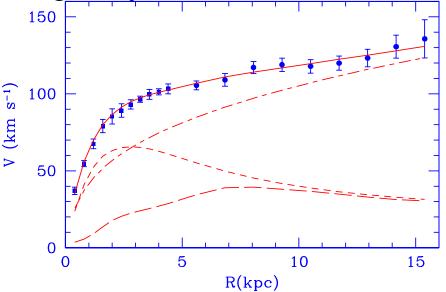


Search for dark matter in the events with missing transverse momentum in colliders


Jinfei Wu IHEP,CAS

15/02/2023

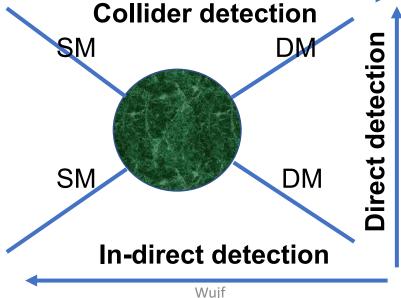
Introduction

Many astrophysical observations provide clear evidence for the existence of dark matter, such as rotation curve and

galaxy cluster.

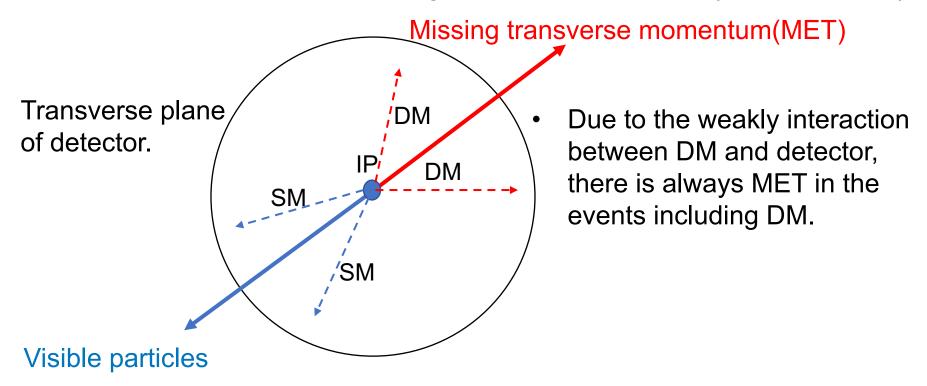
Rotation Curve of M33.

The galaxy cluster 1E 0657-56


- > The dark matter accounts for 26.4% in the universe. PDG
- > It is important to search for DM in particle physics experiment.

Introduction

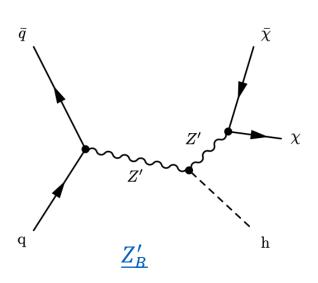
- > There are 3 ways to detect the dark matter according to the different interactions between SM and DM.
 - **Direct detection**: Use the scatter between SM and DM.
 - **Indirect detection**: DM can decay or annihilate into SM particles. The decay/ annihilate products can be used to detect DM.


Collider detection: DM is produced in SM particle

collisions.

Introduction

> The collider detection has signature as MET + X(SM particles).

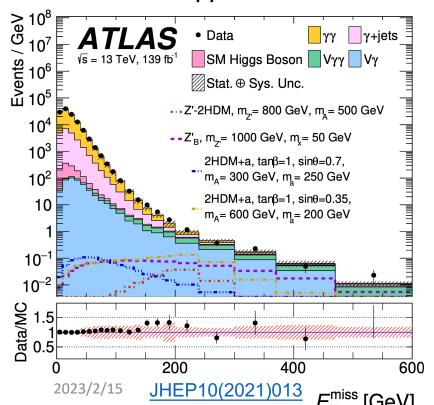


- ➤ The studies have been performed in many experiments, including ATLAS, CMS, BELLE II and BESIII etc.
- ➤ I will show some results(selected) in the following slides.

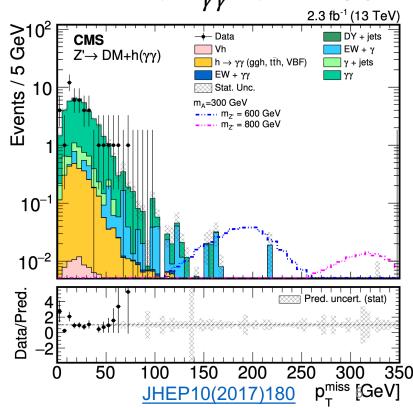
 \succ The Z_B' and Z'2HDM model are used in these studies.

