

# High-quality Axion in the GUTs Beyond the SU(5)

Nankai University, Ning Chen

2023.02.15, @HKUST IAS (online)

based on 2106.00223 with Yutong Liu, Zhaolong Teng

# Background: GUT

- \* The grand unified theory (GUT) was first proposed by Georgi & Glashow in 1974, with SU(5) as the minimal simple Lie group to unify  $\mathcal{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ , with  $rank(\mathcal{G}_{SM}) = rank(SU(5)) = 4$ .
- \* 15 SM complex chiral fermions fit into irreps of  $\bar{\bf 5}_F$  and  ${\bf 10}_F$  in the SU(5), which are required by the gauge anomaly cancellation.
- \* There was also an SO(10) GUT by Fritzsch & Minkowski in 1975. This is automatically anomaly-free, and its irrep of  ${\bf 16_F}$  even includes a  $\nu_R$ .

# Background: GUT

| Topics                   | Authors                       | Publications | Date |
|--------------------------|-------------------------------|--------------|------|
| Fourth color unification | Pati, Salam                   | [5]          | 1974 |
| SU(5) GUT                | Georgi, Glashow               | [6]          | 1974 |
| SO(10) GUT               | Fritzsch, Minkowski           | [7]          | 1975 |
| Peccei-Quinn mechanism   | Peccei, Quinn                 | [8]          | 1977 |
| Seesaw mechanism         | Yanagida                      | [9]          | 1979 |
|                          | Gell-Mann, Ramond, Slansky    | [10]         | 1979 |
| KSVZ axion               | Kim                           | [11]         | 1979 |
|                          | Shifman, Vainshtein, Zakharov | [12]         | 1980 |
| SU(N+4) global symmetry  | Dimopoulos, Raby, Susskind    | [13]         | 1980 |
| SUSY SU(5) GUT           | Dimopoulos, Georgi            | [14]         | 1981 |
| DFSZ axion               | Zhitnitsky                    | [15]         | 1980 |
|                          | Dine, Fischler, Srednicki     | [16]         | 1981 |
| Axion in SU(5) GUT       | Wise, Georgi, Glashow         | [17]         | 1981 |
| Leptogenesis             | Fukugita, Yanagida            | [18]         | 1986 |
|                          |                               | . ,          |      |

**Table 1:** Collections of the major theoretical advances in the GUT and some related BSM physical issues listed in chronological order.

# Background: GUT

- \* Over 40 yrs since the SU(5) and SO(10), there is convincing evidence that the BSM new physics should be put forth to address:
  - (1) Strong CP problem, e.g., the Peccei-Quinn (PQ) mechanism and the PQ quality
  - (2) neutrino masses through the seesaw mechanism
  - (3) Baryon asymmetry through the baryogenesis/leptogenesis
  - (4) Dark matter
- \* The simplest SU(5), SO(10) and their varieties, do not seem to include all necessary ingredients for BSM. One often needs to put new physical ingredients into the SU(5) && SO(10) GUTs by hand.

# Background: Strong CP

- \* The strong CP problem, a topological term for the QCD vacuum  $\mathcal{L}_{\theta} = \theta \frac{\alpha_{3c}}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu\,a}, \text{ and experimentally from the neutron EDM:}$   $|\bar{\theta}| \lesssim 10^{-10} \text{ , with } \bar{\theta} = \theta + \arg\det M_q, \text{ very different from the } \mathcal{O}(1)$  expectation of  $\theta$  parameter.
- \* PQ mechanism: to replace  $\theta$  by a periodic pseudo-scalar field  $a \to a + 2\pi f_a$ ,  $f_a$  is known as the axion decay constant. There is a classical window of  $10^8 \, {\rm GeV} \lesssim f_a \lesssim 10^{12} \, {\rm GeV}$ .
- \* Axion induced potential:  $V_{\rm QCD} = \Lambda_{\rm QCD}^4 (1 \cos(a/f_a))$ .
- \* Invisible axion models such as KSVZ and DFSZ, axion comes from a complex && SM-singlet scalar field  $\Phi = \frac{1}{\sqrt{2}}(v_a + \rho_a) \exp(ia/f_a)$ .

