Coupling a Cosmic String to a TQFT

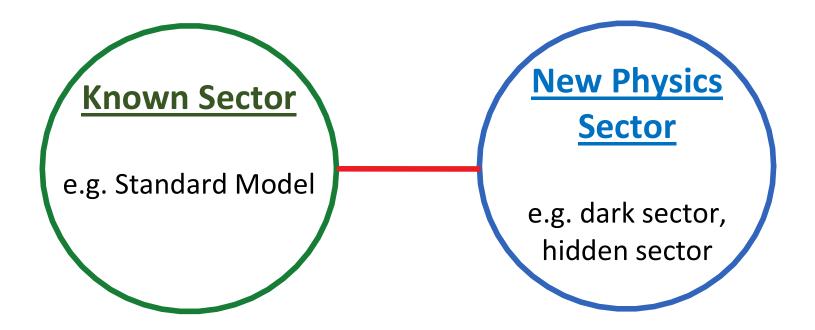
Sungwoo Hong

KAIST

(2302.00777: T.D Brennan, SH, LT Wang)

IAS Program on High Energy Physics

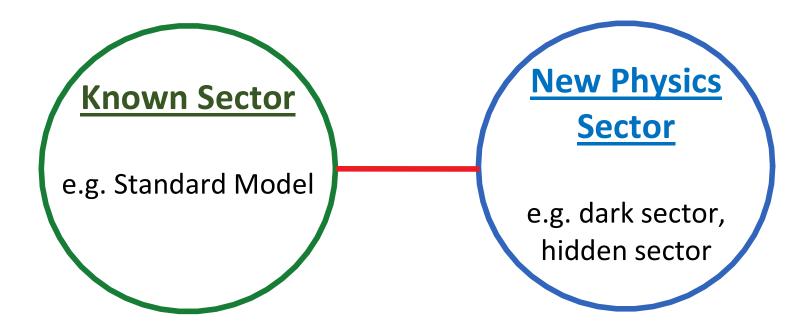
A General Setup in Particle Physics



E.g. Dark (matter) sector,

SUSY breaking sector and SUSY breaking mediation, Composite-Elementary sector, ...

A General Setup in Particle Physics



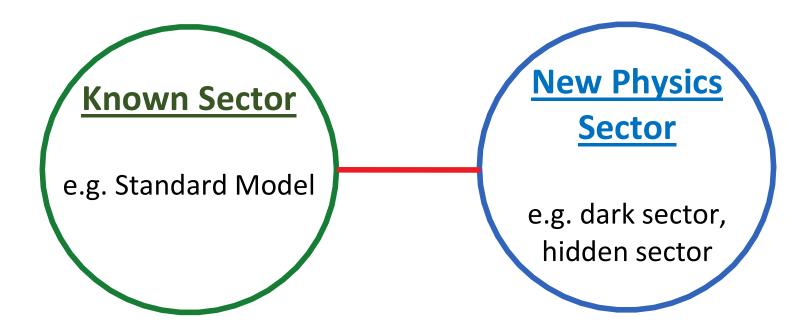
In all the cases considered so far,

New Physics Sector described by a local QFT

new particles + new interactions

- \Rightarrow new/novel dynamics
- \Rightarrow solutions to problems in particle physics

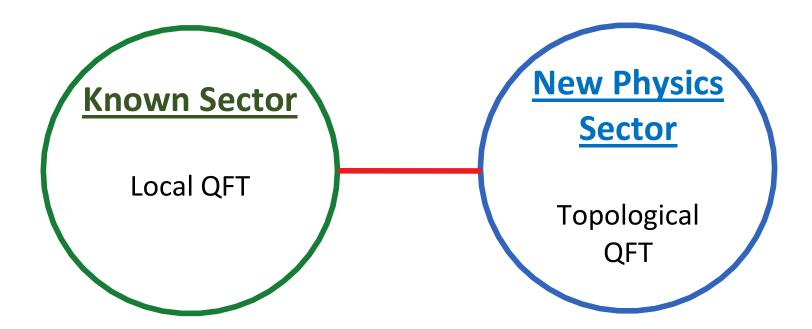
A General Setup in Particle Physics



Symmetry

provides an extremely powerful tool.

