Representation of fermions in Pati-Salam model

De-Sheng Li
lideshengjy@126.com
Hunan Institute of Engneering
[arXiv: 1412.2578, 2011.14362]

February 12, 2023

We thank Hong-Fei Zhang, Zhao li, Cai-Dian Lv, Ming Zhong, YongChang Huang, Jun-Bao Wu and Chao-Guang Huang for valuable discussions and guidances.

Contents

Motivation

Geometry and Lagrangian

Flat space-time limits and phenomena

Summary

Contents

Motivation

Geometry and Lagrangian

Flat space-time limits and phenomena

Summary

Pure geometry philosophy for fundamental physics

Geometry is a logic system.

Geometry background of General Relativity (GR) and Standard Model of particle physics (SM)

Figure 1: Geometry background of GR is curved, smooth manifold, pseudo-Riemannian manifold [M. Fecko, Differential geometry and Lie groups for physicists, (2006)] (more precisely, Lorentzian manifold). The gravitational field is determined by the metric of manifold.

Figure 2: Geometry background of SM is very similar with the flat spacetime with G-bundle [D. Husemoller, Fibre bundles, (1966)]. The electromagnetic field, weak bosons fields, gluon bosons fields are originated from the principal G-bundle connections. Leptons, quarks are originated from the sections of associated bundle. geometry background of Yang-Mills theory in curved space-time

Figure 3: After long time research, we find that "square root metric" Lorentz manifold not only with metric, but also equipped with $U\left(4^{\prime}\right) \times U(4)$-bundle at the same time. This geometry might give intrinsic geometrical interpretation to all the fields being observed.

Square root something usual leads to unusual

$$
\sqrt{-1}=i
$$

$$
\begin{aligned}
\sqrt{\text { Klein }- \text { Gordon equation }} & \Rightarrow \text { Dirac equation } \\
\sqrt{\text { Metric } g} & \Rightarrow ?
\end{aligned}
$$

Contents

Motivation

Geometry and Lagrangian

Flat space-time limits and phenomena

Summary

Metric

- Riemannian manifold is described by metric

$$
\begin{equation*}
g(x)=-g_{\mu \nu}(x) d x^{\mu} \otimes d x^{\nu}, g_{\mu \nu}(x)=g_{\nu \mu}(x), \operatorname{det}\left(g_{\mu \nu}(x)\right) \neq 0 \tag{2.1}
\end{equation*}
$$

- The inverse metric is defined

$$
\begin{equation*}
g^{-1}(x)=-g^{\mu \nu}(x) \partial_{\mu} \partial_{\nu},\left\langle\partial_{\nu}, d x^{\mu}\right\rangle=\delta_{\nu}^{\mu} \tag{2.2}
\end{equation*}
$$

- And it can be described by orthonormal frame formalism as

$$
\begin{equation*}
g^{-1}(x)=-\eta^{a b} \theta_{a}(x) \theta_{b}(x) \tag{2.3}
\end{equation*}
$$

- Here orthonormal frame $\theta_{a}(x)=\theta_{a}^{\mu}(x) \partial_{\mu}$ describes gravitational field.

Square root metric

- Similar with square root Klein-Gordon equation gives us Dirac equation, is there any explicit mathematic formulas for square root inverse metric?

$$
\begin{equation*}
\sqrt{g^{-1}(x)} \Rightarrow ? \tag{2.4}
\end{equation*}
$$

- Similar ideas have "Kaluze-Klein theory without extra dimensions: curved Clifford space" [M. Pavsic, Phys. Lett. B 614, 85-95 (2005)], etc.