# Background: PQ quality

- \* PQ quality:  $U(1)_{PQ}$  symmetry (expressed in terms of  $\Phi$ ) is global and put in by hand, and the gravity does not respect global symmetries. It can induce a general operator of  $\mathcal{O}_{PQ}^{d=2m+n} = k \frac{|\Phi|^{2m} \Phi^n}{M_{pl}^{2m+n-4}} + H.c.$  ['92 Kamionkowski, March-Russell, and etc.]  $\Delta PQ = n$  with  $PQ(\Phi) = 1$ .
- \* The  $\mathcal{O}_{\rm PQ}^{d=2m+n}$  shifts the  $V_{\rm QCD}$  minima  $|\bar{\theta}|=|\langle a\rangle/f_a|\lesssim 10^{-10}$
- \* if  $|k| \sim 10^{-2}$  and 2m+n=5,  $\Rightarrow f_a \lesssim 10\,\mathrm{GeV}$ , ruled out, else if  $f_a \sim 10^{12}\,\mathrm{GeV}$  and 2m+n=5,  $\Rightarrow |k| \lesssim 10^{-55}$ , very finetuned.
- \* NB, the renormalizable operators with  $2m + n \le 4$  are in principle possible. The discussion above considered a general SM-singlet  $\Phi$ .

# Global Symmetries

- \* The usual wisdom of a high-quality PQ is to have the  $U(1)_{PQ}$  as an emergent global symmetry.
- \* The chiral gauge theory w.o. Unification: to put another confining theory with the SM, e.g.  $SU(5)\otimes \mathcal{G}_{SM}$  by Gavela, Ibe, Quilez, and Yanagida [1812.08174].
- \* In 1980, Dimopoulos-Raby-Susskind (DRS) studied a strongly-interacting theory: an anomaly-free SU(N+4) chiral gauge theory with N anti-fundamental fermions and one rank-2 anti-symmetric fermion, and it has  $\mathcal{G}_{\mathrm{DRS}} = \mathrm{SU}(N) \otimes \mathrm{U}(1)$  ,  $N \geq 2$  . The DRS symmetry is determined by the anomaly-free condition.

#### Our results:

- \* We start from the minimal SU(6), and identify  $\mathcal{G}_{DRS} = SU(2)_F \otimes U(1)_{PQ}$ .
- \* Our finding is that a *non-minimal* SUSY SU(6) GUT with its minimal fermion && Higgs setup can lead to:
  - (1) Automatic high-quality PQ symmetry breaking @  $10^8\,\mathrm{GeV} \lesssim f_a \lesssim 10^{10}\,\mathrm{GeV}$ , with an extended symmetry of  $\mathcal{G}_{331} = \mathrm{SU}(3)_c \otimes \mathrm{SU}(3)_L \otimes \mathrm{U}(1)_N$
  - (2) Automatic KSVZ vector-like quarks  $m_D \sim f_a$ , with fixed electric charge of -1/3.
  - (3) A cosmological-safe axion model, no DW formation

### The SU(6) model

### The SU(6) model

- \* The minimal anomaly-free SU(6) has fermions of:  $2 \times \bar{\mathbf{6}}_{\mathbf{F}} \oplus \mathbf{15}_{\mathbf{F}}$
- \* How to break the SU(6) to the  $\mathcal{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ ? The Georgi-Glashow SU(5) is a subgroup of the SU(6), while the direct breaking to the SU(5) is unwelcome. The sequential breaking of  $SU(5) \rightarrow \mathcal{G}_{SM}$  leads to the proton decays with lower mass scale, hence faster decay rate.
- \* Alternative pattern is:  $\mathrm{SU}(6) \to \mathcal{G}_{331} \to \mathcal{G}_{\mathrm{SM}}$ , with  $\mathcal{G}_{331} = \mathrm{SU}(3)_c \otimes \mathrm{SU}(3)_L \otimes \mathrm{U}(1)_N$ . This is achievable with an adjoint Higgs of  $\mathbf{35_H}$  at the GUT scale (1974 Ling-Fong Li).