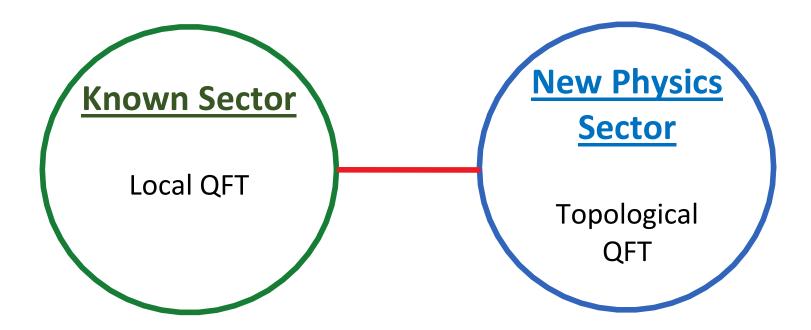
In this talk,



Symmetry

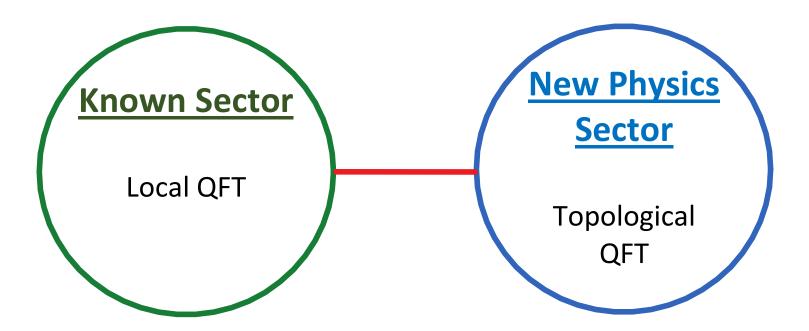
provides an extremely powerful tool.

In this talk,



Generalized Global Symmetries provides an extremely powerful tool.

In this talk,



Generalized Global Symmetries

provides an extremely powerful tool.

(Q1) Implications of TQFT-couplings

(Q2) Observable consequences (even in principle)

(Q3) show that TQFT-couplings can exist rather ubiquitously.

Most Symmetries in particle physics act on local operators

$$\psi(x) \to e^{i\alpha Q} \, \psi(x)$$

Most Symmetries in particle physics act on local operators

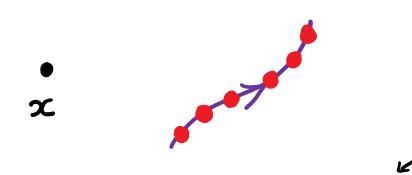
$$\psi(x) \to e^{i\alpha Q} \, \psi(x)$$

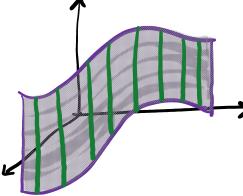
Recently, concept of symmetry has gone through explosive generalizations!

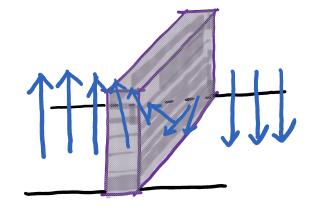
"Generalized Global Symmetries (GGS)"

I. Higher-form symmetries

Various extended objects appear in broad class of theories.



