A Complete Tree-Level Dictionary between Simplified BSM Models and SMEFT (d \leq 7) Operators

Xu-Xiang Li (黎旭翔), Peking University February 14, 2023 IAS Program on High Energy Physics, HKUST

Based on work with Zhe Ren, Jiang-Hao Yu in preparation

Outline

- EFT-based simplified models A link between complete UV theory and effective theory
- Construct the UV-IR dictionary
- Examples:
 - Origin of neutrino mass
 - Neutrino-less double beta decay

SMEFT: An Effective Way to Depict BSM Physics

Many phenomena indicate the existence of beyond the SM physics:

Neutrino OscillationBaryon Asymmetry of the UniverseSome can be explained by introducing new heavy particles:
Seesaw models: Heavy neutrinosCP violation: 2HDM, ...

The Hierarchy btw EW and Planck

SUSY: SM particle partners

Suppose BSM physics is heavy, weakly-coupled, and obeys SM gauge symmetry

Linearly-realized $\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$

SMEFT in Top-Down

SMEFT in Bottom-Up

scale

Simplified Model: Enumerating

UV scale: Enumerate the fields and construct the Lagrangian

19 scalars, 14 fermions, 14 vectors

Simplified Model: Matching

Matching: Find \mathcal{L}_{EFT} such that effective action $\Gamma_{EFT}[\phi] = \Gamma_{UV}[\phi]$ UV scale Lagrangian Tree-level: $\mathcal{L}_{\mathrm{UV}}[\phi,\Phi]$ $\Gamma^{(0)}_{\mathrm{UV}}[\phi] = \int \mathrm{d}^4 x \mathcal{L}_{\mathrm{UV}}[\phi, \Phi] ig|_{\Phi = \Phi_c[\phi]}, \quad \Gamma^{(0)}_{\mathrm{EFT}}[\phi] = \int \mathrm{d}^4 x \mathcal{L}_{\mathrm{EFT}}[\phi] \quad igsquarpsilon \sum \mathcal{L}_{\mathrm{EFT}}[\phi] = \mathcal{L}_{\mathrm{UV}}[\phi, \Phi] ig|_{\Phi = \Phi_c[\phi]}$ $\Delta \mathcal{L}_{\mathrm{UV}} = - \, \Delta^{\dagger I} (D^2 + M^2) \Delta^I - rac{\mu}{2} ig(H^T i \sigma^2 \sigma^I \Delta^{\dagger I} H + \, \mathrm{h.c.} \, ig)$ Matching $\Delta_c^I = -rac{\mu}{2M^2} igg(1-rac{D^2}{M^2}igg) H^T i \sigma^2 \sigma^I H \, .$ $\Delta \mathcal{L}_{
m EFT} = rac{\mu^2}{2M^2} (H^\dagger H)^2 + rac{\mu^2}{M^4} (H^\dagger D_\mu H)^* (H^\dagger D^\mu H) + iggl(rac{\mu^2}{M^4} iggl(H^\dagger Higgl) (D_\mu H)^\dagger (D^\mu H) iggr)$ **NOT in Warsaw basis**

Need to reduce the effective theory to a **non-redundant** form

Simplified Model: Reduction

The UV-IR Dictionary

Example 1: Origin of neutrino mass

Three seesaw models that could generate the neutrino mass (via Weinberg operator):

Example 1: Origin of neutrino mass

 \checkmark / \checkmark : can/cannot be generated at tree level

Xu Li, Di Zhang, Shun Zhou, arXiv: 2201.05082 [hep-ph] Yong Du, Xu-Xiang Li, Jiang-Hao Yu, arXiv: 2201.04646 [hep-ph]

ш

e

e

u.

u

е

e

11

V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser, E. Mereghetti arXiv: 1708.09390 [hep-ph] Yi Liao, Xiao-Dong Ma arXiv: 1901.10302 [hep-ph]