JHEP10(2021)013

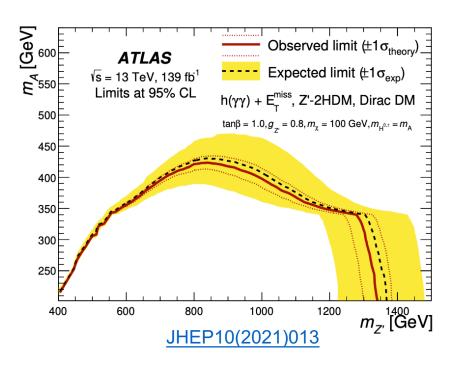
JHEP10(2017)180

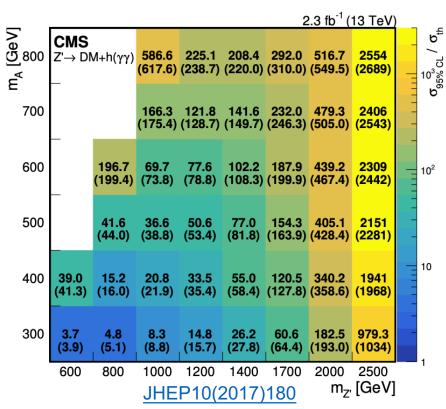


- $m_{Z'}$, the Z' boson mass;
- g_{χ} , the coupling of the Z' boson to the DM particle χ ;
- g_q , the coupling of the Z' boson to quarks;
- $g_{hZ'Z'}$, the coupling between the Z' boson and the observed Higgs boson h;
- $\sin \theta$, the mixing angle between the baryonic Higgs boson and the observed Higgs boson; and
- m_{χ} , the mass of the fermionic dark-matter candidate χ .


- m_A , the pseudoscalar boson mass;
- $m_{Z'}$, the Z' boson mass;
- m_{χ} , the mass of the fermionic dark-matter candidate χ ;
- $\tan \beta$, the ratio of the vacuum expectation values of the two Higgs doublets;
- $g_{Z'}$ the coupling strength of the Z' boson to quarks; and
- α , the mixing angle between the two neutral scalars in the 2HDM model.

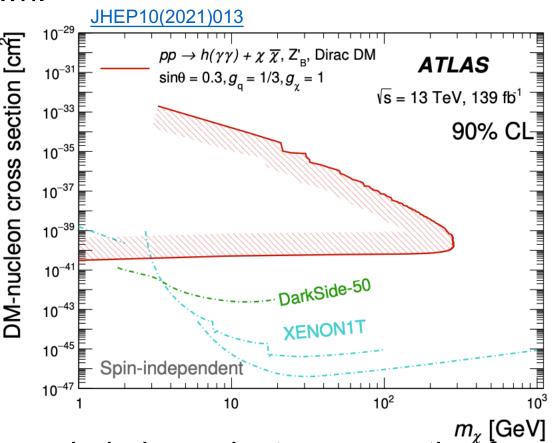
Wujf


- Analysis strategy(ATLAS):
 - $E_{\gamma}/m_{\gamma\gamma} > 0.35/0.25$,
 - $E_T^{miss} > 90 \text{ GeV}$,
 - ΔE_T^{miss} < 30 GeV,
 - $105 < m_{\gamma\gamma} < 160 \text{ GeV}$


- Analysis strategy(CMS):
 - $p_T/m_{\gamma\gamma} > 0.5/0.25$,
 - $E_T^{miss} > 105 \text{ GeV}$,
 - $p_{T_{yy}} > 90 \text{ GeV}$,
 - $105 < m_{\gamma\gamma} < 180 \text{ GeV}$

The 95% C.L. upper limits on the signal strength in the $m_{Z'}$ VS m_A plane are shown as below.

• The maximum limit on m_A reaches 420 GeV, when the limit on m_{Z^\prime} mass is 825 GeV.

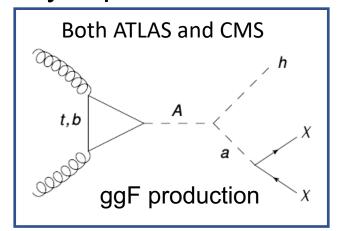


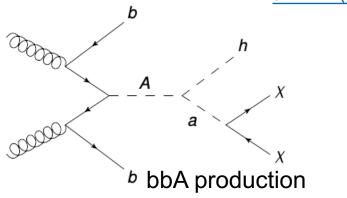
 The exclusion power is not too high due to the low statistics.