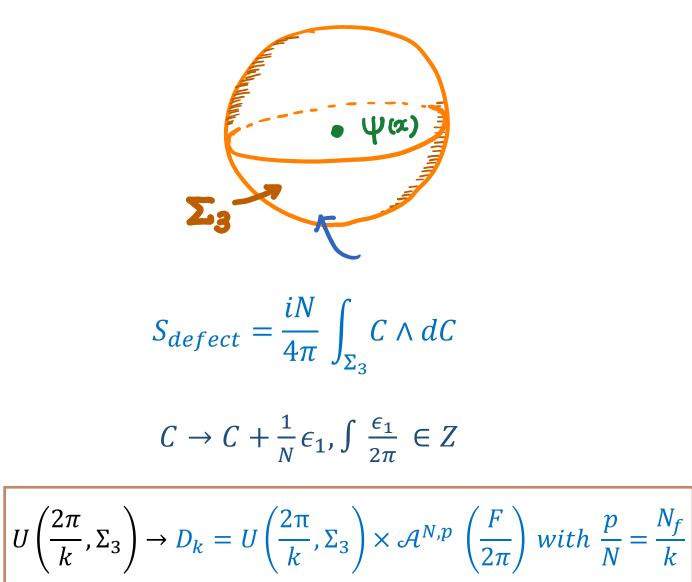




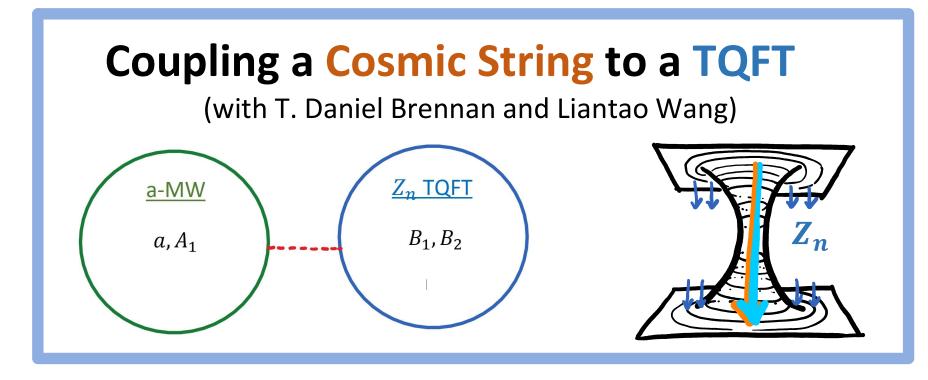
Local operator e.g. particle **0-form** symmetry

Line operator e.g. Wilson loop 't Hooft loop **1-form** symmetry Surface operator e.g. Cosmic string **2-form symmetry** Volume operator e.g. Domain Wall **3-form symmetry**

II. Non-Invertible Symmetries



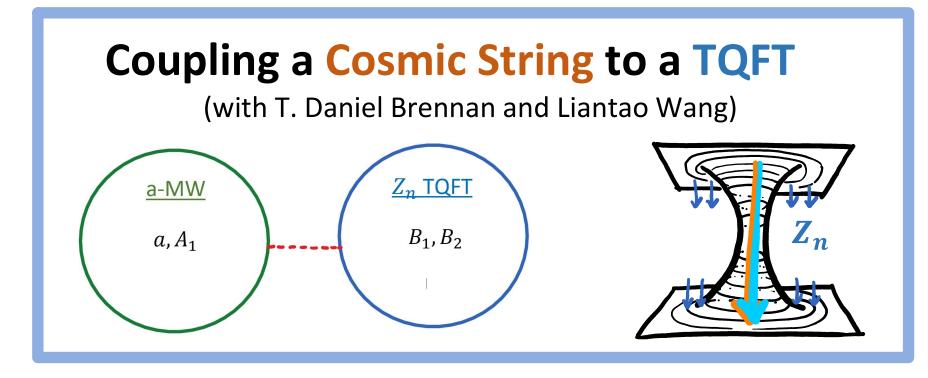
Outline



I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT

II. TQFT-Coupling 2: Z_M Discrete Gauging

Outline



I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT

II. TQFT-Coupling 2: Z_M Discrete Gauging

Axion-Maxwell Theory

$$S = \int \frac{1}{2} \, da \wedge * \, da \, + \int \frac{1}{2g^2} \, F \wedge * F \, - \int \frac{iK}{8\pi^2} \frac{a}{f} F \wedge F$$

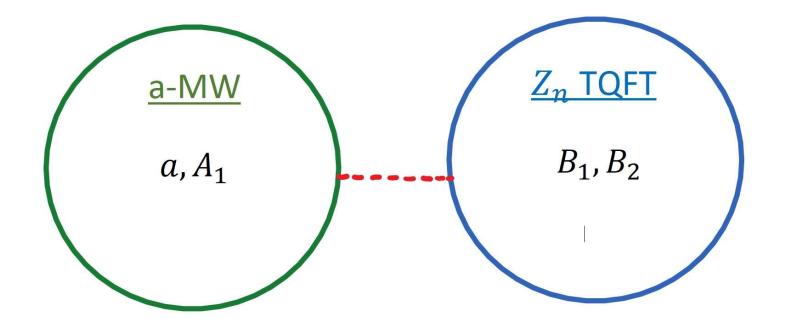
Axion-Maxwell Theory

$$S = \int \frac{1}{2} \, da \wedge * \, da \, + \int \frac{1}{2g^2} \, F \wedge * F \, - \int \frac{iK}{8\pi^2} \frac{a}{f} F \wedge F$$

- This very familiar theory enjoys a large set of GGS:
 0-form axion shift
 - $\,\circ\,$ 2-form axion winding
 - \circ 1-form electric
 - 1-form magnetic
 - ✤ 3-group
 - * Non-invertible symmetries (Cordova, Ohmori '22)