# The SU(6) Higgs sector

- \* An adjoint Higgs of  $35_{H}$  at the GUT scale.
- \* There is a brute-force method: to perform the tensor products of all SU(6) fermions  $\bar{6}\otimes \bar{6}=\overline{15}\oplus \overline{21}$ ,  $\bar{6}\otimes 15=6\oplus 84$ , and  $15\otimes 15=\overline{15}\oplus \overline{105}\oplus \overline{105}'$ , and include all possible Higgs fields to form gauge-invariant Yukawa couplings.
- \* Physical requirements: all SM Yukawa couplings should be reproduced  $\Rightarrow \bar{\mathbf{6}}_{\mathbf{H}}$  (for  $d^i$  and  $\ell^i$ ) and  $\mathbf{15}_{\mathbf{H}}$  (for  $u^i$ )
- \* Two  $\mathbf{\bar{6}_{H}^{I,II}}$  are needed to respect the  $SU(2)_{F}$ .
- $^*$  A  $21_{
  m H}$  is introduced for the sterile neutrino Yukawa couplings.

# The SU(6) Higgs sector

- \* The minimal Higgs sector in the SUSY model:  $\overline{6}_{H}^{\alpha=I,II}$  ,  $15_{H}$  ,  $21_{H}$  ,  $\overline{21}_{H}$  ,  $35_{H}$
- \* Hierarchies of Higgs VEVs:  $\langle \mathbf{35_H} \rangle \sim \Lambda_{\mathrm{GUT}}$ ,  $\langle \mathbf{\bar{6}_H^{II}} \rangle = v_3$ ,  $\langle \mathbf{21_H} \rangle = v_6$ ,  $v_3 \sim v_6 \sim v_{331}$   $\langle \mathbf{\bar{6}_H^{I}} \rangle = v_d = v_{\mathrm{EW}} \sin \beta$ ,  $\langle \mathbf{15_H} \rangle = v_u = v_{\mathrm{EW}} \cos \beta$   $\Lambda_{\mathrm{GUT}} \gg v_{331} \gg v_{\mathrm{EW}} = (\sqrt{2}G_F)^{-1/2} \simeq 246 \,\mathrm{GeV}$
- \*  $ar{\mathbf{6}}_{\mathbf{H}}^{\mathrm{II}}$  and  $\mathbf{21}_{\mathbf{H}}$  are responsible for the  $\mathcal{G}_{331} o \mathcal{G}_{\mathrm{SM}}$  breaking.
- $^{\ast}$  Two Higgs doublets from the  $\overline{6}_{H}^{I}$  and  $15_{H}$  are responsible for the EWSB.

# The SU(6) fermions

| SU(6)                      | $\mathcal{G}_{331}$                                         | $\mathcal{G}_{	ext{SM}}$                                                          |  |  |
|----------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| $oldsymbol{ar{6}_{F}^{I}}$ | ` 0'                                                        | $(\overline{3},1,+\frac{2}{3})^{\mathrm{I}}_{\mathbf{F}}:\underline{d_{R}^{c}}$   |  |  |
|                            | $\left[ ({f 1},{f ar 3},-{rac{1}{3}})_{f F}^{ m I}  ight]$ | $\left[ (1, 2, -1)^{\mathrm{I}}_{\mathbf{F}} : \underline{(e_L, -\nu_L)} \right]$ |  |  |
|                            |                                                             | $(1,1,0)_{\mathbf{F}}^{\mathbf{I}}:N$                                             |  |  |
| $ar{f 6}_{f F}^{ m II}$    |                                                             | $({f ar 3},{f 1},+{rac{2}{3}})^{ m II}_{f F}\ :\ D^c_R$                          |  |  |
|                            | $({f 1},{f ar 3},-{1\over 3})^{ m II}_{f F}$                | $(1,2,-1)_{\mathbf{F}}^{\mathrm{II}}:(e_L',-\nu_L')$                              |  |  |
|                            |                                                             | $(1,1,0)_{\mathbf{F}}^{\mathrm{II}}:N_{\cdot\cdot\cdot}'$                         |  |  |
| $15_{ m F}$                | $({f ar 3},{f 1},-{rac{2}{3}})_{f F}$                      | $(\mathbf{\bar{3}},1,-\frac{4}{3})_{\mathbf{F}}:\underline{u_{R}^{c}}$            |  |  |
|                            | $({f 1},{f ar 3},+{rac{2}{3}})_{f F}$                      | $(1,2,+1)_{\mathbf{F}}:(\nu_R^{\prime c},e_R^{\prime c})$                         |  |  |
|                            |                                                             | $({\bf 1},{\bf 1},+2)_{\bf F} : \underline{e_R^c}$                                |  |  |
|                            | $({\bf 3},{\bf 3},0)_{\bf F}$                               | $(3,2,+\frac{1}{3})_{\mathbf{F}} : \underline{(u_L,d_L)}$                         |  |  |
|                            |                                                             | $({f 3},{f 1},-{rac{2}{3}})_{f F}\ :\ {\it D}_L$                                 |  |  |