> The upper limit on the spin-independent cross section of ATLAS result is shown.

$$\sigma_{N\chi}^{SI} = \frac{\mu_{N\chi}^2}{\pi A^2} [Zf_p + (A-Z)f_n]^2 \quad \text{in the proof of the proo$$

- Z/A: number of protons/nucleons in the considered nucleus.
- f_p / f_n : couplings between DM and protons/neutrons.

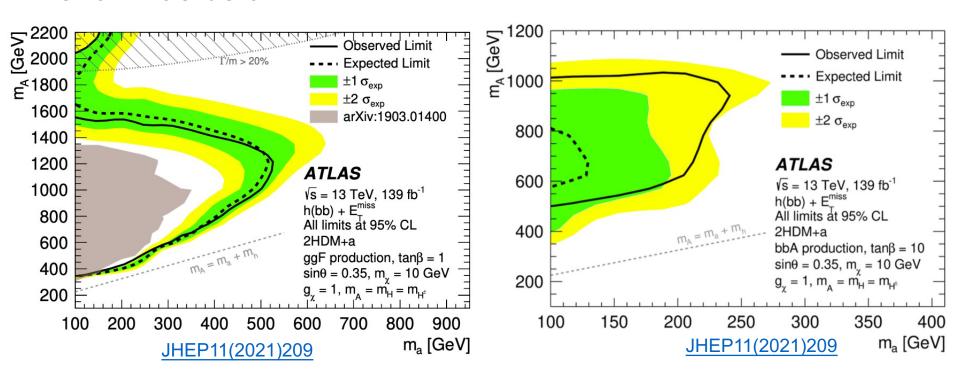

> The upper limit on the spin-independent cross section for m_{χ} < 2 GeV decreases by a factor of two.


$pp \rightarrow h(b\overline{b}) + E_T^{miss}$ in LHC

> The study is performed with 2HDM+a model.

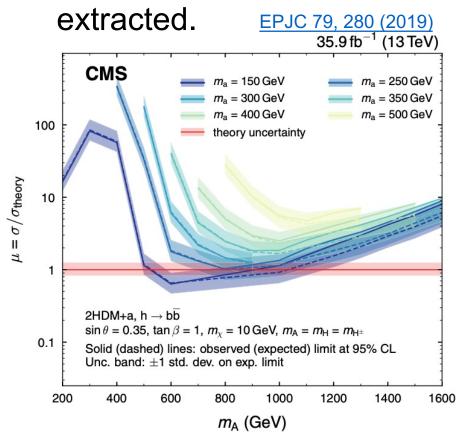
EPJC 79, 280 (2019)

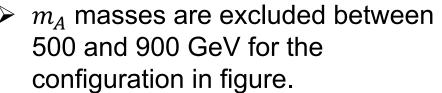
JHEP11(2021)209

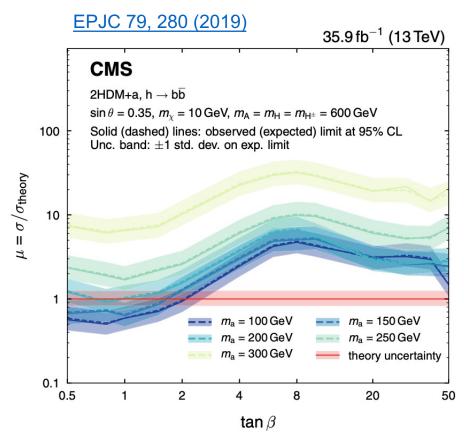


- ➤ 2HDM+a model : the extension of 2HDM model with a simplified pseudoscalar mediator.
 - The pseudoscalar mediator a couples to SM fermions and DM particles χ .
 - $tan\beta$ is the ratio of vacuum expectation values of the two Higgs doublets.
 - Low $tan\beta$ ~ ggF production, high $tan\beta$ ~ bbA production.

$pp \rightarrow h(b\overline{b}) + E_T^{miss}$ in LHC


The 95% C.L. upper limits in the m_A VS m_a plane are shown as below.