I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT [Brennan, Hong, Wang '23]

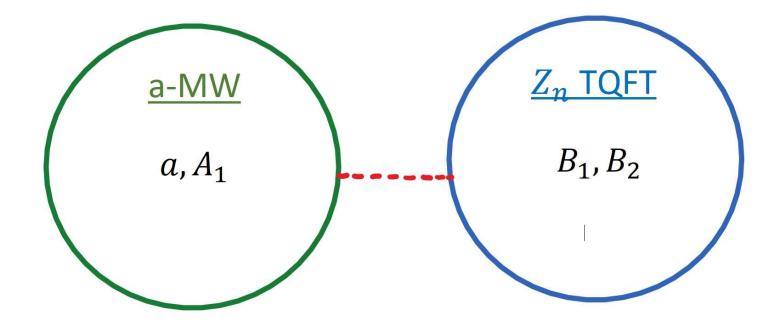
$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$



I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT [Brennan, Hong, Wang '23]

$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$

$$+\int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$



I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT

$$S = \int \frac{1}{2} \, da \wedge * \, da \, + \int \frac{1}{2g_A^2} \, F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$

$$+\int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$

(Q1) Can there be any IR-Universal (local) observable effect?

(Q2) Is this very exotic / pure academic setup? Or can this arise as IR-EFT of some standard UV QFT relevant for particle physics?

I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT

$$S = \int \frac{1}{2} \, da \wedge * \, da + \int \frac{1}{2g_A^2} \, F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$

$$+\int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$

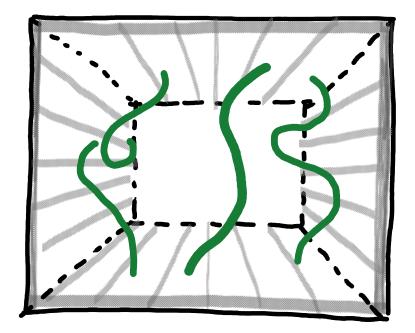
(Q1) Can there be any IR-Universal (local) observable effect?

- (Q2) Is this very exotic / pure academic setup? Or can this arise as IR-EFT of some standard UV QFT relevant for particle physics?
 - ✓ Illustrate importance of studying carefully the effects of remnant TQFT-couplings (GGS = essential tools)

***** Anomaly Inflow

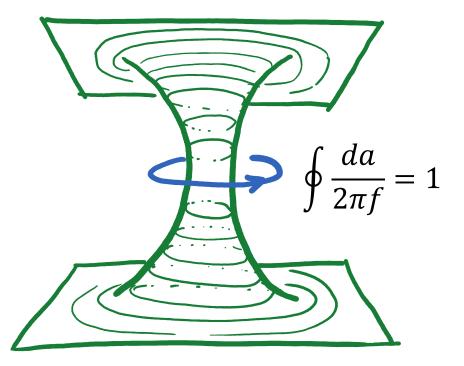
* Anomaly Inflow : W/O TQFT-Coupling [Callan and Harvey '85]

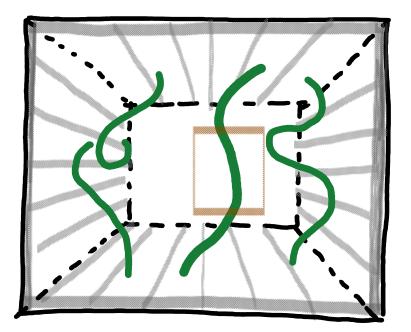
$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$



***** Anomaly Inflow : W/O TQFT-Coupling [Callan and Harvey '85]

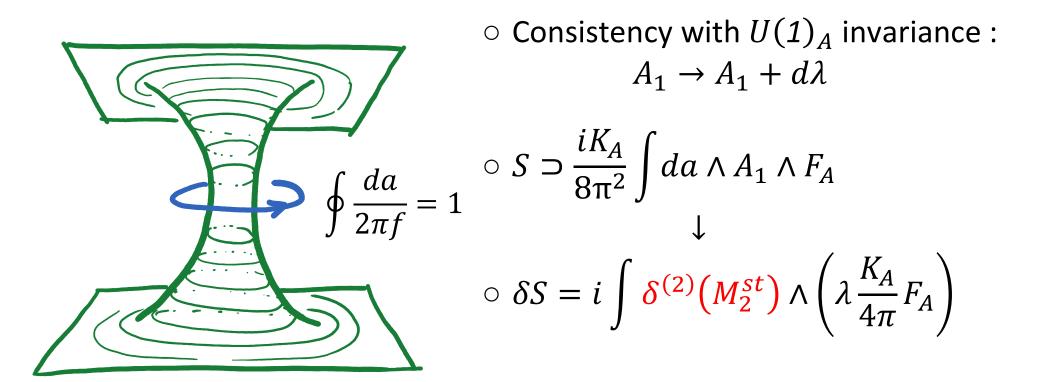
$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$