### The SU(6) Yukawa

\* The most general Yukawa in the superpotential:  $W_Y = 15_{\rm F}\bar{6}^{\rho}_{\rm F}\bar{6}^{\rho}_{\rm H} + 15_{\rm F}15_{\rm F}15_{\rm H} + \bar{6}^{\rho}_{\rm F}(i\sigma_2)_{\rho\sigma}\bar{6}^{\sigma}_{\rm F}(15_{\rm H} + 21_{\rm H})$ 

\* The PQ charge and a discrete  $\mathbb{Z}_{4\mathscr{R}}$  symmetry:

|                                                   | $ar{f 6}_{f F}^ ho$ | $15_{ m F}$ | $ar{6}_{\mathbf{H} ho}$ | $15_{\rm H}$ | $21_{\rm H}$ | $\overline{\bf 21}_{\bf H}$ | $35_{\rm H}$ |
|---------------------------------------------------|---------------------|-------------|-------------------------|--------------|--------------|-----------------------------|--------------|
| $SU(2)_F$ $U(1)_{PQ}$ $\mathbb{Z}_{4\mathcal{R}}$ |                     | 1           |                         | 1            | 1            | 1                           | 1            |
| $\mathrm{U}(1)_{\mathrm{PQ}}$                     | 1                   | 1           | -2                      | -2           | -2           | 0                           | 0            |
| $\mathbb{Z}_{4\mathcal{R}}$                       | 0                   | 0           | 2                       | 2            | 2            | 0                           | 0            |

At the UV the global  $U(1)_{PQ}[SU(6)]^2$  anomaly:  $N_{SU(6)} = 9$ 

### The SU(6) Yukawa

\* At the  $\mathcal{G}_{331} \to \mathcal{G}_{SM}$  breaking:

$$\mathbf{15_{F}}\bar{\mathbf{6}_{F}}^{II}\bar{\mathbf{6}_{H}}^{II} + H.c. \supset (\mathbf{3},\mathbf{3},0)_{F} \otimes (\bar{\mathbf{3}},\mathbf{1},+\frac{1}{3})_{F}^{II} \otimes (\mathbf{1},\bar{\mathbf{3}},-\frac{1}{3})_{H}^{II} + H.c.$$

$$(\mathbf{1},\bar{\mathbf{3}},+\frac{2}{3})_{F} \otimes (\mathbf{1},\bar{\mathbf{3}},-\frac{1}{3})_{F}^{II} \otimes (\mathbf{1},\bar{\mathbf{3}},-\frac{1}{3})_{H}^{II} + H.c.$$

$$\Rightarrow m_{D} \sim m_{e'} \sim m_{\nu'} \simeq \mathcal{O}(\nu_{331})$$

D -hadron lifetime:  $\tau_D\sim m_D^{-1}\sim\mathcal{O}(10^{-36})-\mathcal{O}(10^{-34})$  sec, Vs. the BBN constraint of  $\tau_Q\lesssim 10^{-2}\,{\rm sec}.$ 