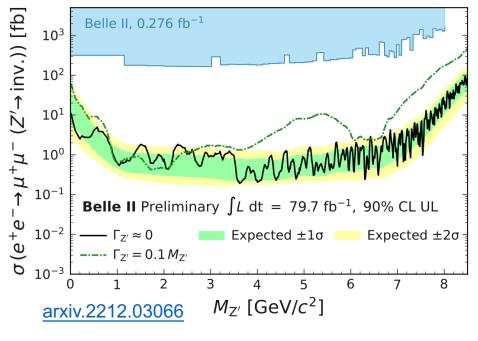


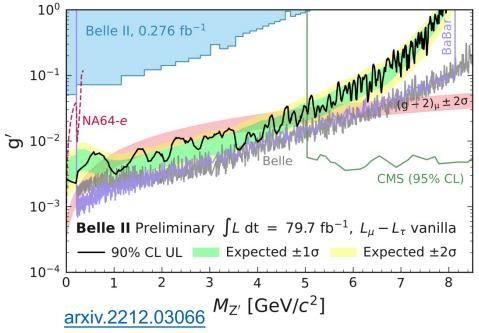

- The exclusion boundaries extend up to m_a = 520 GeV for m_A = 1.25 TeV in ggF production case.
- The exclusion limits extend up to m_a = 240 GeV for m_A = 900 GeV in bbA production case.

$pp \rightarrow h(b\overline{b}) + E_T^{miss}$ in LHC

➤ The 95% C.L. upper limits on the signal strength are

- No significant excess is observed.
- > $tan\beta$ between 0.5 and 2.0 is excluded for m_a = 100 GeV.


2023/2/15

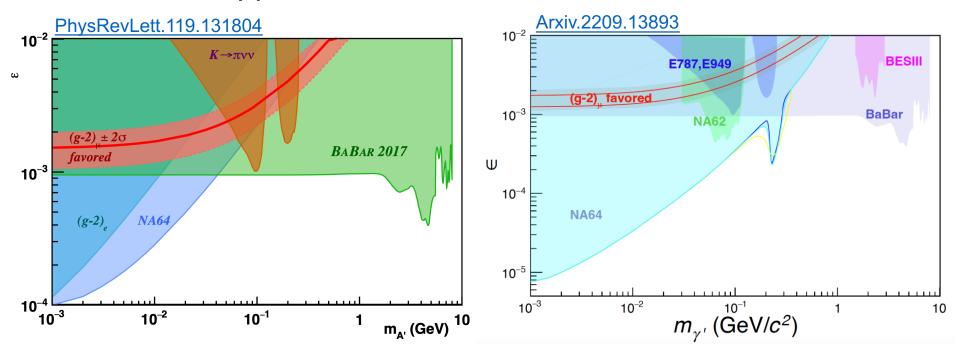

$e^+e^- ightarrow \mu^+\mu^- + invisible$ in Belle II

- \blacktriangleright The decay process is $e^+e^- \to \mu^+\mu^- Z'$, $Z' \to \chi \bar{\chi}$.
 - Vector boson, Z', only couples to SM μ , τ , ν_{μ} and ν_{τ} .
 - Z' can decay to dark matter particles $\chi \bar{\chi}$.
 - g': coupling between Z' and SM μ , τ , ν_{μ} and ν_{τ} .
 - g'_D : coupling between Z' and χ .
- > The dominant background:
 - $e^+e^- \rightarrow \mu^+\mu^- + \gamma$, photon is not detected.
 - $e^+e^- \rightarrow \tau^+\tau^- + \gamma$, τ decays to muon and neutrinos.
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$, electrons outside the detector.
- > An artificial neural network is employed to select the event candidates.
 - Four kinematic variables are used.

$e^+e^- ightarrow \mu^+\mu^- + invisible$ in Belle II

The 90% C.L. upper limits on the $\sigma(e^+e^- \to \mu^+\mu^- Z', Z' \to invisible)$ and g' are shown as below.

- The upper limit of σ is set as small as 0.2 fb .
- No significant excess is observed.
- The invisible Z' boson as an explanation of $(g-2)_{\mu}$ anomaly is excluded in $0.8 < M_{Z'} < 5.0$ GeV.

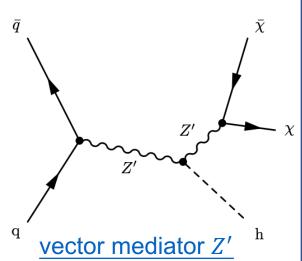

$e^+e^- \rightarrow \gamma + invisible$ in BaBar and BESIII

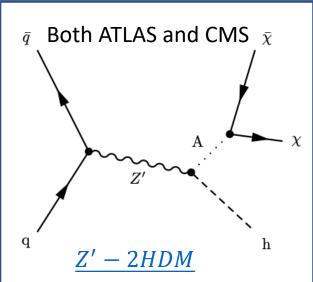
- Search for dark photon in BaBar and BESIII.
 - A $U(1)_D$ gauge boson γ' (dark photon) is introduced, which mediate a new force between dark sector and SM.
 - The γ' can mix with SM photon kinetically, and ϵ is the mixing strength.
 - $\epsilon \sim 10^{-3}$ when the mass of γ' is in the GeV range.
- > The decay process to search.
 - $e^+e^- \rightarrow \gamma \gamma', \gamma' \rightarrow invisible$.
- > The dominant background:
 - $e^+e^- \rightarrow \gamma\gamma$, $\gamma\gamma\gamma$: some photons are not detected.