Square root metric

- Similar with square root Klein-Gordon equation gives us Dirac equation and Dirac fermions, after ten years researching, we write an explicit mathematic formula for square root inverse metric

$$
\begin{equation*}
\sqrt{g^{-1}(x)} \Rightarrow \tilde{l}(x), \quad l(x) \tag{2.5}
\end{equation*}
$$

with

$$
\begin{equation*}
g^{-1}(x)=\frac{1}{4} \operatorname{tr}[\tilde{l}(x) l(x)], \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& l(x)=i \gamma^{0} \gamma^{a} \theta_{a}(x) \tag{2.7}\\
& \tilde{l}(x)=i \gamma^{a} \gamma^{0} \theta_{a}(x) \tag{2.8}
\end{align*}
$$

Square root metric

- The definition of Dirac matrices is

$$
\begin{equation*}
\gamma^{a} \gamma^{b}+\gamma^{b} \gamma^{a}=2 \eta^{a b} I_{4 \times 4}, \tag{2.9}
\end{equation*}
$$

where $\eta^{a b}=\operatorname{diag}(1,-1,-1,-1)$.

- The Hermiticity conditions for Dirac matrices can be chosen

$$
\begin{equation*}
\gamma^{a} \gamma^{b \dagger}+\gamma^{b \dagger} \gamma^{a}=2 I^{a b} I_{4 \times 4} \tag{2.10}
\end{equation*}
$$

where $I^{a b}=\operatorname{diag}(1,1,1,1)$.

Square root metric

- The definition of Dirac matrices has $U(4)$ rotation freedom

$$
\begin{equation*}
\gamma^{a \prime}=\Psi^{\dagger} \gamma^{a} \Psi, \quad \Psi \in U(4) \tag{2.11}
\end{equation*}
$$

such that $\gamma^{a \prime}$ still Dirac matrices.

- Then, the entity l can be rewriten as

$$
\begin{array}{r}
l(x)=i \gamma^{0} \gamma^{a}(x) \theta_{a}(x)=i \bar{\Psi} \gamma^{a} \Psi \theta_{a}(x) \\
=i \bar{\Psi}_{j} \gamma^{a} \Psi_{i} \theta_{a}(x) e_{j}^{\dagger} \otimes e_{i} \theta_{a}(x) \tag{2.12}
\end{array}
$$

where $\operatorname{tr}\left(e_{j}^{\dagger} \otimes e_{i}\right)=e_{i} e_{j}^{\dagger}=\delta_{i j}$. One simple choice of e_{i} is

$$
\begin{array}{ll}
e_{1}=\left(e^{i \theta_{1}}, 0,0,0\right), & e_{2}=\left(0, e^{i \theta_{2}}, 0,0\right) \\
e_{3}=\left(0,0, e^{i \theta_{3}}, 0\right), & e_{4}=\left(0,0,0, e^{i \theta_{4}}\right) \tag{2.13b}
\end{array}
$$

- Direct calculation shows that

$$
\begin{equation*}
l^{\dagger}(x)=-l(x) \tag{2.14}
\end{equation*}
$$

Connections and gauge field

- Coefficients of affine connections on coordinates, coefficients of spin connections on orthonormal frame [S. Chern, W. Chen, and K. Lam, Lectures on differential geometry, (1999)] and gauge fields on $U\left(4^{\prime}\right) \times U(4)$-bundle are defined as follows

$$
\begin{align*}
\nabla_{\mu} \partial_{\nu} & =\Gamma_{\nu \mu}^{\rho}(x) \partial_{\rho}, \tag{2.15a}\\
\nabla_{\mu} \theta_{a}(x) & =\Gamma_{a \mu}^{b}(x) \theta_{b}(x), \tag{2.15b}\\
\nabla_{\mu}\left(\gamma^{0} \gamma^{a}\right) & =i\left[V_{\mu}(x) \gamma^{0} \gamma^{a}-\gamma^{0} \gamma^{a} V_{\mu}(x)\right], \tag{2.15c}\\
\nabla_{\mu} e_{i}^{\dagger} & =i W_{\mu i j}(x) e_{j}^{\dagger}, \tag{2.15~d}
\end{align*}
$$

