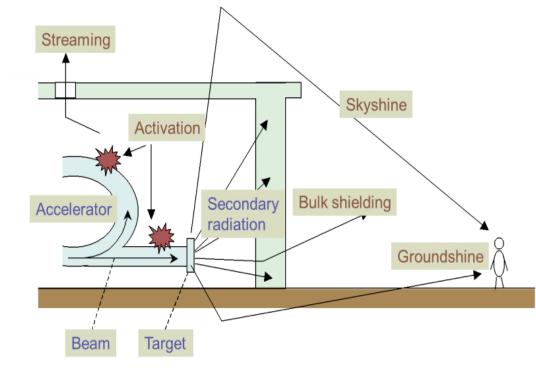
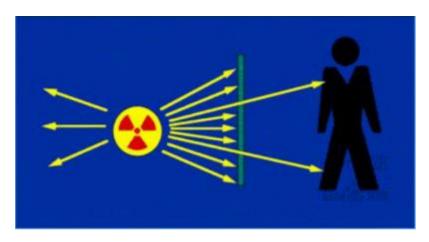


Guangyi Tang on behalf of CEPC RP Group IAS Program on High Energy Physics, 2023/2/14

OUTLINE

- Introduction
- Synchrotron radiation shielding
- Radionuclide production estimation
- Collider ring dump design
- Linac hot spots and beam losses shielding
- Summary and outlook


Simulation Using FLUKA, Flair.



RP CONCEPTS

Source:

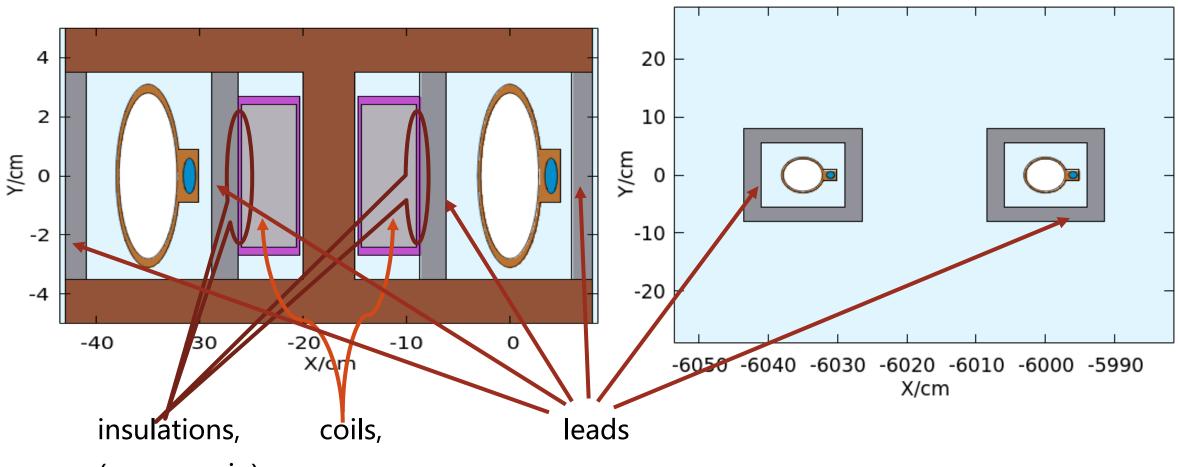
- beam, target (hot spot), synchrotron radiation,
- Radiations may damage equipment and health.
- How to estimate the damage
 - For material: absorbed dose, unit: Gray (Gy)
 - For health: ambient dose equivalent, unit: Sievert (Sv)
- How to reduce radiation damage:
 - Shorten exposure time
 - Increase distance
 - Shield
 - High Z: iron, lead, tungsten, ...
 - Hydrogen-containing: water, paraffin wax, ...

RADIOLOGICAL IMPACT

Main consideration aspects

Impact factors	Characteristics
Synchrotron radiation	Radiation damage to magnets coils; Over heat load to ventilation system; Formation of ozone and nitrogen oxides in the air; Slightly activation to the material around;
Random beam loss	Cause secondary radiation inside the tunnel; Determine the bulk shielding thickness;
Hot spots	MDI, Collimation locations, collider/linac dumps, injection/extraction points;
Radiological impact on environment	Dose from stray radiation emitted during machine running Radionuclides in the cooling water, underground water, tunnel air, soil. Radioactivity analysis for the solid components and waste
Machine protection	Active/passive protection

