A Complete Tree－Level Dictionary between Simplified BSM Models and SMEFT（d ≤ 7 ）Operators

Xu－Xiang Li（黎旭翔），Peking University
February 14， 2023
IAS Program on High Energy Physics，HKUST

Outline

- EFT-based simplified models - A link between complete UV theory and effective theory
- Construct the UV-IR dictionary
- Examples:
- Origin of neutrino mass
- Neutrino-less double beta decay

SMEFT: An Effective Way to Depict BSM Physics

Many phenomena indicate the existence of beyond the SM physics:

Neutrino Oscillation

Baryon Asymmetry of the Universe

The Hierarchy btw EW and Planck

Some can be explained by introducing new heavy particles:
Seesaw models: Heavy neutrinos
CP violation: $2 \mathrm{HDM}, \ldots$
Suppose BSM physics is heavy, weakly-coupled, and obeys SM gauge symmetry

Linearly-realized $\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{C_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)}+\sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\cdots$

SMEFT in Top-Down

Top-down scenario :

NP-motivated simplified models

SMEFT in Bottom-Up

Simplified Model: Enumerating

UV scale: Enumerate the fields and construct the Lagrangian
19 scalars, 14 fermions, 14 vectors

$$
\begin{aligned}
& \mathcal{O}_{5}=\epsilon^{i k} \epsilon^{j l}\left(\ell_{i}^{T} C \ell_{j}\right) H_{k} H_{l} \\
& \text { EFT Operators } \\
& \text { Topologies }
\end{aligned}
$$

Field	$(\mathbf{J}, \mathbf{C}, \mathbf{W}, \mathbf{Y})$
	$(0,1,1,0)$
S_{1}	\ldots
S_{6}	$(0,1,3,1)$

$$
\mathrm{F}_{1} \quad(1 / 2,1,1,0)
$$

$$
\mathrm{F}_{5} \quad(1 / 2,1,3,0)
$$

Simplified Model: Matching

Matching: Find $\mathcal{L}_{\mathrm{EFT}}$ such that effective action $\Gamma_{\mathrm{EFT}}[\phi]=\Gamma_{\mathrm{UV}}[\phi]$
Tree-level:

$$
\Gamma_{\mathrm{UV}}^{(0)}[\phi]=\left.\int \mathrm{d}^{4} x \mathcal{L}_{\mathrm{UV}}[\phi, \Phi]\right|_{\Phi=\Phi_{c}[\phi]}, \quad \Gamma_{\mathrm{EFT}}^{(0)}[\phi]=\int \mathrm{d}^{4} x \mathcal{L}_{\mathrm{EFT}}[\phi] \quad \square \quad \mathcal{L}_{\mathrm{EFT}}[\phi]=\left.\mathcal{L}_{\mathrm{UV}}[\phi, \Phi]\right|_{\Phi=\Phi_{c}[\phi]}
$$

$$
\Delta \mathcal{L}_{\mathrm{UV}}=-\Delta^{\dagger I}\left(D^{2}+M^{2}\right) \Delta^{I}-\frac{\mu}{2}\left(H^{T} i \sigma^{2} \sigma^{I} \Delta^{\dagger I} H+\text { h.c. }\right)
$$

$$
\Delta_{c}^{I}=-\frac{\mu}{2 M^{2}}\left(1-\frac{D^{2}}{M^{2}}\right) H^{T} i \sigma^{2} \sigma^{I} H
$$

$\Delta \mathcal{L}_{\mathrm{EFT}}=\frac{\mu^{2}}{2 M^{2}}\left(H^{\dagger} H\right)^{2}+\frac{\mu^{2}}{M^{4}}\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right)+\frac{\mu^{2}}{M^{4}}\left(H^{\dagger} H\right)\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)$
NOT in Warsaw basis
Need to reduce the effective theory to a non-redundant form

Simplified Model: Reduction

\&
Reduction

Redundancies:

- Integration by part (momentum conservation) ($\left.H^{\dagger} H\right) \square\left(H^{\dagger} H\right), \quad \partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right)$
- Group Identities $\left(\bar{\ell}_{L} \gamma_{\mu} \ell_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right), \quad\left(\bar{\ell}_{L} e_{R}\right)\left(\bar{e}_{R} \ell_{L}\right)$
- Contractor of covariant derivative $\left(D^{\mu} D^{\nu} H\right)^{\dagger}\left(\left[D_{\mu}, D_{\nu}\right] H\right),\left(D^{\mu} D^{\nu} H\right)^{\dagger}\left(X_{\mu \nu} H\right)$
- EOM replacement (field redefinition)

$$
-H^{\dagger}\left(D^{2}-\mu_{H}^{2}\right) H+\left(H^{\dagger} H\right)\left[\frac{c}{\Lambda^{2}}\left(D^{2} H\right)^{\dagger} H+\text { h.c. }\right] \Longleftrightarrow-H^{\dagger}\left(D^{2}-\mu_{H}^{2}\right) H+\frac{2 \operatorname{Re}(c)}{\Lambda^{2}} \mu_{H}^{2}\left(H^{\dagger} H\right)^{2}+\frac{|c|^{2}}{\Lambda^{4}} \mu_{H}^{2}\left(H^{\dagger} H\right)^{3}+\cdots
$$

EW scale

The UV-IR Dictionary

Example 1: Origin of neutrino mass

Three seesaw models that could generate the neutrino mass (via Weinberg operator):

Example 1: Origin of neutrino mass

\checkmark / X : can/cannot be generated at tree level
Loop:
XuLi. Di Zhang, Shun Zhou, arXiv: 2201.05082 [hep-ph]
Yong Du, Xu-Xiang Li, Jiang-Hao Yu, arXiv: 2201.04646 [hep-ph]

