82	7.46 +/- 0.27	[120.78 - 125.33]
BDTG < 0.45	29.77 +/- 0.30	1402.95 +/- 52.73	1.08 +/- 0.03	[114.08 - 125.28]
Total	115.97 +/- 0.59	1601.15 +/- 56.33	7.54 +/- 0.38	

- For H->μμ, the improvement is ~35% w.r.t cut based one for the signal significance (improvement on precision 17%-12%).
- The overall precision has been improved from 6.8% to 5.7% with MVA as well as full simulated samples used for H->γγ.

CPC Vol. 44, No.1 (2020)013001


$H \rightarrow ZZ$ ArXiv: 2103.09633

Category	$\frac{\Delta(\sigma \cdot BR)}{(\sigma \cdot BR)}$	[%]
0 0	cut-based	BDT
$\mu\mu\mathrm{H} u u q q^{\mathrm{cut}/\mathrm{mva}}$	15.5	13.6
$\mu\mu\mathrm{H}qq u u^{\mathrm{cut/mva}}$	48.0	42.1
$ u u H \mu \mu q q^{ m cut/mva}$	11.9	12.5
$ u u \mathrm{H} q q \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	23.5	20.5
$aaH\nu\nu\mu\mu^{cut/mva}$	45.3	37.0
$qqH\mu\mu\nu\nu\nu^{\rm cut/mva}$	52.4	44.4
Combined	8.34	7.89

Other activities in Higgs group

Higgs CP Study

Higgs invisible decays

68% CL: [-2.9×10⁻², 2.9×10⁻²] 95% CL: [-5.7×10⁻², 5.7×10⁻²]

5000

4000

3000

2000

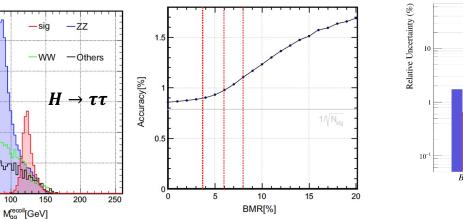
1000

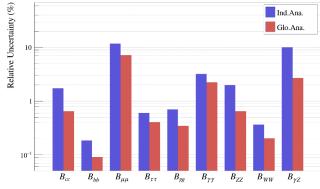
0

0

Entries/3GeV

ArXiv:2103.09633 Ryuta Kiuchi, et al.


Global analysis


$$\boldsymbol{\Sigma}^{N} = N_{t}^{e} \begin{pmatrix} B_{1}(1-B_{1}) & -B_{1}B_{2} & \dots & -B_{1}B_{m} \\ -B_{2}B_{1} & B_{2}(1-B_{2}) & \dots & -B_{2}B_{m} \\ \vdots & \vdots & \ddots & \vdots \\ -B_{m}B_{1} & -B_{m}B_{2} & \dots & B_{m}(1-B_{m}) \end{pmatrix}$$

Gang Li

<u>ArXiv:2105.14997</u>

- \checkmark Calculate the efficiency matrix
- Particle level information as the input.
- Proof-of-Principle study shows precision
 - improved by a factor of ~2.
- \checkmark Full simulation study is ongoing.

Higgs decays to $\tau\tau$ Euro. Phys. J. C(2020) 80:7 Dan Yu

Energy Scale for the new physics

10² HL-LHC S2 LEP/SLD included Ħ CEPC for all scenarios + WW threshold 20/ab) + 360GeV(1/ab) + HL-LHC ight shade: individual fit (one operator at a time) solid shade: global fit N V | c, | [TeV] 10 E 0.1 OWB OH Oww OBB O_{HW} OHB O_{GG} O_{y_t} O_{y_b} O_y $O_{y_{\mu}}$ O_{3W} OT O_{Hu} O_{Hd} Oyc. O_{He} O_{Ha} O'_{Ha} OII

95% CL reach from SMEFT fit

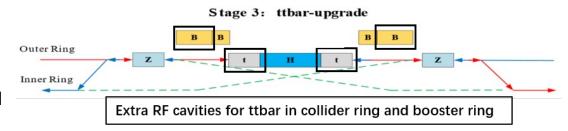
Workshops for white papers

White paper activities:

-2019.3 Higgs White Paper delivered

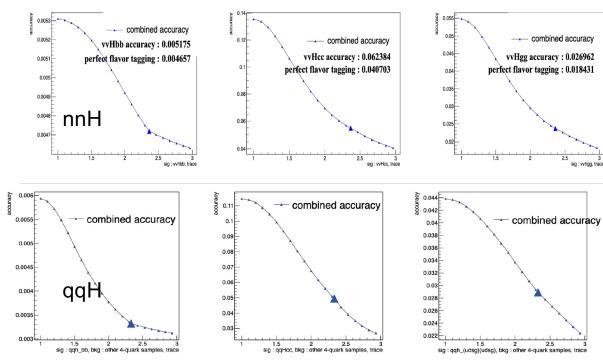
-2019.7 WS @ PKU: EW, Flavor, QCD working group formed