OUTLINE

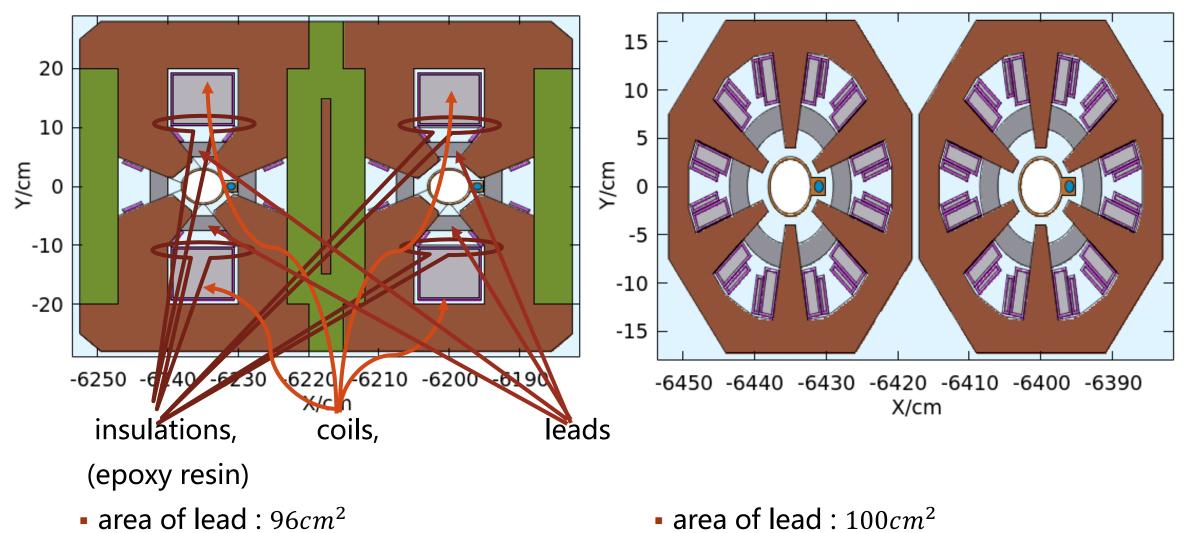

- Introduction
- Synchrotron radiation shielding
- Radionuclide productions
- Collider ring dump system
- Linac hot spots and beam losses
- Summary and outlook

SIMULATION SETUP

Dipole

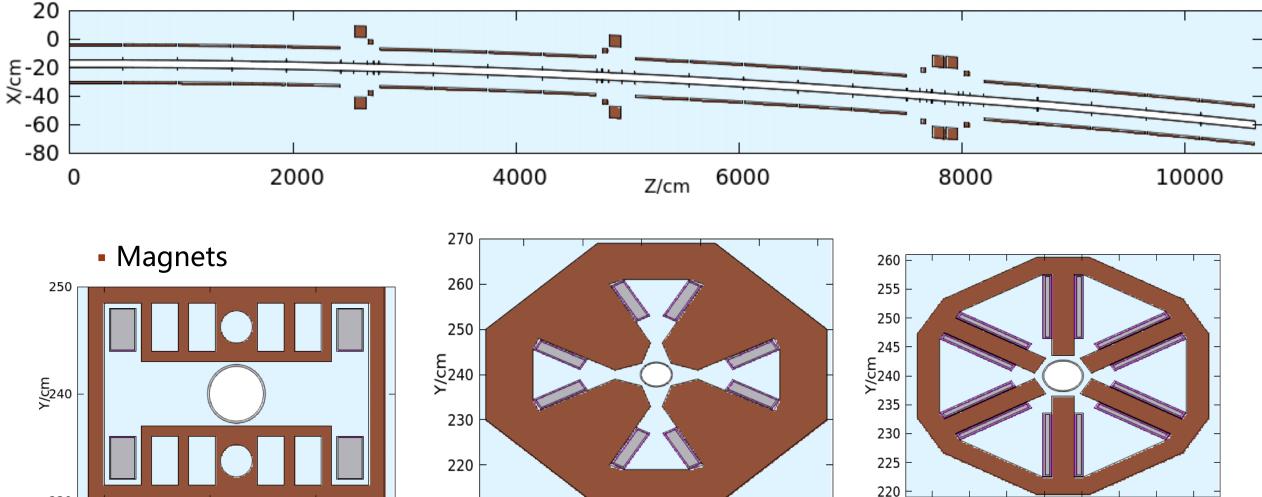
Drift chamber

(epoxy resin)


- Insulations is added in the model. Both beam-pipes are made of copper.
- In the cross-section, area of lead: $56cm^2$ area of lead: $216cm^2$

SIMULATION SETUP

Quadrupole



BOOSTER

230

-6630

dipole ->drift chamber ->quadrupole -> sextupole ->drift chamber ->dipole ...