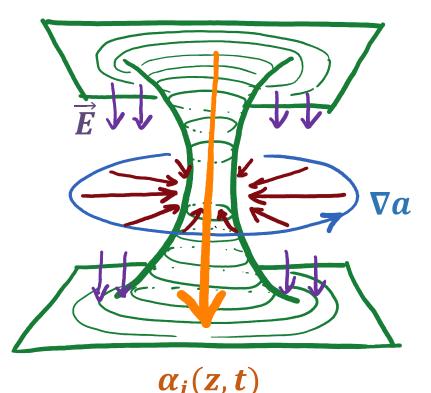
* Anomaly Inflow : W/O TQFT-Coupling [Callan and Harvey '85]

$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$



* Anomaly Inflow : W/O TQFT-Coupling [Callan and Harvey '85]

$$S \supset \frac{iK_A}{8\pi^2} \int da \wedge A_1 \wedge F_A = i \int A_1 \wedge J_1$$



 $\circ * J_1 = \frac{\kappa_A}{4\pi} \, da \wedge F_A$ $\circ d * J_1(bulk) = \frac{K_A}{4\pi} F_A \wedge \delta^{(2)}(M_2^{st})$ $\circ \vec{j}_1 \sim \nabla a \times \vec{E}$ (Hall-like current)

 \circ 2d chiral fermions { $\alpha_i(z,t)$ }

$$d * J_1(2d) = -\frac{K_A}{4\pi} F_A$$

 $\sum Q_i^2 = K_A$

$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$
$$+ \int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$

$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$
$$+ \int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$

1.
$$A_1 \rightarrow A_1 + d\lambda_A$$

 $\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$

* Anomaly Inflow : With TQFT-Coupling [Brennan, Hong, Wang '23]

$$S = \int \frac{1}{2} da \wedge * da + \int \frac{1}{2g_A^2} F_A \wedge * F_A - \int \frac{iK_A}{8\pi^2} \frac{a}{f} F_A \wedge F_A$$
$$+ \int \frac{in}{2\pi} B_2 \wedge dB_1 - \int \frac{iK_{AB}}{4\pi^2} \frac{a}{f} F_A \wedge F_B - \int \frac{iK_B}{8\pi^2} \frac{a}{f} F_B \wedge F_B$$

1.
$$A_1 \rightarrow A_1 + d\lambda_A$$

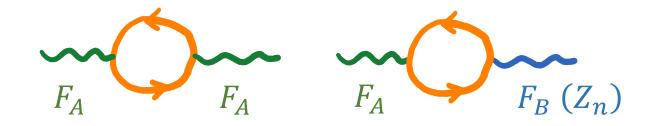
 $\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$

2. $B_1 \rightarrow B_1 + d\lambda_B$, $\lambda_B = \frac{2\pi}{n}\kappa$, $\kappa = 0, 1, \cdots, n-1$ $\delta_B S = i \int \delta^{(2)}(M_2^{st}) \wedge \lambda_B \left(\frac{K_{AB}}{2\pi}F_A + \frac{K_B}{4\pi}F_B\right)$

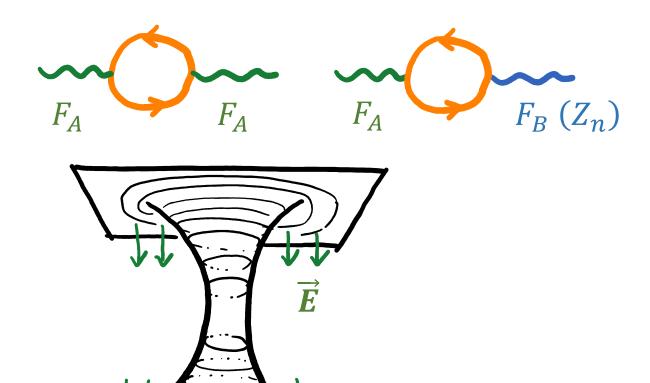
1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$