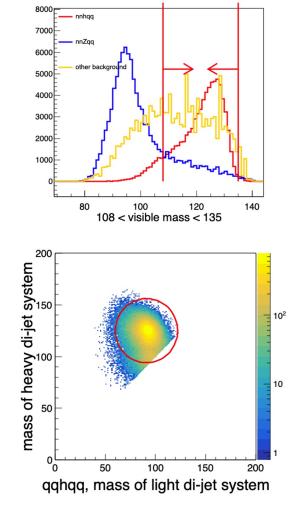
- -2020.1 WS @ HKIAS: Review progress & iterate. EW Draft Ready
- -2021.4 WS @ Yangzhou: BSM working group formed



https://indico.ihep.ac.cn/event/13888/

- CEPC Physics/Detector WS, April 2021 @ Yangzhou
 - ~ 45 Physics reports
 - ~ 10 Performance/Optimization study
 - Significant Fresh
- Higgs: Impact of 360 GeV Runs
- Top physics at 360 GeV
- EW: Draft ready
- QCD: intensive discussions...
- Flavor + BSM:
 - Many Performance & Benchmark analyses


Accelerator at ttbar


- Extra Hardware:
 - ttbar cavities (international sharing): Collider + 7 GV 650 MHz 5-cell cavity, Booster + 6 GV 1.3 GHz 9-cell cavity
 - some septum magnets for beam separation in the RF regions
 - several quadrupole magnets for final focusing
- Accelerator physics design:
 - With SR power limit of 30MW, currer design achieved a luminosity of 0.5E34/cm²/s/IP
 - corresponding to 1ab⁻¹ for 7.7 years with 1.3 Snowmass units running/year
- To achieve 2 ab⁻¹ for 7.7 years
 - reducing the βy*, coupling factor and increasing the synchrotron radiation power limit.

	ttbar	Higgs	W	Z
Number of IPs	2			
Circumference [km]	100.0			
SR power per beam [MW]	30			
Half crossing angle at IP [mrad]	16.5			
Bending radius [km]	10.7			
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	0.27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	13/42	6/35
Bunch length (SR/total) [mm]	2.2/2.9	2.3/3.9	2.5/4.9	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	0.10/0.17	0.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3/2.6	1.7/2.2	1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Longitudinal tune Qs	0.078	0.049	0.062	0.035
Beam lifetime (bhabha/beamstrahlung)[min]	81/23	39/40	60/700	80/18000
Beam lifetime total [min]	18	20	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115

H→bb, cc, gg: BMR, Color Singlet id (CSI) & Flavor tagging (Preliminary)

- BMR is good enough... Huge penitential compared to Baseline FT
 + Naive CSI (ee-kt jet clustering & matching)
- Ideal CSI improves the accuracies by up to 2 times...
- Ideal Flavor tagging improves the accuracy of of Hcc by 2 times
 @ qqH, & 50% @ nnH

How to develop Jet Charge?

Jet Charge Algorithm:

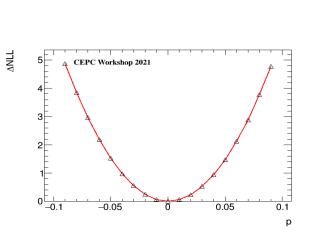
- Use Jet Clustering to divide final leading particles into two jets
- Find the relationship between observables(charge, energy) of final leading particles and jet charge:
 - For $Z \rightarrow b\bar{b}$ samples:
 - e^- , μ^- , K^- , π^- , p^+ are closer to b jet
 - e^+ , μ^+ , K^+ , π^+ , p^- are closer to \bar{b} jet
 - For $Z \rightarrow c\bar{c}$ samples:
 - e^+ , μ^+ , K^- , π^+ , p^+ are closer to c jet
 - e^- , μ^- , K^+ , π^- , p^+ are closer to \bar{c} jet
- Combine the information of final leading particles of two jets
- Use those observables(charge, energy) of final leading particles to measure jet charge
- Use Misjudgment rate ω and effective tagging power to describe Jet Charge

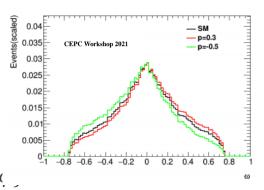
Higgs CP study at CEPC

Study channel:
$$ee \rightarrow ZH \rightarrow \mu\mu H (\rightarrow b\bar{b}/c\bar{c}/gg)$$