-6820

X/cm

-6810

-6800

-6790

210

-6840

-6830

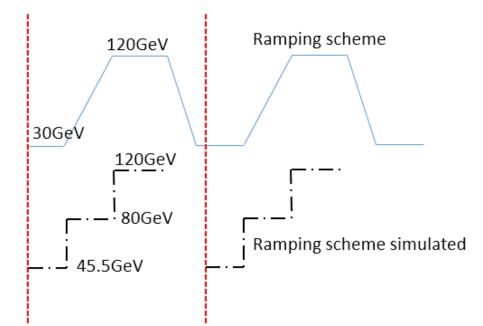
-6610

-6620

X/cm

-7035-7030-7025-7020-7015-7010-7005-7000 X/cm

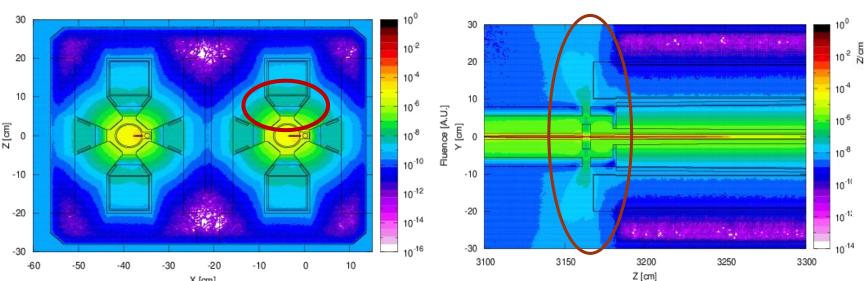
PARAMETERS: 50MW

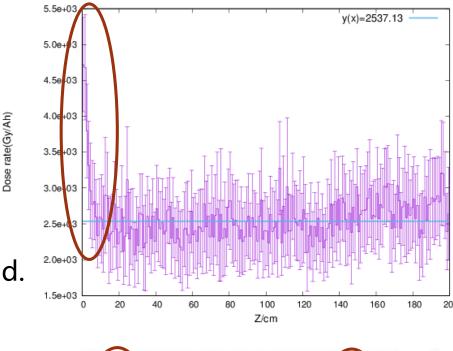

Collider

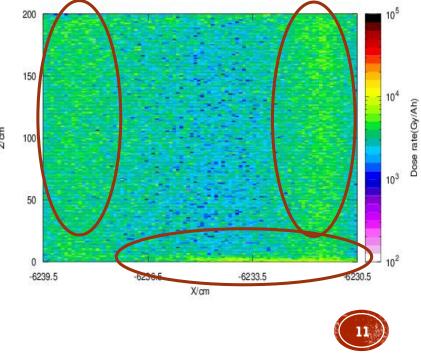
	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	180
Ne/bunch/10 ¹⁰	14	13.5	14	20
Number of bunches	415	2162	19918	58
Number of photons/114m	4.7e18	1.6e19	8.4e19	1.4e18

Booster

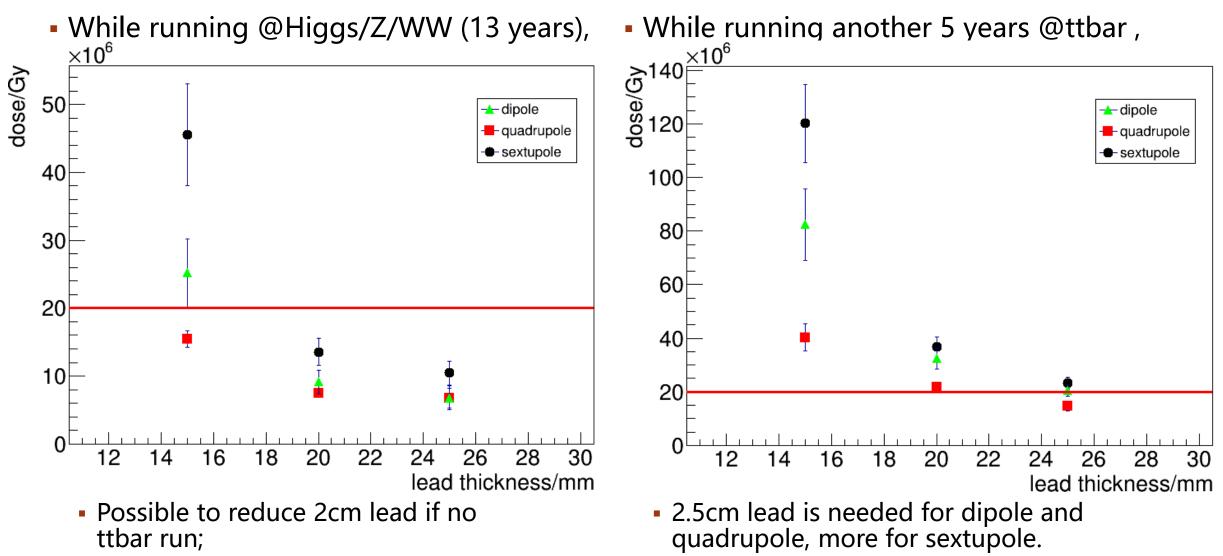
	Higgs	ww	z	ttbar
Current(mA)	1	2.69	14.4	0.12
Injection duration(s)	32.8	39.3	134.7	30
Injection interval(s)	38	155	153.5	65