\* 
$$\bar{\mathbf{6}}_{\mathbf{F}}^{[I]} \bar{\mathbf{6}}_{\mathbf{F}}^{[I]} 2 \mathbf{1}_{\mathbf{H}} + H.c. \supset$$

$$(\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \mathbf{6}, +\frac{2}{3})_{\mathbf{H}} + H.c.$$

$$\Rightarrow m_{N,N'} \simeq \mathcal{O}(v_{331})$$

### The SU(6) Yukawa

\* 
$$\mathbf{15}_{\mathbf{F}} \mathbf{\bar{6}}_{\mathbf{F}}^{\mathbf{I}} \mathbf{\bar{6}}_{\mathbf{H}}^{\mathbf{I}} + H.c. \supset$$

$$(\mathbf{3}, \mathbf{2}, +\frac{1}{3})_{\mathbf{F}} \otimes (\mathbf{\bar{3}}, \mathbf{1}, +\frac{2}{3})_{\mathbf{F}}^{\mathbf{I}} \otimes (\mathbf{1}, \mathbf{2}, -1)_{\mathbf{H}}^{\mathbf{I}} + H.c.$$

$$(\mathbf{1}, \mathbf{2}, -1)_{\mathbf{F}} \otimes (\mathbf{1}, \mathbf{1}, +2)_{\mathbf{F}}^{\mathbf{I}} \otimes (\mathbf{1}, \mathbf{2}, -1)_{\mathbf{H}}^{\mathbf{I}} + H.c.$$

$$\Rightarrow m_{d,\ell} \simeq \mathcal{O}(v_{\mathrm{EW}})$$

$$15_{F}15_{H} + H.c. \supset (3, 2, +\frac{1}{3})_{F} \otimes (\bar{3}, 1, -\frac{4}{3})_{F}^{I} \otimes (1, 2, +1)_{H} + H.c.$$

$$\Rightarrow m_{u} \simeq \mathcal{O}(v_{EW})$$

# The SU(6) Axion

### The SU(6) Axion

\* The physical axion field comes from:  $\mathbf{6_H^{II}} \supset (\mathbf{1},\mathbf{3},+\frac{1}{3})_H^{II} \supset \frac{v_3}{\sqrt{2}} \exp(ia_3/v_3)$ 

and 
$$21_{\text{H}} \supset (1, 6, +\frac{2}{3})_{\text{H}} \supset \frac{v_6}{\sqrt{2}} \exp(ia_6/v_6)$$

- \* To impose an orthogonality condition between the U(1)<sub>PQ</sub>  $J^{\mu}_{PQ} = q_3 v_3 (\partial^{\mu} a_3) + q_6 v_6 (\partial^{\mu} a_6) \text{ and the U}(1)_N J^{\mu}_N = \frac{1}{3} v_3 (\partial^{\mu} a_3) + \frac{2}{3} v_6 (\partial^{\mu} a_6)$  currents. Physical charge:  $q \equiv c_1 \, PQ + c_2 \, N$ .
- \* 't Hooft global anomaly matching:  $N_{{\rm SU}(3)_c}=N_{{\rm SU}(6)} \Rightarrow c_1=1.$
- \*  $a_{\text{phys}} = \cos \phi \, a_3 + \sin \phi \, a_6$ ,  $\tan \phi = \frac{v_3}{2v_6}$ .
- \* Axion decay const:  $9v_{331}^{-2} = \frac{1}{4}v_6^{-2} + v_3^{-2}$  and  $f_a = v_{331}/18$ .

# The PQ quality

\* The leading PQ-breaking operator respecting the  $SU(2)_F$  and  $\mathbb{Z}_{4\mathcal{R}}$ :

$$\mathcal{O}_{PQ}^{d=6} = \left[ \epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^c \right]^2$$
 if no  $\mathbb{Z}_{4\mathcal{R}}$ :  $\mathcal{O}_{PQ}^{d=3} = \epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^c$  is dangerous in PQ-quality.