1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$

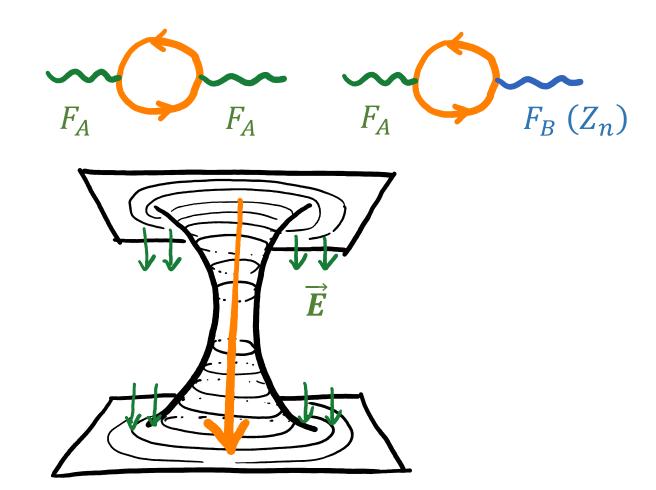
1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$



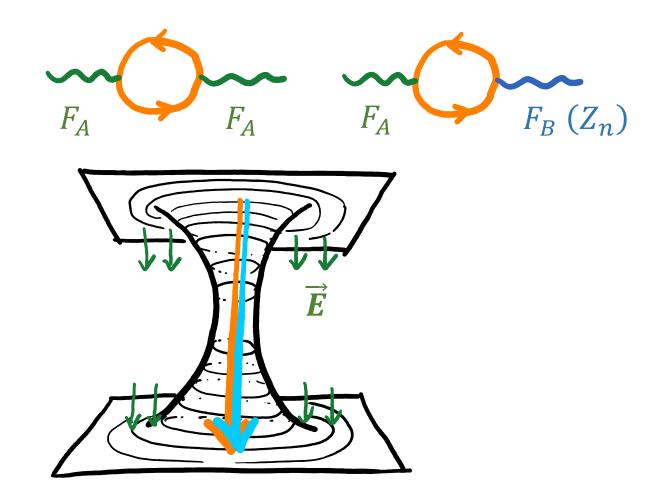
1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$



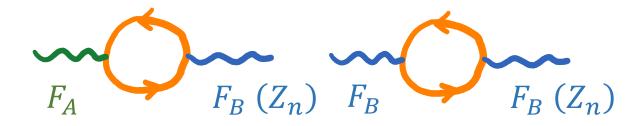
1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$

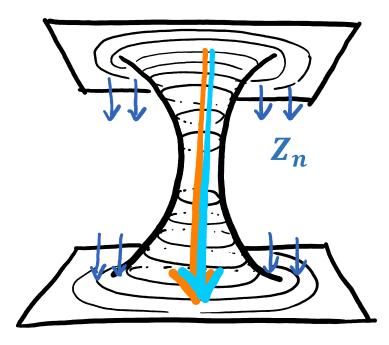


1.
$$\delta_A S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_A \left(\frac{K_A}{4\pi} F_A + \frac{K_{AB}}{2\pi} F_B \right)$$



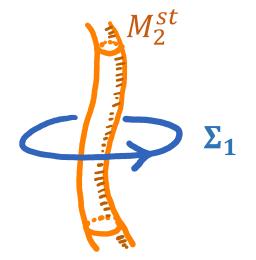
2.
$$\delta_B S = i \int \delta^{(2)} (M_2^{st}) \wedge \lambda_B \left(\frac{K_{AB}}{2\pi} F_A + \frac{K_B}{4\pi} F_B \right)$$





W/O TQFT-Coupling

Axion strings: Global strings



With TQFT-Coupling

- Axion strings: Global strings
- ► BF strings: $W_2(\Sigma_2, \ell) = e^{i\ell \oint_{\Sigma_2} B_2}$ Local or (Quasi) Aharonov-Bohm

 $\frac{l}{c} = 1$

Coaxial Hybrid strings ?