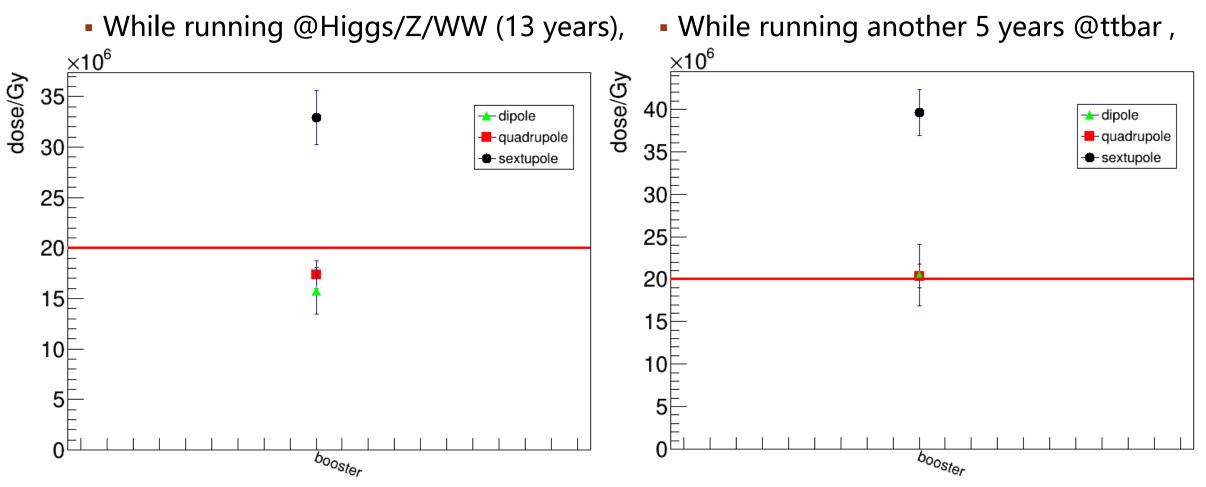

Ramping simulation: example @Higgs




- The ramping simulation is more critical than reality.
 - Overestimate dose to booster

DOSE TO INSULATIONS


- Dose values are equal in middle of magnet, not in both ends of magnet.
- "Hot spots" in insulation because:
 - The shielding between magnets are not designed well.
 - SR hits the iron close to beam pipe and bypasses lead.
- Hot spots shielding will be considered in next stage.
- Dose in uniform regions are summarized in the following pages.


DOSE VS LEAD THICKNESS: 50MW

Lead thickness is constrained by the operation schedule.

DOSE TO BOOSTER INSULATION: 50MW

- The dose to dipole and quadrupole is slightly higher than upper limit based on our simulation scheme.
- Pay attention to sextupoles. We will simulate more precisely, with accurate time scheme and beam energy.

RADIONUCLIDES SIMULATION

 Beam losses & SR photon of energy >6MeV

		Higgs	WW	Z	ttbar
Beam energy	gy/GeV	120	80	45.5	182.5
Ne/bunch	n/10 ¹⁰	14	13.5	14	20
Number of bunches	50MW	415	2162	19918	58
Number of SR photons >6MeV	50MW	1.4e10	1e-7	neglig ible	1.3e15
Life time	50MW	0.33	0.91	1.33	0.30
Beam losses/114 m	50MW	5.5e7	1.0e8	6.7e8	1.2e7

FLUKA options

PHOTONUC	Туре: 🔻	All E: On ▼
E>0.7GeV: off ▼	∆ resonance: off ▼	Quasi D: off ▼ Giant Dipole: off ▼
	Mat: BLCKHC	DLE ▼ to Mat: @LASTMAT ▼ Step:
PHYSICS	Type: EVAPOR	AT 🔻 Model: New Evap with heavy frag 🔻
	Zmax: 0	Amax: 0
PHYSICS	Type: COALES	CE ▼ Activate: On ▼
PHYSICS	Type: PEATHR	ES ▼ Nucleons: 1000. Pions: 1000.
Kaons: 1000.	Kaonbars: 1000.	AntiNucleon: 1000. (Anti)Hyperons: 1000.
RADDECAY	Decays: Active 🔻	Patch Isom: V Replicas: 3.
h/µ Int: ignore 🔻	h/μ LPB: ignore 🔻	h/µ WW: ignore ▼ e-e+ Int: ignore ▼
e-e+ LPB: ignore v	e-e+ WW: ignore 🗸	Low-n Bias: ignore ▼ Low-n WW: ignore ▼
	decay cut: 0.0	prompt cut: 0.0 Coulomb corr: 🔻

- Wall material:
 - Case1: water as wall
 - Case2: rock as wall

- Simulate two critical cases:
 - SR @ttbar and beam losses @Z

SOIL/ROCK

- In previous study, use soil as tunnel wall.
- Now use average components of rocks in each site candidate.
- Simulate productions of residual nuclei after one year running in:
 - Cooling water
 - Air in tunnel
 - Water outside tunnel
 - Rock (leachable isotopes)
- Compared with Chinese mandatory standard GB18871.