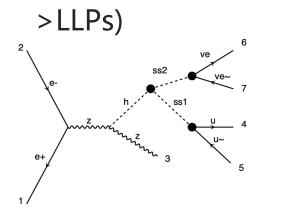
Differential cross section could be represent as:

 $\frac{d\sigma}{d\cos\theta_1 d\cos\theta_2 d\phi} = N \times (J_{CP-even}(\theta_1, \theta_2, \phi) + p \times J_{CP-odd}(\theta_1, \theta_2, \phi)).$


<u>An Optimal Variable</u> ω which combines the information from $\{\theta_1, \theta_2, \zeta_2\}$


 $\omega = \frac{J_{CP-odd}(\theta_1,\theta_2,\phi)}{J_{CP-even}(\theta_1,\theta_2,\phi)} \text{ to measure } p$

<u>Used ML-fit in ω distribution to extract p.</u>


Result:

<u>For p:</u> <u>68% CL: $[-2.9 \times 10^{-2}, 2.9 \times 10^{-2}]$ </u> 95% CL: $[-5.7 \times 10^{-2}, 5.7 \times 10^{-2}]$

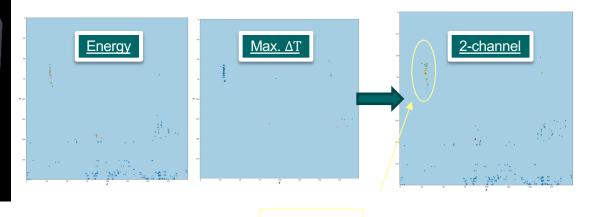
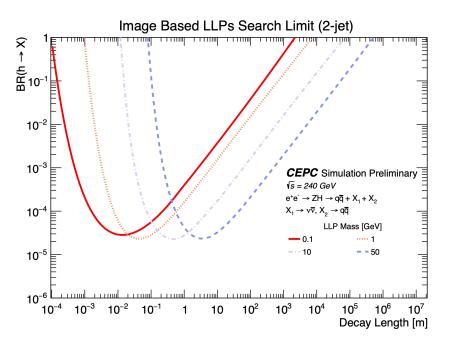


Image Recognition Techniques to Identify Long-Lived Particles(h-


 $\underline{e^+e^-} \rightarrow Zh \rightarrow \nu\bar{\nu} + SS1 + SS2 \rightarrow \nu\bar{\nu}q\bar{q}q\bar{q}$

- Mapping the raw detector information to a 2D image
- Input information: image with resolution of $(R, \phi) = 200 \times 200$ and 1 to 2 channel(s)
 - <u>*R* starts from 0 to 8 m, ϕ starts from $-\pi$ to π </u>
 - Energy is the sum of Calorimeter hits.
 - Time is the maximum ΔT (E > 0.1 GeV) within (R, ϕ) pixel
- Model: ResNet18 (Classification), ResNet50 (Vertex Finding)
- **Binary Cross Entropy Loss:** $loss(x_i, y_i) = -\omega_i [y_i \log(x_i) + (1 y_i)\log(1 x_i)]$

Expected Search Sensitivity

Signal Efficiency of ML-based and Cut-based analysis for

Selections	Signal: $Z \to \nu \bar{\nu}$	$ee \to q\bar{q}$	$ee \to ZH$
-		2.5×10^8	
-	$1.0 imes 10^6$	0.99×10^7	
$\not \!$	88,077	290	3,361
ML score > 0.95	87,050	0	0
Efficiency (ML-based)	98.83%		
$E_{2j} \ge 30 \text{GeV}$	67,244	0	0
Efficiency (cut-based)	75.19%		

- Best branching ratio exclusion limit at decay length around a few meters: $BR(h \rightarrow XX) > \sim 10^{-5}$ for most LLP masses
- Good sensitivity for low LLP mass (as low as 1 GeV)

Global analysis for CEPC Higgs

Efficiency modulate $N \rightarrow n$

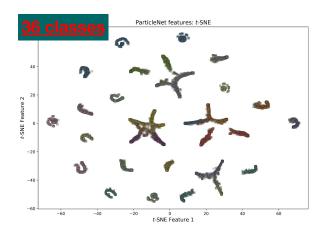
$$\mathbf{n} = \mathbf{E}\mathbf{N}$$
 .