 2π

 ϕB_1

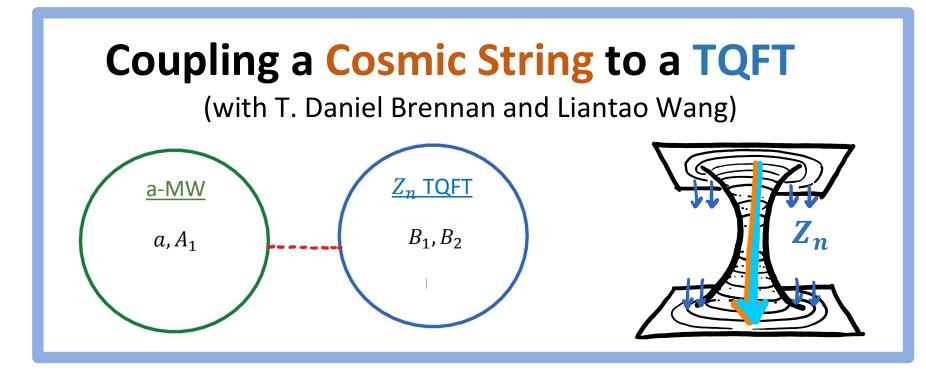
Extended KSVZ with TQFT-Coupling [Brennan, Hong, Wang '23]

$$\mathcal{L} = -\frac{1}{2g_A^2} F_A \wedge F_A + \overline{\psi_1} i \gamma^\mu D_\mu \psi_1 + \overline{\chi_1} i \gamma^\mu D_\mu \chi_1 - \lambda_1 \Phi_1^+ \psi_1 \chi_1$$
$$-\frac{1}{2g_A} F_A \wedge F_A + \overline{\psi_1} i \gamma^\mu D_\mu \psi_1 + \overline{\chi_1} i \gamma^\mu D_\mu \chi_2 - \lambda_2 \Phi_2 \psi_2 \chi_2 + V(\Phi_1)$$

 $-\frac{1}{2g_B^2} F_B \wedge F_B + \psi_2 i \gamma^\mu D_\mu \psi_2 + \overline{\chi_2} i \gamma^\mu D_\mu \chi_2 - \lambda_2 \Phi_2 \psi_2 \chi_2 + V(\Phi_1, \Phi_2)$

	$U(1)_{PQ}$	$U(1)_A$	$U(1)_{B}$
Φ_1	1	0	n
Φ_2	0	0	n
ψ_1	1	1	q
χ_1	0	-1	n-q
ψ_2	0	1	q-n
χ_2	0	-1	<i>-q</i>

Outline



I. TQFT-Coupling 1: Axion-Portal to a Z_n TQFT

II. TQFT-Coupling 2: Z_M Discrete Gauging

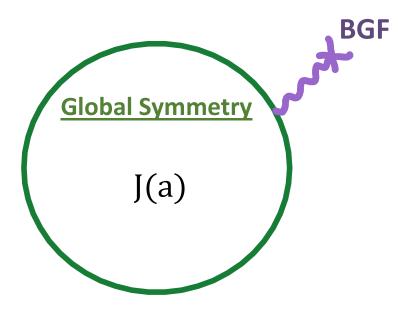
(i) Recall : 0-form axion shift

•
$$\theta = \frac{a}{f} \rightarrow \theta + c$$

- EoM(a): $d * da = 0 \rightarrow d * j_1 = 0$, $* j_1 = if * da$
- With coupling: $d(if * da) = \frac{K}{8\pi^2} F \wedge F \rightarrow \left[U(1)^{(0)} \to Z_K^{(0)} \right]$
- ABJ-anomaly free : $Z_K^{(0)}$
- We can gauge a subgroup : $Z_M^{(0)} \subset Z_K^{(0)}$

(ii) Gauging a discrete group = Coupling to a TQFT

$$S \supset -i \int A_1 \wedge J_1 = \frac{1}{2} \int (da - f \mathcal{A}_1) \wedge (da - f \mathcal{A}_1)$$



(ii) Gauging a discrete group = Coupling to a TQFT

$$S \supset -i \int A_1 \wedge * J_1 = \frac{1}{2} \int (da - f \mathcal{A}_1) \wedge * (da - f \mathcal{A}_1)$$

$$\Downarrow$$

$$S \supset \frac{1}{2} \int (da - f \mathcal{A}_1) \wedge * (da - f \mathcal{A}_1) + \frac{iM}{2\pi} \int \mathcal{B}_2 \wedge d\mathcal{A}_1$$

Gauged SymmetryGauge TheoryJ(a)
$$\frac{iM}{2\pi} \int \mathcal{B}_2 \wedge d\mathcal{A}_1$$

(iii) Physical effects of discrete gauging?

• Gauge redundancy:
$$\frac{a}{f} \sim \frac{a}{f} + 2\pi \rightarrow \frac{a}{f} \sim \frac{a}{f} + \frac{2\pi}{M}$$

• Project out local operators:

(iii) Physical effects of discrete gauging?