	Soil		components of different rocks
deı	nsity	1.6g/cm^3	1.2~3.3g/cm^3
	С	1.0	
	Ν	0.12	
	0	34	30~70
Z	Na	0.50	0.1~2.9
Major element (wt%)	Mg	0.52	0.4~3.7
r ele	Al	8.0	3.5~9.7
eme	Si	40	26~39
)nt (Р		0.02~0.16
wt ^o	K	2.36	1.8~3.7
<u>)</u>	Ca	2.26	0.2~4.8
	Ti	1.0	0.09~0.8
	Mn	0.24	0.02~0.12
	Fe	9.6	0.8~6.3

RADIONUCLIDES PRODUCTION

 Densities of Long half-life isotopes are lower than mandatory standard, GB18871.

			Cooling	water
		Half -life	Specific activity/GB 18871	Stat. error (%)
	O15	122s	2.44	10
Beam losses	C 14	5700 a	3.5e-7	23
@Z- pole	Be7	53d	1.3e-2	34
-	H3	12a	2.3e-6	22
SR @ttbar			None	

			Air in	tunnel
		Half- life	Specific activity/G B18871	Stat. error (%)
	O15	122s	2.7e-4	52
	C14	5700a	7.7e-7	1
	Be7	53d	1.1e-5	57
Beam	H3	12a	3.5e-9	32
losses	P32	14d		
@Z-	P33	25d	1.9e-8	100
pole	C 136	3e5a		
	C138	37m		
	Ar37	35d	6.1 e- 9	59
	Ar41	2h	1.4e-3	12
SR	C14	5700a	6.5 e -6	2
@ttba r	Ar41	2h	1.5e-2	20

RADIONUCLIDES PRODUCTION

 Densities of Long half-life isotopes are lower than mandatory standard.

			Water	wall
		Half- life	Specific activity/ GB18871	Stat. error (%)
	O15	122s	2e-3	2
Beam	C14	5700a	5e-10	4
losses @Z-	Be7	53d	3e-5	5
pole	H3	12a	6e-9	3
	F18	2h	5e-6	52
SR	C14	5700a	2e-12	99
@ttbar	H3	12a	le-10	71

Only leachable isotopes are listed:
³H, ²²Na, ⁴⁵Ca, ⁵⁴Mn

			Rock	wall
		Half- life	Specific activity/ GB18871	Stat. error (%)
Beam	Mn54	312d	6.94E-04	1.8
losses	C a45	163 d	5.49E-06	0.3
@Z-	Na22	2.6y	7.20E-04	1.4
pole	H3	12a	5.90E-09	0.9
SR @ttbar	Н3	12a	le-10	71

• Should investigate if radionuclides would transport to drinking water.

PRODUCTION OF TOXIC GASES

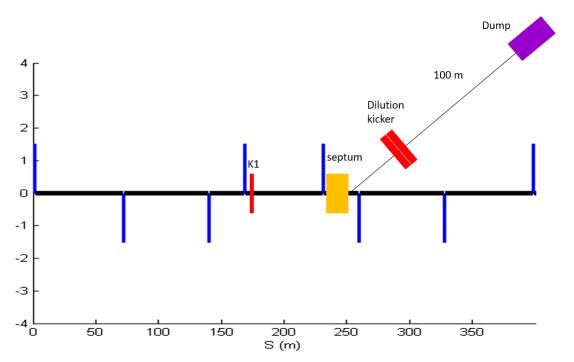
- Saturated concentrations of ozone and oxides of nitrogen. [Hoefert, 1986]

For long irradiation times, *i.e.*, $t \to \infty$ the saturation concentrations are given by:

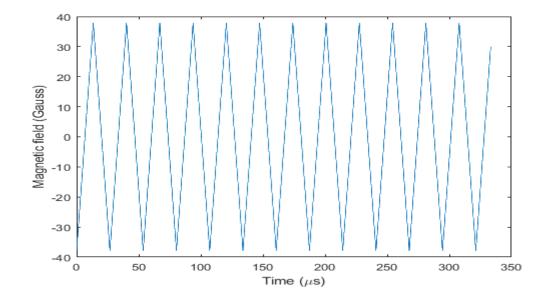
$$N_{\rm sat} = \frac{gI}{\alpha + \kappa I + Q/V}.$$
 (6.39)

- N = number of ozone molecules per unit volume at time $t (m^{-3})$
- I = energy deposited in air per unit volume and unit time(eV m⁻³ s⁻¹)
- g =number of ozone molecules formed per unit energy (eV⁻¹)
- α = rate of decomposition of ozone molecules (s⁻¹)
- κ = number of ozone molecules destroyed per unit energy and volume (eV⁻¹m⁻³)
- Q = ventilation rate of irradiated volume (m³ s⁻¹)
- V = irradiated volume (m³)
- Concentration limit
 - O3: 160 ug/m^3; NO2: 40 ug/m^3.
 - Smaller than limits in CEPC cases.