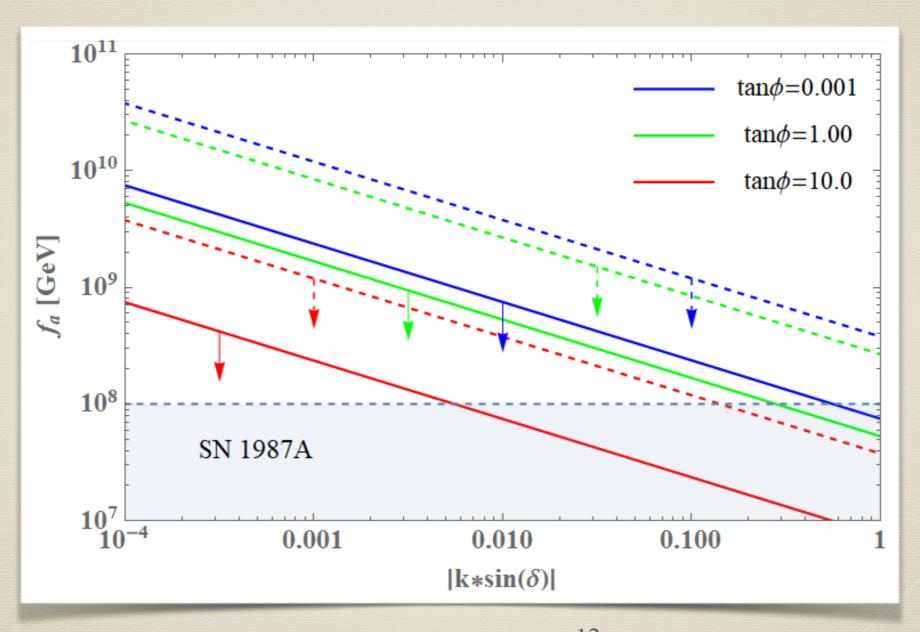
\* Axion effective potential:

$$V = \Lambda_{\text{QCD}}^4 (1 - \cos(a_{\text{phys}}/f_a)) + \frac{|k| (v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos\left(\frac{a_{\text{phys}}}{6f_a} + \delta\right)$$

\* 
$$|\bar{\theta}| \equiv \left| \frac{\langle a_{\text{phys}} \rangle}{f_a} \right| \lesssim 10^{-10} \Rightarrow f_a \lesssim \frac{3.7 \times 10^7 \cos \phi}{|k \sin(\delta)|^{1/2}} (\tan \beta + \frac{1}{\tan \beta}) \text{ GeV}$$

This is solely determined by the symmetry consideration in a GUT.

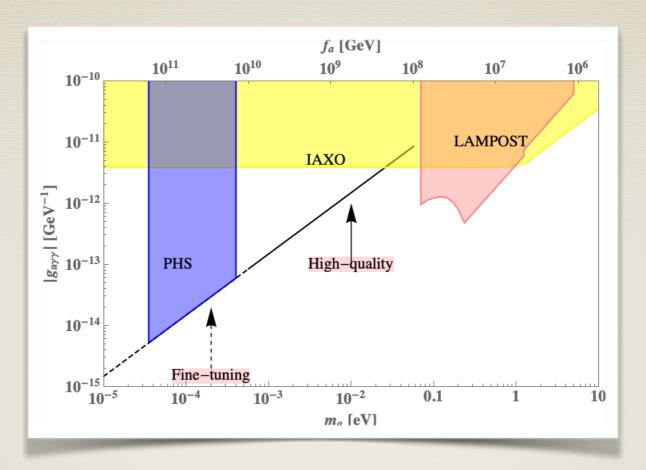
# The PQ quality



$$10^8 \, \mathrm{GeV} \lesssim f_a \lesssim 10^{10} \, \mathrm{GeV}$$

$$10^8 \,\text{GeV} \lesssim f_a \lesssim 10^{10} \,\text{GeV}$$
  $m_a = 5.70 \left(\frac{10^{12} \,\text{GeV}}{f_a}\right) \mu\text{eV} \sim (10^{-4}, 10^{-2}) \text{eV}$ 

#### The axion searches



$$g_{a\gamma\gamma} = \left(\frac{E}{N_{\text{SU(3)}_c}} - 1.92\right) \left(\frac{1.14 \times 10^{-3} \,\text{GeV}}{f_a}\right) \,\text{GeV}^{-1}$$

 $U(1)_{PQ}[U(1)_{em}]^2$  anomaly factor :  $E = \sum_{f} PQ_f \dim(\mathscr{C}_f) \operatorname{Tr} q_f^2 = -40/3$ 

$$U(1)_{PQ}[SU(3)_c]^2$$
 anomaly factor :  $N = \sum_f PQ_f T(\mathcal{R}_f) = -5$ 

#### The Axion domain walls

\* Back to the axion effective potential:

$$V = \Lambda_{\text{QCD}}^4 (1 - \cos(a_{\text{phys}}/f_a)) + \frac{|k| (v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos\left(\frac{a_{\text{phys}}}{6f_a} + \delta\right)$$