Example 2: Neutrino-less double beta decay

Example 2: Neutrino-less double beta decay

 -u

(d) $\mathcal{O}_{d L Q L H 1} \quad \epsilon^{i j} \epsilon^{k l}\left(\bar{d}^{a} \ell_{i}\right)\left(q_{a j}^{T} C \ell_{k}\right) H_{l}$

(ee)

Example 2: Neutrino-less double beta decay

B preserving		B preserving		B violating	
$(S, 1,1,1)$	$(S, 1,2,1 / 2)$	$(S, 3,2,1 / 6)$	$(F, 3,2,7 / 6)$	$(S, 3,1,-1 / 3)$	$(S, 3,2,1 / 6)$
$(S, 3,2,1 / 6)$	$(S, 3,3,-1 / 3)$	$(S, 3,2,1 / 6)$	$(F, 3,3,2 / 3)$	$(S, 3,1,-1 / 3)$	$(F, 3,2,-5 / 6)$
$(S, 1,1,1)$	$(F, 3,1,-1 / 3)$	$(S, 3,3,-1 / 3)$	$(F, 3,2,-5 / 6)$	$(V, 3,2,1 / 6)$	$(F, 1,2,1 / 2)$
$(S, 1,1,1)$	$(F, 3,1,2 / 3)$	$(V, 1,1,1)$	$(F, 1,2,1 / 2)$	$(V, 3,2,1 / 6)$	$(F, 3,1,-1 / 3)$
$(S, 1,1,1)$	$(F, 3,2,-5 / 6)$	$(V, 1,2,3 / 2)$	$(F, 3,2,-5 / 6)$	$(V, 3,2,1 / 6)$	$(F, 3,2,-5 / 6)$
$(S, 1,1,1)$	$(F, 3,2,7 / 6)$	$(V, 1,2,3 / 2)$	$(F, 3,2,7 / 6)$	$(V, 3,2,1 / 6)$	$(F, 3,3,-1 / 3)$
$(S, 1,2,1 / 2)$	$(F, 1,3,0)$	$(V, 3,1,2 / 3)$	$(F, 3,2,7 / 6)$	$(V, 3,1,2 / 3)$	$(V, 3,2,1 / 6)$
$(S, 3,2,1 / 6)$	$(F, 1,2,1 / 2)$	$(V, 3,3,3 / 2)$	$(F, 3,2,7 / 6)$	$(V, 3,2,1 / 6)$	$(V, 3,3,2 / 3)$
$(S, 3,2,1 / 6)$	$(F, 3,1,2 / 3)$	$(V, 1,1,1)$	$(V, 1,2,3 / 2)$		

18 B preserving UV + 8 B violating UV ($0 v \beta \beta$ w/ no tree v-mass)

Example 2: Neutrino-less double beta decay

$\left\{\begin{array}{l}\text { scale } \\ \text { uV scale }\end{array}\right.$

Suppose $O_{d L u e H}$ is measured by low-energy experiments...

Field	$\mathbf{(S U (3) , \mathbf { S U } (2) , \mathbf { U (1)) }}$
S_{12}	$(3,2,1 / 6)$
F_{12}	$(3,2,7 / 6)$

$\mathrm{d}=6$
collider
measurement

Summary

- The UV-IR dictionary can be used as combined searches by means of both high energy colliders and low energy experiments
- Relations between same/different-dimension operators may contain rich interesting physical origins
- We also provide a systematic way to reduce operator to any basis

Thank you!

Backup

The Fermion Only Contributes to $\mathbf{d}=7$

Field $\quad(S U(3), S U(2), U(1))$

S_{2}	$(1,1,1)$
F_{4}	$(1,2,3 / 2)$

$$
\mathcal{O}_{l l}, \mathcal{O}_{e L L L H}
$$

Field
(SU(3), SU(2), U(1))

S_{6}	$(1,3,0)$
F_{4}	$(1,2,3 / 2)$

$$
\mathcal{O}_{H, H \square, H D}, \mathcal{O}_{e H, d H, u H}, \mathcal{O}_{e L L L H}
$$

	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$
$\mathcal{C}_{L H D}^{(1)}$	15	6.9	11	13	13	6.6	9.9	16	12	5.9	11	17
$\mathcal{C}_{\text {LHDe }}$	160	73	130	200	130	65	98	160	120	61	110	180
$\mathcal{C}_{L H W}$	23	11	17	20	20	11	16	26	18	9.4	17	28
$\mathcal{C}_{\text {LLduD }}^{(1)}$	74	35	65	95	56	29	42	72	54	27	49	78
$\mathcal{C}_{L L Q d H}^{(1)}$	240	110	200	320	200	100	140	250	180	93	160	270
$\mathcal{C}_{\text {LLQdH }}^{(2)}$	120	58	100	150	99	51	77	130	94	48	85	140
$\mathcal{C}_{\text {LLQuH }}$	310	150	260	410	250	130	180	300	230	120	210	340
$\mathcal{C}_{\text {Leud̄ } H}$	29	15	26	39	24	14	18	30	23	13	22	35

Table 7: The table shows the lower limits on the scale of the dimension-seven couplings, from the GERDA [87], NEMO [9, 11], CUORE [7], and KamLAND-Zen [13] experiments, assuming $\mathcal{C}_{i}(\mu=\Lambda)=1 / \Lambda^{3}$. The left, middle, and right tables correspond to the matrix elements of Refs. [76], [32], and [83], respectively. The limits on Λ are shown in units of TeV .