	Number of SR photons/ 114m	Deposited energy from photon	O3 mass [ug/m^3]
Higgs	4.7e18	2.8e-8	1.8e-6
WW	1.6e19	1.8e-9	1.5e-6
Z	8.4e19	6.0e-9	9.7e-7
ttbar	1.4e18	7.6e-8	1.1e-6


OUTLINE

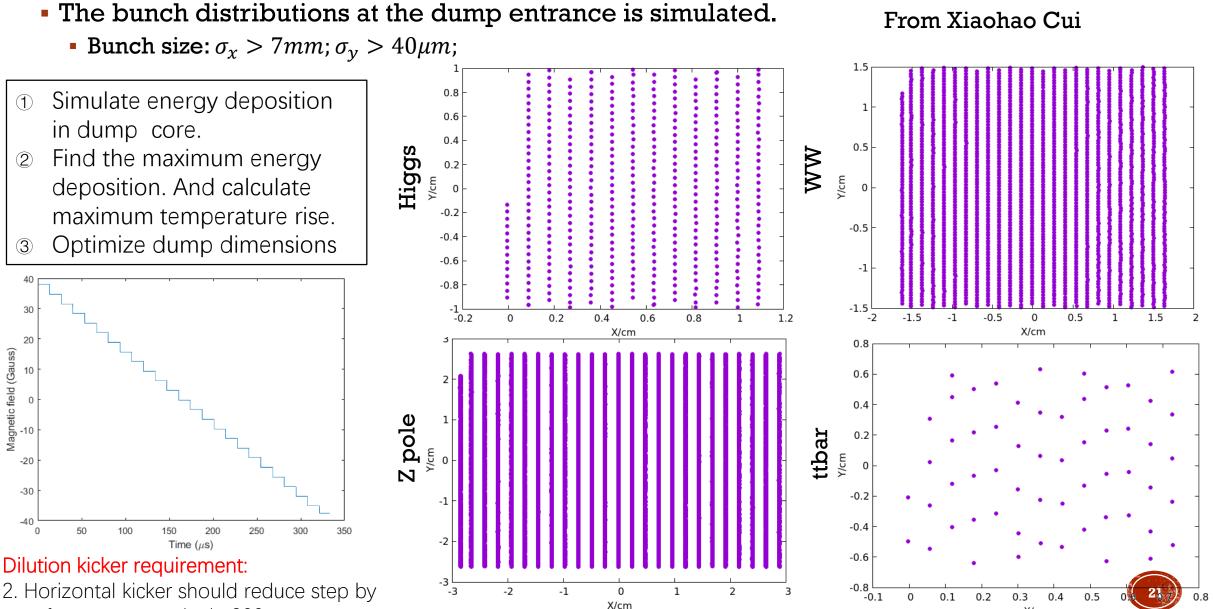
- Introduction
- Synchrotron radiation shielding
- Radionuclide productions
- Collider ring dump system
- Linac hot spots and beam losses
- Summary and outlook



COLLIDER DUMP

- A set of kicker magnets is used to dilute the beam horizontally and vertically.
- The length of transfer tunnel is about 100m The volume of hall will be determined after the design of the equipment installation.
- The area of bunch distribution at dump entrance is optimized to be 6cm x 6cm (@Z mode)

		Extraction kicker	Septum	Dilution kickers
Length	(m)	2	20	10
Magnatia	Z	280	2600	
Magnetic flux	ww	493	4700	
density	Higgs	740	7000	40 (Max.)
(Gauss)	ttbar	1110	10500	


Dilution kicker requirement:

1. Vertical kicker should periodic oscillate 12.5 times in 300 us

From Xiaohao Cui

BUNCH DISTRIBUTION: 50MW

X/cm

step from max. to min. in 300 us

MAX. TEMPERATURE RISE: 50MW

Example: graphite core

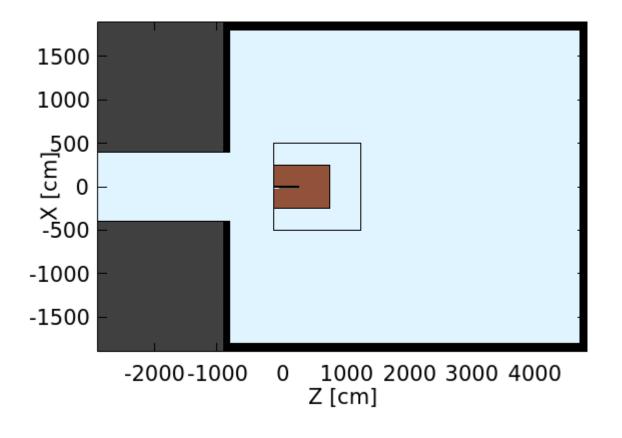
	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	180
Ne/bunch/10 ¹⁰	14	13.5	14	20
Bunch number (50MW)	415	2162	19918	58
Max. temperature rise	510 ± 15℃	1020 ± 30°C	2620 ± 15℃	194 ± 2°C
Max. temperature rise by one bunch	7.31 ± 0.03°C	5.38 ± 0.03°C	3.76 ± 0.02°C	10.08 ± 0.04°C