- The relation between coefficients of affine connections on coordinates and coefficients of spin connections on orthonormal frame is found

$$
\begin{equation*}
\Gamma_{a \mu}^{b}(x) \theta_{b}^{\rho}(x)=\partial_{\mu} \theta_{a}^{\rho}(x)+\theta_{a}^{\nu}(x) \Gamma_{\nu \mu}^{\rho}(x) \tag{2.16}
\end{equation*}
$$

Connections and gauge field

- The Hermiticity conditions for gauge fields are

$$
\begin{equation*}
V_{\mu}^{\dagger}(x)=V_{\mu}(x), \quad W_{\mu i j}^{*}(x)=W_{\mu j i}(x) . \tag{2.17}
\end{equation*}
$$

- The gauge field $V_{\mu}(x)$ and $W_{\mu i j}(x)$ can be decomposed by the generators of the $U(4)$ group

$$
\begin{equation*}
V_{\mu}(x)=V_{\mu}^{\alpha}(x) \mathcal{T}^{\alpha}, \quad W_{\mu i j}(x)=W_{\mu}^{\alpha}(x) \mathcal{T}_{i j}^{\alpha} \tag{2.18}
\end{equation*}
$$

where $\alpha=0,1,2, \cdots, 15$ and

$$
\begin{equation*}
V_{\mu}^{\alpha *}=V_{\mu}^{\alpha}, \quad W_{\mu}^{\alpha *}=W_{\mu}^{\alpha} . \tag{2.19}
\end{equation*}
$$

Equation and Lagrangian

- A equation satisfy $U\left(4^{\prime}\right) \times U(4)$ gauge invariant, locally Lorentz invariant and generally covariant principles is constructed

$$
\begin{equation*}
\operatorname{tr} \nabla l(x)=0 \tag{2.20}
\end{equation*}
$$

- This equation describes a manifold parallel transporting itself.
- Eliminate index x, the explicit formula of equation (2.20) is

$$
\begin{aligned}
{\left[\left(i \partial_{\mu} \bar{\Psi}_{i}-\bar{\Psi}_{i} \tilde{V}_{\mu}+W_{\mu i j} \bar{\Psi}_{j}\right) \gamma^{a} \Psi_{i}+\bar{\Psi}_{i} \gamma^{a}\right.} & \left(i \partial_{\mu} \Psi_{i}+V_{\mu} \Psi_{i}-\Psi_{j} W_{\mu j i}\right) \\
& \left.+i \bar{\Psi}_{i} \gamma^{b} \Psi_{i} \Gamma^{a}{ }_{b \mu}\right] \theta_{a}^{\mu}=0 .(2.21
\end{aligned}
$$

- We define a Lagrangian

$$
\begin{align*}
\mathcal{L} & =\bar{\Psi}_{i} \gamma^{a}\left(i \partial_{\mu} \Psi_{i}+V_{\mu} \Psi_{i}-\Psi_{j} W_{\mu j i}\right) \theta_{a}^{\mu}+\bar{\Psi}_{i} \phi \Psi_{i},(2.22 \mathrm{a}) \\
\phi & =\frac{i}{2} \gamma^{b} \Gamma^{a}{ }_{b \mu} \theta_{a}^{\mu} . \tag{2.22b}
\end{align*}
$$

One find that Lagrangian (2.22a) have relation with (2.20)

$$
\begin{equation*}
\operatorname{tr} \nabla l(x)=\mathcal{L}-\mathcal{L}^{\dagger} \tag{2.23}
\end{equation*}
$$

Lagrangian and equation

- If equation (2.20) being satisfied, Lagrangian (2.22a) is Hermitian

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}^{\dagger} \tag{2.24}
\end{equation*}
$$