- \* The  $\cos(\frac{a_{\rm phys}}{f_a})$  term is periodic and has degenerate minima, this leads to the DWs [Kibble-Zurek mechanism].
- \* DWs are problematic in cosmology, with the energy density  $\rho_{\rm DW} \sim \sigma/t$ . The energy densities for radiation/matter:  $\rho_{\rm rad} \propto t^{-2}$ ,  $\rho_{\rm matt} \propto t^{-3/2}$ . DWs can overtake the Universe once they are formed.

#### The Axion domain walls

- \* The explicit PQ-breaking term acts as the biased term to collapse the DWs. [Vilenkin ('81), Gelmini, Gleiser, Kolb, ('89), Larsson, Sarkar, White ('96)]
- \* To have DWs collapse before formation:  $t_{\rm dec} < t_{\rm form}$ .
- \* In our case:

$$t_{\text{form}} \sim 10^2 \sec\left(\frac{10^{13} \,\text{GeV}}{v_{331}}\right) \sim \mathcal{O}(10^4) - \mathcal{O}(10^6) \sec$$

$$t_{\text{dec}} \approx \frac{\sigma_{\text{DW}}}{v_{331}^4} \sim 10^{-66} \sec\left(\frac{M_{\text{pl}} v_{331}}{v_u v_d}\right)^2 \left(\frac{10^{13} \,\text{GeV}}{v_{331}}\right)^3$$

$$\sim \mathcal{O}(10^{-8}) - \mathcal{O}(10^{-6}) \sec$$

- \* The gauge couplings:  $(\alpha_{3c}, \alpha_{3L}, \alpha_N)$  for the  $\mathcal{G}_{331}$ , and  $(\alpha_{3c}, \alpha_{2L}, \alpha_Y)$  for the  $\mathcal{G}_{SM}$ . Use  $\alpha_1 = \frac{4}{3}\alpha_N$  for the  $\mathcal{G}_{331}$  embedding into the SU(6).
- \* The RGEs of the SU(6):

$$\alpha_i^{-1}(\mu_2) = \alpha_i^{-1}(\mu_1) - \frac{b_i^{(1)}}{2\pi} \log\left(\frac{\mu_2}{\mu_1}\right) + \delta_i$$

 $\delta_i$  to account for higher-order effects: two-loop && mass threshold.

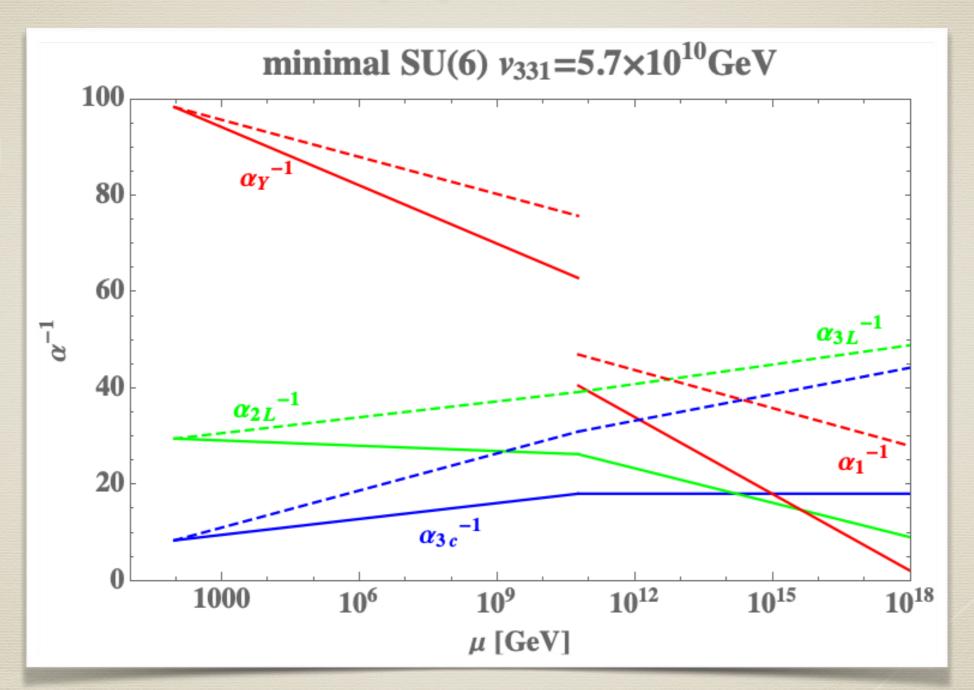
\* The matching conditions:  $\alpha_{3L}^{-1}(v_{331}) = \alpha_{2L}^{-1}(v_{331})$ ,  $\alpha_1^{-1}(v_{331}) = -\frac{1}{4}\alpha_{2L}^{-1}(v_{331}) + \frac{3}{4}\alpha_Y^{-1}(v_{331})$ .