Similar for their covariances

$$\mathbf{\Sigma}^n \equiv ig(c^n_{ij}ig) = \mathbf{E} \mathbf{\Sigma}^N \mathbf{E}^T$$
 ,

We know the covariance of N

so Σ^n is easy

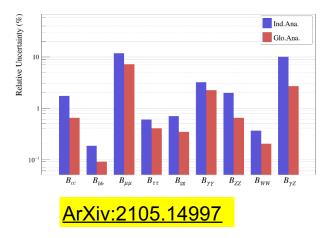

$$\boldsymbol{\Sigma}^{N} = N_{t}^{e} \begin{pmatrix} B_{1}(1-B_{1}) & -B_{1}B_{2} & \dots & -B_{1}B_{m} \\ -B_{2}B_{1} & B_{2}(1-B_{2}) & \dots & -B_{2}B_{m} \\ \vdots & \vdots & \ddots & \vdots \\ -B_{m}B_{1} & -B_{m}B_{2} & \dots & B_{m}(1-B_{m}) \end{pmatrix} ,$$

Solve all Ni by minimizing

$$\chi_{ee}^{2} = \sum_{i} \frac{\left(\sum_{k} \epsilon_{ik} N_{k} - n_{i}\right)^{2}}{c_{ii}} + \frac{\left(\sum_{k} N_{k} - N_{t}^{e}\right)^{2}}{\sigma_{N_{t}}^{2}},$$

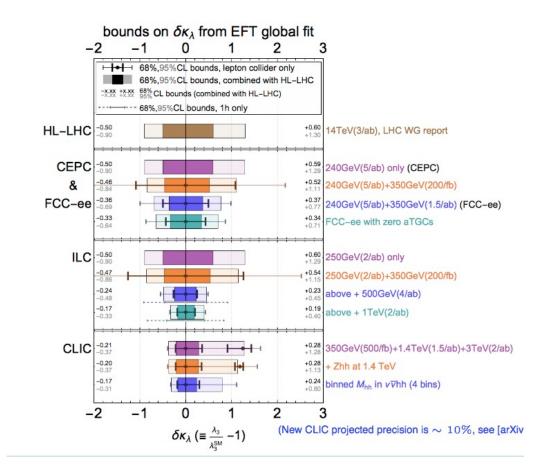
37

Global analysis : Enhance Higgs coupling precision

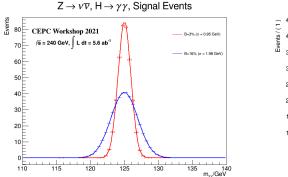

calculate the efficiency

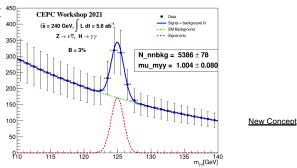
matrix

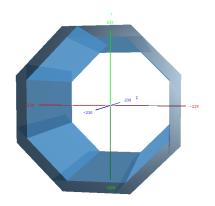
Particle level information as input, no dependence on jet-clustering, ...

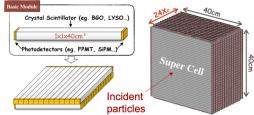

Proof-of-principle study shows precision improved by a factor of ~2

Full simulation study is ongoing ...


Decay Mode	Ind.Ana.	Glo.Ana.	IP	$\operatorname{CEPC}\operatorname{CDR}$
$H \to c\bar{c}$	1.8%	0.65%	2.7	3.3%
$H \to b\bar{b}$	0.19%	0.09%	2.1	0.56%
$H \to \mu^+ \mu^-$	12%	7.2%	17	17%
$H\to \tau^+\tau^-$	0.61%	0.41%	1.4	1.0%
$H \to gg$	0.7%	0.35%	2.0	1.4%
$H\to\gamma\gamma$	3.3%	2.3%	1.4	6.9%
$H \to ZZ$	2.0%	0.65%	3.0	5.1%
$H \to W^+ W^-$	0.37%	0.21%	1.7	1.1%
$H \to \gamma Z$	11%	2.8%	3.9	15%


Impact on Higgs self-coupling




$H \rightarrow \gamma \gamma$ precision @ CEPC conceptual detector

- BGO crystal ECAL in CEPC conceptual detector:
 - <u>full BGO crystal, 24 X₀, expected energy resolution</u> $\frac{\sigma_E}{E} \sim \frac{3\%}{\sqrt{E}} \bigoplus \sim 1\%.$
 - Simulate the detector response by smearing truth MC.
- $\sigma(ZH) \times Br(H \rightarrow \gamma\gamma)$ precision @ CEPC:
 - Only consider the σ_E influence in $m_{\gamma\gamma}$ shape in $\nu\nu H \rightarrow \gamma\gamma$ and $\mu\mu H \rightarrow \gamma\gamma$ channels, with cut-based analysis.
 - <u>Combined statistical only precision</u>: $\delta Br(H \rightarrow \gamma \gamma) = 8.0\%$ (11% @ SiW ECAL scheme, 27% improvement.)

EM Resolution	$\delta(\sigma \times Br)$	
$3\%/\sqrt{E} \oplus 1\%$	8.0%	
$16\%/\sqrt{E} \oplus 1\%$	11%	