- Curvature tensor and gauge field strength tensors are defined as follows

$$
\begin{aligned}
& R_{b \mu \nu}^{a}=\partial_{\mu} \Gamma_{b \nu}^{a}-\partial_{\nu} \Gamma_{b \mu}^{a}+\Gamma_{b \nu}^{c} \Gamma_{c \mu}^{a}-\Gamma_{b \mu}^{c} \Gamma_{c \nu}^{a}, \\
& H_{\mu \nu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}-i V_{\mu} V_{\nu}+i V_{\nu} V_{\mu}, \\
& F_{\mu \nu i j}=\partial_{\mu} W_{\nu i j}-\partial_{\nu} W_{\mu i j}-i W_{\mu i k} W_{\nu k j}+i W_{\nu i k} W_{\mu k j},(2.25 \mathrm{~b}) \\
&
\end{aligned}
$$

where $R_{a b \mu \nu}=-R_{b a \mu \nu}$ if $\nabla g=0$ and

$$
\begin{equation*}
H_{\mu \nu}^{\dagger}=H_{\mu \nu}, \quad F_{\mu \nu i j}^{*}=F_{\mu \nu j i} . \tag{2.26}
\end{equation*}
$$

Curvature, gauge field strength tensor and identity

- There is Yang-Mills [C. N. Yang and R. L. Mills, Phys. Rev. 96, 191-195 (1954)] Lagrangian for gauge bosons in this model

$$
\begin{equation*}
\mathcal{L}_{Y}=\frac{-1}{2} \operatorname{tr}\left(H^{\mu \nu} H_{\mu \nu}\right)-\frac{\zeta}{2} F_{i j}^{\mu \nu} F_{\mu \nu j i} \tag{2.27}
\end{equation*}
$$

where $\zeta \in \mathbb{R}$ is constant.

Lagrangian of Gravity

- For gravity, Einstein-Hilbert action be showed as follows

$$
\begin{equation*}
S=\int R \omega \tag{2.28}
\end{equation*}
$$

where R is Ricci scalar curvature, $\omega=\sqrt{-g} d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}$ is volume form. The variation of action give us Einstein tensor.

- The Einstein equation is

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\kappa T_{\mu \nu} \tag{2.29}
\end{equation*}
$$

- Einstein say: "The reason for the formalism of left hand is to let its divergence identically zero in the meaning of covariant derivative. The right hand of equation are the sum up of all the things still problems in the meaning of field theory."

Lagrangian of Gravity

- After defining $\nabla^{2}=\nabla_{[\mu} \nabla_{\nu]} d x^{\mu} \wedge d x^{\nu}$, the equation of motion for this gravity theory is constructed

$$
\begin{equation*}
\operatorname{tr} \nabla^{2}[\tilde{l}(x) l(x)]=0 . \tag{2.30}
\end{equation*}
$$

- This equation (2.30) is obviously $U\left(4^{\prime}\right) \times U(4)$ gauge invariant, locally Lorentz invariant and generally covariant. The explicit formula of equation (2.30) is

$$
R \Psi_{i}^{\dagger} \Psi_{i}=i\left(F_{a b i j} \Psi_{j}^{\dagger}\left(\gamma^{a} \gamma^{b}-\gamma^{b \dagger} \gamma^{a \dagger}\right) \Psi_{i}-\Psi_{i}^{\dagger} H_{a b}\left(\gamma^{a} \gamma^{b}-\gamma^{b \dagger} \gamma^{a \dagger}\right) \Psi_{i}\right) .
$$

- We define a Hermitian Lagrangian

$$
\begin{align*}
\mathcal{L}_{g}=R \Psi_{i}^{\dagger} \Psi_{i}- & i\left(F_{a b i j} \Psi_{j}^{\dagger}\left(\gamma^{a} \gamma^{b}-\gamma^{b \dagger} \gamma^{a \dagger}\right) \Psi_{i}\right. \\
& \left.-\Psi_{i}^{\dagger} H_{a b}\left(\gamma^{a} \gamma^{b}-\gamma^{b \dagger} \gamma^{a \dagger}\right) \Psi_{i}\right) \tag{2.31}
\end{align*}
$$

where $R \Psi_{i}^{\dagger} \Psi_{i}$ is Einstein-Hilbert action.