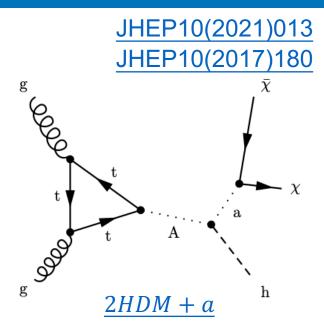
PhysRevLett.119.131804 Arxiv.2209.13893

$e^+e^- o \gamma + E_T^{miss}$ in BaBar and BESIII

 \gt 90% C.L. upper limit on the ϵ is shown as below.


- The BaBar result rules out the dark-photon coupling as the explanation for the $(g-2)_{\mu}$ anomaly.
- > The BESIII results is higher than BaBar results.
- \succ The BESIII exclusion limits are below the $(g-2)_{\mu}$ anomaly.


2023/2/15

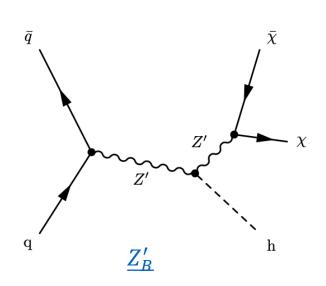

Summary

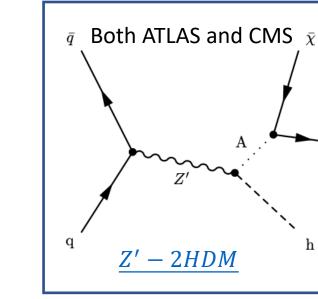
- Currently no evidence of DM is observed in particle physics experiments.
- Many measurements improve the existing constraints.
- Many searches are performed in collider experiments.
 - Including ATLAS, CMS, BaBar, BELLE II, BES III etc.
- Look forward the CEPC to get more results on the DM search.

> Models to search.

 \triangleright Parameters of Z'_B model.

- $m_{Z'}$, the Z' boson mass;
- g_{χ} , the coupling of the Z' boson to the DM particle χ ;
- g_q , the coupling of the Z' boson to quarks;
- $g_{hZ'Z'}$, the coupling between the Z' boson and the observed Higgs boson h;
- $\sin \theta$, the mixing angle between the baryonic Higgs boson and the observed Higgs boson; and
- m_{χ} , the mass of the fermionic dark-matter candidate χ .


 \triangleright Parameters of Z'2HDM model.


- m_A , the pseudoscalar boson mass;
- $m_{Z'}$, the Z' boson mass;
- m_{χ} , the mass of the fermionic dark-matter candidate χ ;
- $\tan \beta$, the ratio of the vacuum expectation values of the two Higgs doublets;
- $g_{Z'}$ the coupling strength of the Z' boson to quarks; and
- α , the mixing angle between the two neutral scalars in the 2HDM model.

Parameters of 2HDM+a model.

- m_A and m_a , the pseudoscalar particle masses;
- m_H and m_h , the scalar particle masses;
- $m_{H^{\pm}}$, the mass of the charged Higgs bosons;
- m_{χ} , the fermionic DM particle mass;
- y_{χ} , the DM Yukawa coupling;
- $\tan \beta$, the ratio of the vacuum expectation values of the two Higgs doublets;
- α , the mixing angle between the two neutral scalars in the 2HDM model;
- θ , the mixing angle between the two pseudoscalars; and
- λ_3 , the quartic coupling of the Higgs potential, and λ_{1P} and λ_{2P} , the quartic couplings of the pseudoscalar potentials.

 \succ The Z_B' and Z'2HDM model are used in these studies. JHEP10(2021)013 JHEP10(2017)180

- Analysis strategy(ATLAS):
 - $E_{\gamma}/m_{\gamma\gamma} > 0.35/0.25$,
 - $E_T^{miss} > 90 \text{ GeV}$,
 - ΔE_T^{miss} < 30 GeV,
 - $105 < m_{\gamma\gamma} < 160 \text{ GeV}$

- Analysis strategy(CMS):
 - $p_T/m_{\gamma\gamma} > 0.5/0.25$,
 - $E_T^{miss} > 105 \text{ GeV}$,
 - $p_{T_{VV}} > 90 \text{ GeV}$,
 - $105 < m_{\nu\nu} < 180 \text{ GeV}$