• Gauge redundancy:
$$\frac{a}{f} \sim \frac{a}{f} + 2\pi \rightarrow \frac{a}{f} \sim \frac{a}{f} + \frac{2\pi}{M}$$

• Project out local operators:

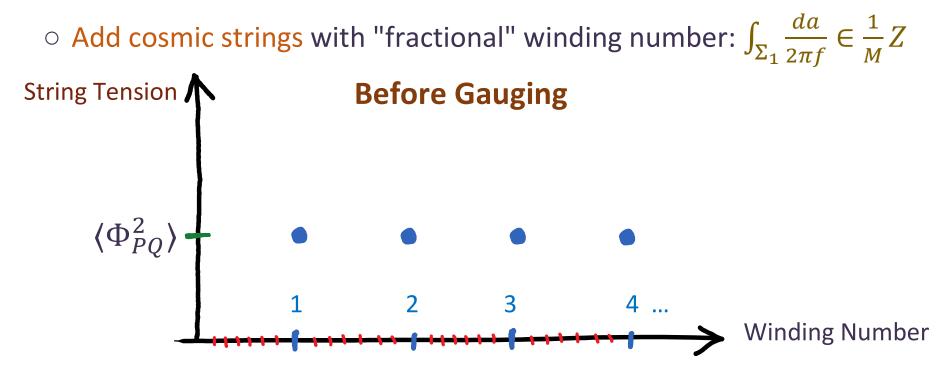
Local operators charged under 0-form Z_K axion shift: $I(x) = e^{iqa(x)/f}$ Under gauged Z_M : $I(x) \to e^{\frac{i2\pi q}{M}} I(x) \to I(x), q \notin MZ$ projected out

• Add cosmic strings with "fractional" winding number: $\int_{\Sigma_1} \frac{da}{2\pi f} \in \frac{1}{M}Z$

(iii) Physical effects of discrete gauging?

• Gauge redundancy:
$$\frac{a}{f} \sim \frac{a}{f} + 2\pi \rightarrow \frac{a}{f} \sim \frac{a}{f} + \frac{2\pi}{M}$$

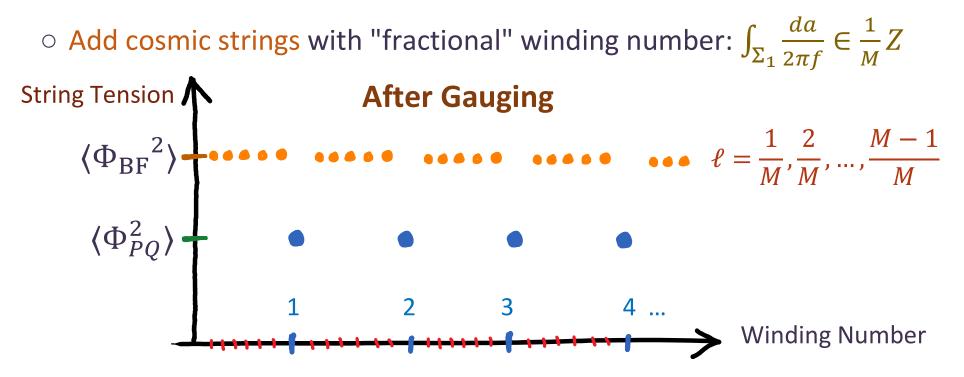
• Project out local operators:



(iii) Physical effects of discrete gauging?

• Gauge redundancy:
$$\frac{a}{f} \sim \frac{a}{f} + 2\pi \rightarrow \frac{a}{f} \sim \frac{a}{f} + \frac{2\pi}{M}$$

• Project out local operators:



(iii) Physical effects of discrete gauging?

• Gauge redundancy:
$$\frac{a}{f} \sim \frac{a}{f} + 2\pi \rightarrow \frac{a}{f} \sim \frac{a}{f} + \frac{2\pi}{M}$$

• Project out local operators:

- Add cosmic strings with "fractional" winding number: $\int_{\Sigma_1} \frac{da}{2\pi f} \in \frac{1}{M}Z$
- Breaks electric 1-form symmetry: seen from 3-group structure.
- 3-group analysis ⇒ systematic classification of all possible TQFTcouplings via discrete gauging and associated physical effects

$\begin{array}{c} \underline{A}_{n} \text{ TOFT} \\ \textbf{A}_{n} \text{ Thank you!} \\ B_{1}, B_{2} \end{array}$