- Max. temperature rise is smaller than graphite melting point. Inert gas will be used to stop fire and chemical reaction.
- Dimension (graphite + Iron): R~2.3m, L~8m; constrained by the condition that dose-eq is smaller than 5.5mSv/h.
- Temperature rise @Z mode 10000 0 (/cm 1000 -1 -2 -3 100 Temperature rise @WW mode 10000 1000 0 <u>/</u>2

X/cm

-1

-2


-3

22

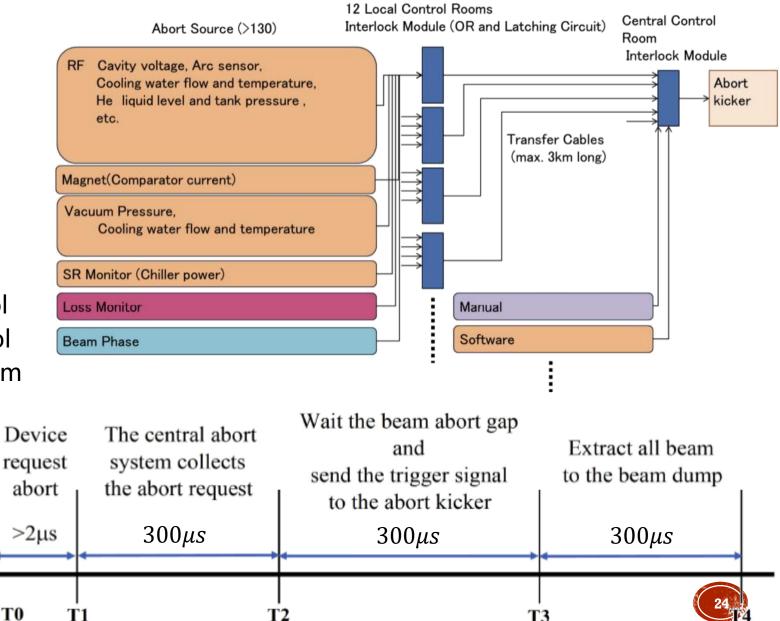
100

RADIONUCLIDES PRODUCTION IN DUMP HALL

- A dumping hall geometry in the below.
- Assume dumping beam one time per day
- The radionuclide production is simulated. Meet Chinese mandatory standard.

		Concrete wall		
	Half- life	Specific activity/GB1 8871	Stat. error (%)	
Ca47	4.5d	4.9e-9	100	
Ca45	163d	3.1e-9	17	
Na24	15h	1.0e-4	5	
Na22	2.6y	1.4e-8	100	
H3	12a	1.6e-13	56	

		Air in dump hall		
	Half- life	Specific activity/GB1 8871	Stat. error (%)	
C14	5700a	3.1e-9	7	
H3	12a	1.5e-11	49	
Ar41	2h	5.6e-10	33	


RESPONSE TIME

- Abort request:
 - Beam loss monitors
 - Synchrotron oscillation phase monitor
 - Hardware components
 - Manual abort
- Time interval
 - Device request -> local control
 - Local control -> central control
 - Central control -> dump system

ТO

- Extract all beam.
- Collider dump response time ~ 1ms.

SuperKEKB Design Report

Т3

MORE ABOUT DUMP

- Abort beam in booster and collider
 - For normal operations and machine tuning
- Study feasibility to build extraction line from booster to dump.
- Build in the straight sections. One for electron beam and one for positron beam.
- Will study reliability (or alternative design).
- Need absorber to protect machine elements from incorrect dumping.
- Response time ~ 1ms.
- Need collimators to deal with beam losses faster than 1ms.
 - fault cases.

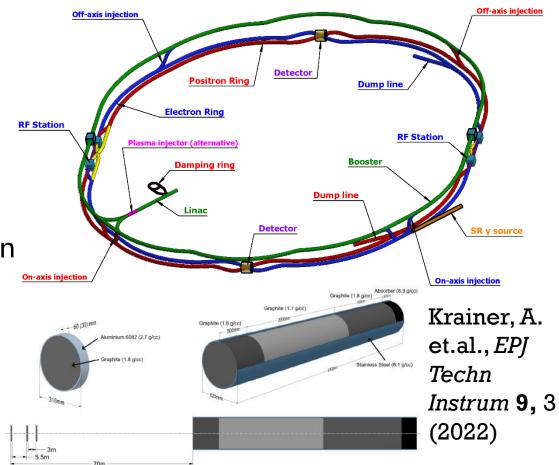


Figure 4 Overview of the geometry used in FLUKA simulations. Different spoiler configurations were simulated: 1 × 6 cm, 2 × 3 cm and 3 × 3 cm long spoilers