B pre	serving	B pres	serving	B violating				
(S, 1, 1, 1)	(S, 1, 2, 1/2)	(S, 3, 2, 1/6)	(F, 3, 2, 7/6)	(S, 3, 1, -1/3)	(S, 3, 2, 1/6)			
(S, 3, 2, 1/6)	(S, 3, 3, -1/3)	(S, 3, 2, 1/6)	(F, 3, 3, 2/3)	(S, 3, 1, -1/3)	(F, 3, 2, -5/6)			
(S,1,1,1)	(F, 3, 1, -1/3)	(S, 3, 3, -1/3)	(F, 3, 2, -5/6)	(V, 3, 2, 1/6)	(F, 1, 2, 1/2)			
(S, 1, 1, 1)	(F, 3, 1, 2/3)	(V, 1, 1, 1)	(F, 1, 2, 1/2)	(V, 3, 2, 1/6)	(F, 3, 1, -1/3)			
(S,1,1,1)	(F, 3, 2, -5/6)	(V, 1, 2, 3/2)	(F, 3, 2, -5/6)	(V, 3, 2, 1/6)	(F, 3, 2, -5/6)			
(S, 1, 1, 1)	(F, 3, 2, 7/6)	(V, 1, 2, 3/2)	(F, 3, 2, 7/6)	(V, 3, 2, 1/6)	(F, 3, 3, -1/3)			
(S, 1, 2, 1/2)	(F,1,3,0)	(V, 3, 1, 2/3)	(F, 3, 2, 7/6)	(V, 3, 1, 2/3)	(V, 3, 2, 1/6)			
(S, 3, 2, 1/6)	(F, 1, 2, 1/2)	(V, 3, 3, 3/2)	(F, 3, 2, 7/6)	(V, 3, 2, 1/6)	$\left(V,3,3,2/3 ight)$			
(S, 3, 2, 1/6)	$\left(F,3,1,2/3 ight)$	(V,1,1,1)	$\left(V,1,2,3/2 ight)$					

18 B preserving UV + 8 B violating UV $(0\nu\beta\beta w/ no tree v-mass)$

• The UV-IR dictionary can be used as combined searches by

means of both high energy colliders and low energy experiments

• Relations between same/different-dimension operators may

contain rich interesting physical origins

• We also provide a systematic way to reduce operator to any basis

Thank you!

The Fermion Only Contributes to d = 7

Field	(SU(3), SU(2), U(1))							
S ₂	(1, 1, 1)							
F_4	(1, 2, 3/2)							

 $ar{\mathcal{O}}_{ll}, \mathcal{O}_{eLLLH}$

Field	(SU(3), SU(2), U(1))						
S_6	(1, 3, 0)						
F_4	(1, 2, 3/2)						

 $\mathcal{O}_{H,H\Box,HD}, \mathcal{O}_{eH,dH,uH}, \mathcal{O}_{eLLLH}$

	⁷⁶ Ge	$^{82}\mathrm{Se}$	$^{130}\mathrm{Te}$	$^{136}\mathrm{Xe}$	⁷⁶ Ge	$^{82}\mathrm{Se}$	$^{130}\mathrm{Te}$	$^{136}\mathrm{Xe}$	⁷⁶ C	łe	$^{82}\mathrm{Se}$	$^{130}\mathrm{Te}$	$^{136}\mathrm{Xe}$
$\mathcal{C}^{(1)}_{LHD}$	15	6.9	11	13	13	6.6	9.9	16	12	2	5.9	11	17
\mathcal{C}_{LHDe}	160	73	130	200	130	65	98	160	12	0	61	110	180
\mathcal{C}_{LHW}	23	11	17	20	20	11	16	26	18	3	9.4	17	28
$\mathcal{C}_{LLduD}^{(1)}$	74	35	65	95	56	29	42	72	54	L	27	49	78
$\mathcal{C}_{LLQdH}^{(1)}$	240	110	200	320	200	100	140	250	18	0	93	160	270
${\cal C}^{(2)}_{LLQdH}$	120	58	100	150	99	51	77	130	94	Į	48	85	140
\mathcal{C}_{LLQuH}	310	150	260	410	250	130	180	300	23	0	120	210	340
${\cal C}_{Leuar dH}$	29	15	26	39	24	14	18	30	23	5	13	22	35

Table 7: The table shows the lower limits on the scale of the dimension-seven couplings, from the GERDA 87, NEMO 9,11, CUORE 7, and KamLAND-Zen 13 experiments, assuming $C_i(\mu = \Lambda) = 1/\Lambda^3$. The left, middle, and right tables correspond to the matrix elements of Refs. 76, 32, and 83, respectively. The limits on Λ are shown in units of TeV.

arXiv: 1708.09390 [hep-ph]