Total Lagrangian

- The total lagrangian for $U\left(4^{\prime}\right) \times U(4)$ Pati-Salam model in curved space-time and Einstein-Cartan gravity [W. Drechsler, Z. Phys. C 41, 197-205 (1988); M. Tecdhiolli, Universe 5, 206 (2019)] is

$$
\begin{equation*}
\mathcal{L}_{T}=\mathcal{L}+\tilde{g} \mathcal{L}_{Y M}+g \mathcal{L}_{g} \tag{2.32}
\end{equation*}
$$

where \tilde{g} and g are parameters

$$
\begin{equation*}
\tilde{g}, g \in \mathbb{R} \tag{2.33}
\end{equation*}
$$

- The sheaf [R. Harshorne, Algebraic geometry, (2013); M. Kashiwara and P. Schapira, Sheaves on manifolds, (2013)] quantization [K, Nakayama, J.Math.Phys.55,102103 (2014); A. Doring and C. Isham, J. Math. Phys. 49, 053515 (2018); C. Flori, A first course in topos quantum theory, (2013)], path integral quantization and canonical quantization of this theory are on discussions [arXiv: 2208.05942].

Contents

Motivation

Geometry and Lagrangian

Flat space-time limits and phenomena

Summary

Flat space-time limits of Pati-Salam model in curved space-time and Einstein-Cartan gravity

- The flat space-time limits version of Lagrangian \mathcal{L}_{T} is

$$
\begin{align*}
\mathcal{L}_{T-L}= & \operatorname{tr}\left[i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi+f \bar{\Psi} \gamma^{\mu} V_{\mu} \Psi-g \bar{\Psi} \gamma^{\mu} \Psi W_{\mu}+\bar{\Psi} \phi \Psi+V(\phi)\right. \\
& -\frac{1}{2} H^{\mu \nu} H_{\mu \nu}-\frac{\eta}{2} F^{\mu \nu} F_{\mu \nu}-i g F_{\mu \nu} \Psi^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu \dagger} \gamma^{\mu \dagger}\right) \Psi \\
& \left.+i f \Psi^{\dagger} H_{\mu \nu}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu \dagger} \gamma^{\mu \dagger}\right) \Psi\right] \tag{3.1}
\end{align*}
$$

where each terms are Dirac, minimal coupling, Yukawa coupling , Higgs potential, Yang-Mills and magnetic moment terms.

- Ψ, V_{μ} and W_{μ} are 4×4 matrices. Without loss of generality, we choose minimal coupling model to analyse the interaction vetexes

$$
\begin{equation*}
\mathcal{L}_{\text {Min }}=\operatorname{tr}\left[i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi+f \bar{\Psi} \gamma^{\mu} V_{\mu} \Psi-g \bar{\Psi} \gamma^{\mu} \Psi W_{\mu}\right] . \tag{3.2}
\end{equation*}
$$

Flat space-time limits of Pati-Salam model in curved space-time and Einstein-Cartan gravity

- We observe that the second term in Lagrangian (3.2) is difficult to decompose due to chiral symmetry, but the third term can be decomposed

$$
\begin{array}{r}
\mathcal{L}_{\text {Min }}=\operatorname{tr}\left[i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi+\sum_{\alpha=1}^{15}\left(f \bar{\Psi} \gamma^{\mu} V_{\mu}^{\alpha} T^{\alpha} \Psi-g \bar{\Psi}_{L} \gamma^{\mu} \Psi_{L} W_{\mu}^{\alpha} T^{\alpha}\right.\right. \\
\left.\left.-g \bar{\Psi}_{R} \gamma^{\mu} \Psi_{R} W_{\mu}^{\alpha} T^{\alpha}\right)\right]
\end{array}
$$

accordingly, the second term in Lagrangian (3.2) describes the $S U\left(4^{\prime}\right)$ color gauge interaction, and the third term in Lagrangian (3.2) describes the $S U(4)_{L} \times S U(4)_{R}$ chiral flavor gauge interaction.