\* non-SUSY: 
$$b_i^{(1)} = -\frac{11}{3}C_2(\mathcal{G}_i) + \frac{2}{3}\sum_f T(\mathcal{R}_f^i) + \frac{1}{3}\sum_s T(\mathcal{R}_s^i)$$
 SUSY:  $b_i^{(1)} = -3C_2(\mathcal{G}_i) + \sum_\chi T(\mathcal{R}_\chi^i)$ 

- \* The SU(6) SUSY extension can avoid the  $\mu$ -problem, since  $\bar{\bf 6}_H^{\rm I}{\bf 15}_H$  is not gauge-invariant.
- \* non-SUSY:  $m_Z \le \mu \le v_{331} : (b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-7, -3, 7)$  $v_{331} \le \mu \le \Lambda_{GUT} : (b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (-5, -\frac{11}{3}, \frac{43}{6})$

\* SUSY:

$$m_Z \le \mu \le v_{331} : (b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-3, 1, 11)$$
  
 $v_{331} \le \mu \le \Lambda_{GUT} : (b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (0, \frac{13}{2}, \frac{29}{2})$ 



 $\alpha_{3c}(m_Z)$ ,  $\alpha_{\rm em}(m_Z)$ ,  $\sin^2\theta_W(m_Z)$  as inputs

\* To impose the unification condition at the UV:

$$\alpha_{3c}^{-1}(\Lambda_{\text{GUT}}) = \alpha_{3L}^{-1}(\Lambda_{\text{GUT}}) = \alpha_{1}^{-1}(\Lambda_{\text{GUT}}) = \alpha_{\text{GUT}}^{-1}(\Lambda_{\text{GUT}})$$

\* Benchmark  $v_{331} = 5.7 \times 10^{10} \,\text{GeV}$ , we find:

$$\Lambda_{\text{GUT}} \approx 7.8 \times 10^{15} \,\text{GeV}, \quad \alpha_{\text{GUT}}^{-1}(\Lambda_{\text{GUT}}) = 18.14$$
  
 $\sin^2 \theta_W(m_Z) = 0.22923$ 

PDG: 
$$\sin^2 \theta_W(m_Z) = 0.23117$$

\* Proton lifetime:

$$\tau[p \to e^{+}\pi^{0}] \sim 10^{36} \, \text{yrs} \left(\frac{\alpha_{\text{GUT}}^{-1}}{35}\right)^{2} \left(\frac{\Lambda_{\text{GUT}}}{10^{16} \, \text{GeV}}\right)^{4}$$
  
  $\approx 9.8 \times 10^{34} \, \text{yrs}$ 

Super-Kamionkande:  $\tau_p \gtrsim 2.4 \times 10^{34} \, \mathrm{yrs}$ 

# Summary

- \* We showed a non-minimal SU(6) SUSY GUT model with the minimal setup to achieve a high-quality axion by identifying the  $U(1)_{PQ}$  as the Abelian component of the emergent global symmetries.
- \* The axion decay constant:  $10^8\,{\rm GeV} \lesssim f_a \lesssim 10^{10}\,{\rm GeV}$  w.o. much fine-tuning of the EFT parameter.
- \* The GUT spectrum contains vector-like KSVZ D-quarks, and heavy leptons && singlet neutrinos, type-I seesaw.
- \* Safe from the cosmological constraints.
- \* Higher quality with extended GUT symmetry?