Flat space-time limits of Pati-Salam model in curved space-time and Einstein-Cartan gravity

- Lagrangian (3.1) is invariant under local gauge transformations of color space and flavor space rotation \tilde{U} and U, respectively,

$$
\begin{equation*}
\Psi^{\prime}=\tilde{U} \Psi U \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{U} \in U\left(4^{\prime}\right), \quad U \in U(4) \tag{3.4}
\end{equation*}
$$

such that

$$
\begin{align*}
\gamma^{\mu \prime} & =\tilde{U} \gamma^{\mu} \tilde{U}^{\dagger} \Rightarrow \gamma^{0 \prime} \gamma^{\mu \prime}=\tilde{U} \gamma^{0} \gamma^{\mu} \tilde{U}^{\dagger} \tag{3.5}\\
V_{\mu}^{\prime} & =\tilde{U} V_{\mu} \tilde{U}^{\dagger}-\left(\partial_{\mu} \tilde{U}\right) \tilde{U}^{\dagger} \tag{3.6}\\
W_{\mu}^{\prime} & =U^{\dagger}\left(\partial_{\mu} U\right)-U^{\dagger} W_{\mu} U \tag{3.7}
\end{align*}
$$

Representation of fermions

- Then the column of the fermion matrix Ψ corresponding to color and the row corresponding to flavor, and transfer as $U\left(4^{\prime}\right) \times U(4)$ fundamental representation.
- So, fermions are filled into $S U(4)$ fundamental representation naturally as Table 1. In Pati-Salam model,"lepton number as the fourth color" [J. C. Pati and A. Salam, Phys.Rev. D10, 275 (1974)].

Table 1: Fermions are filled into $S U(4)$ fundamental representation $\mathbf{4} \otimes \mathbf{6}$.

$S U(4)$			6					
4		R						
	Quarks	G	u	c	t	d	s	b
		B						
	Lepton		e	μ	τ	ν_{e}	ν_{μ}	ν_{τ}

- Anti-fermions are filled into $\overline{4} \otimes \mathbf{6}$ similarly.

Representation of fermions

Figure 4: Weight diagram of $S U(4)$ fundamental representation $\mathbf{4} \otimes \mathbf{6}$. Representation $\mathbf{4}=\mathbf{3}+\mathbf{1 , 3}$ is 3 kinds of color, red, green and blue, $\mathbf{1}$ is the lepton number. Representation 6 gives us 6 flavor of quarks and leptons. 6 flavors devided to 3 generations, I, II and III, each generation has 2 kinds of quarks or leptons.

Representation of fermions

- An explicit fermions representation in this model might be

$$
\Psi=\left(\begin{array}{cccc}
\sqrt{2} u_{R} & \sqrt{2} c_{R} & \sqrt{2} t_{R} & d_{R}^{\prime} \tag{3.8}\\
\sqrt{2} u_{G} & \sqrt{2} c_{G} & \sqrt{2} t_{G} & d_{G}^{\prime} \\
\sqrt{2} u_{B} & \sqrt{2} c_{B} & \sqrt{2} t_{B} & d_{B}^{\prime} \\
e & \mu & \tau & \nu^{\prime}
\end{array}\right),
$$

where u, c, t and d^{\prime} are quarks fields, e, μ, τ and ν^{\prime} are electron, mu , tau and neutrinos fields.

- The corresponding fermions electric charges of (3.8) are

$$
Q_{\Psi}=\left(\begin{array}{cccc}
2 / 3 & 2 / 3 & 2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3 & 2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3 & 2 / 3 & -1 / 3 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

- The quarks states like $|d\rangle,|s\rangle,|b\rangle$ and neutrinos states $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are eigen states of the Lagrangian.

Gauge bosons

- V_{μ}^{α} and $W_{\mu}^{\alpha}(\alpha=0,1, \cdots, 15)$ are gauge bosons fields.
- The interactions related with W_{μ}^{α} always preserves the possibility of chiral symmetry breaking such that the gauge group can decomposed to $U\left(4^{\prime}\right) \times U(4)_{L} \times U(4)_{R}$, where $U\left(4^{\prime}\right)$ is color group and $U(4)_{L} \times U(4)_{R}$ is chiral flavor group.
- The V_{μ}^{0} is dark photon [arXiv: 1311.0029; B. Holdom, Phys. Let. B. 166 (2):196-198 (1986)] and W_{μ}^{0} is Fiona (芳) particle.
- The left over part gauge group is a Pati-Salam gauge group $S U\left(4^{\prime}\right) \times$ $S U(4)_{L} \times S U(4)_{R}$ and the $S U\left(4^{\prime}\right)$ can be decomopsed as follow

$$
\begin{equation*}
S U\left(4^{\prime}\right)=S U\left(3^{\prime}\right) \oplus U\left(1^{\prime}\right)+U_{X^{+}}+U_{X^{-}} . \tag{3.9}
\end{equation*}
$$

Gauge bosons,Color $S U\left(4^{\prime}\right)$ processes

- The $S U\left(3^{\prime}\right)$ is the gauge group of quantum chramodynamics (QCD) and the corresponding gauge bosons $V_{\mu}^{\alpha}(\alpha=1,2 \cdots, 8)$ are gluons.
- The $U\left(1^{\prime}\right)$ is electro-magnetic interaction gauge group and corresponding gauge boson V_{μ}^{15} is photon γ.

Figure 5: The fermion-anti-fermion-boson interaction vertexes of photon.

Gauge bosons,Color $S U\left(4^{\prime}\right)$ processes

- The $X^{ \pm C}$ particles transport semi-leptonic processes and

$$
\begin{equation*}
X^{ \pm C}=V_{\mu}^{8+C} \pm i V_{\mu}^{9+C} \tag{3.10}
\end{equation*}
$$

Figure 6: The fermion-anti-fermion-boson interaction vertexes of X bosons. All three external legs are momentum in.

- The electric charge of X^{+C} and X^{-C} are $\frac{1}{3}$ and $-\frac{1}{3}$.

Gauge bosons,Color $S U\left(4^{\prime}\right)$ processes

- The representation (filling scheme) of matrix V_{μ} might be

$$
V_{\mu}=\left(\begin{array}{cccc}
G_{\mu}^{R R}+V_{\mu}^{15} & G_{\mu}^{R G} & G_{\mu}^{R B} & X_{\mu}^{-R} \tag{3.11}\\
G_{\mu}^{G R} & G_{\mu}^{G G}+V_{\mu}^{15} & G_{\mu}^{G B} & X_{\mu}^{-G} \\
G_{\mu}^{B R} & G_{\mu}^{B G} & G_{\mu}^{B B}+V_{\mu}^{15} & X_{\mu}^{-B} \\
X_{\mu}^{+R} & X_{\mu}^{+G} & X_{\mu}^{+B} & -3 V_{\mu}^{15}
\end{array}\right)
$$

where G_{μ} are gluons and V_{μ}^{15} are photon. The corresponding electric charge matrix of V_{μ} is

$$
Q_{V}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 / 3 \tag{3.12}\\
0 & 0 & 0 & -1 / 3 \\
0 & 0 & 0 & -1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

Gauge bosons, Chiral flavor $S U(4)_{L} \times S U(4)_{R}$ processes

- The chiral gauge group $S U(4)_{L, R}$ can be decomposed as

$$
\begin{equation*}
S U(4)_{L, R}=S U(3)_{Y} \oplus U(1)_{Z}+U_{W^{+}}+U_{W^{-}} \tag{3.13}
\end{equation*}
$$

and related gauge bosons $W_{\mu}^{\alpha}(\alpha=1,2, \cdots, 15)$ contain weak bosons $W^{ \pm}$and Z

$$
\begin{align*}
W_{\mu}^{ \pm} & =W_{\mu}^{9} \pm i W_{\mu}^{10}=W_{\mu}^{11} \pm i W_{\mu}^{12}=W_{\mu}^{13} \pm i W_{\mu}^{14},(3.14 \mathrm{a}) \\
Z_{\mu} & =W_{\mu}^{3}=W_{\mu}^{8}=W_{\mu}^{15} . \tag{3.14b}
\end{align*}
$$

Figure 7: The fermion-anti-fermion-boson interaction vertexes of Z bosons.

Gauge bosons, Chiral flavor $S U(4)_{L} \times S U(4)_{R}$ processes

Figure 8: The fermion-anti-fermion-boson interaction vertexes of W bosons. All three external legs are momentum in.

Gauge bosons, Chiral flavor $S U(4)_{L} \times S U(4)_{R}$ processes

- The left over gauge bosons are Y^{1}, Y^{2} and Y_{*}^{1}, Y_{*}^{2} with 0 eletric charge.

Figure 9: The gauge bosons $Y^{1}, Y^{2}, Y_{*}^{1}, Y_{*}^{2}$ transport fermion-anti-fermion-boson interaction vertexes about beyond-SM flavor changing neutral currents (FCNCs). All three external legs are momentum in.

Gauge bosons, Chiral flavor $S U(4)_{L} \times S U(4)_{R}$ processes

- The W_{μ} matrix might be

$$
W_{\mu}=\frac{1}{2}\left(\begin{array}{cccc}
\zeta_{1} Z_{\mu} & Y_{\mu}^{1} & Y_{\mu}^{2} & W_{\mu}^{-} \tag{3.15}\\
Y_{* \mu}^{1} & \zeta_{2} Z_{\mu} & Y_{\mu}^{1} & W_{\mu}^{-} \\
Y_{* \mu}^{2} & Y_{* \mu}^{1} & \zeta_{3} Z_{\mu} & W_{\mu}^{-} \\
W_{\mu}^{+} & W_{\mu}^{+} & W_{\mu}^{+} & \zeta_{4} Z_{\mu}
\end{array}\right)
$$

The corresponding electric charge matrix of W_{μ} is

$$
Q_{W}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \tag{3.16}\\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Gauge bosons

- The masses of $X^{ \pm}$and $Y^{1}, Y^{2}, Y_{*}^{1}, Y_{*}^{2}$ must be superheavy from the restrictions of experimental data.

Figure 10: Weight diagram of $S U(4)$ adjoint representation and corresponding gauge bosons. The decomposition of $S U(4)$ adjoint representation is $\mathbf{1 5}=\mathbf{8} \oplus \mathbf{1}+\mathbf{3}+\mathbf{3}^{*}$. (a) The wight diagram of $V_{\mu}^{\alpha}(\alpha=1,2, \cdots, 15)$ related gauge bosons. (b) The wight diagram of $W_{\mu}^{\alpha}(\alpha=1,2, \cdots, 15)$ related gauge bosons.

Contents

Motivation
 Geometry and Lagrangian

Flat space-time limits and phenomena

Summary

Summary

- This theory unify fermions, gauge bosons, Higgs and gravitational fields into a pair of "entities", square root metric

$$
\begin{equation*}
\sqrt{g^{-1}(x)} \Rightarrow l(x), \quad \tilde{l}(x) \tag{4.1}
\end{equation*}
$$

and its connections.

- The interactions between fields can be derived from self-parallel transportation principle

$$
\begin{equation*}
\operatorname{tr} \nabla l(x)=0, \quad \operatorname{tr} \nabla^{2}[\tilde{l}(x) l(x)]=0 \tag{4.2}
\end{equation*}
$$

- Particles spectrum, representation of fermions and fermion-anti-fermion-boson interaction vetexes are discussed.
- Next: Sheaf quantization, path integral quantization, canonical quantization...

Thanks for your attention !