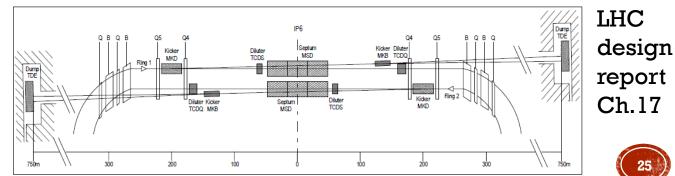
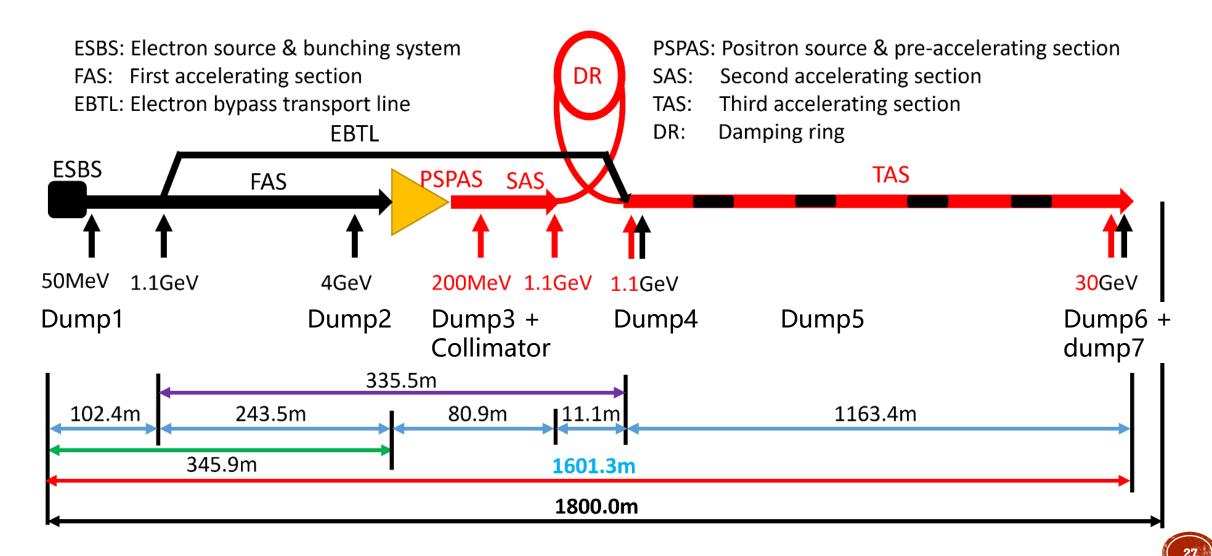


Figure 17.1: Schematic layout of beam dumping system elements around LHC point 6.

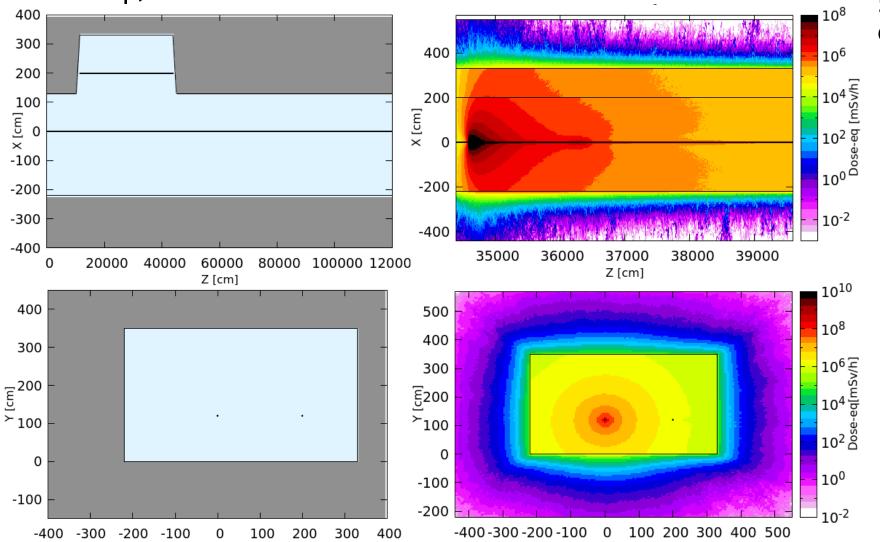

OUTLINE

- Introduction
- Synchrotron radiation shielding
- Radionuclide productions
- Collider ring dump system
- Linac hot spots and beam losses
- Summary and outlook

CEPC LINAC

• Length: 1601.3m; 7 dumps and 1 collimator;

LINAC BEAM LOSSES ASSUMPTIONS

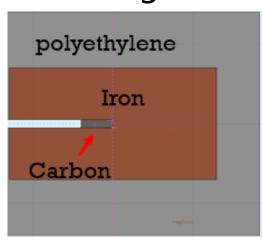

Position	Length	Beam energy	Number of bunches [s ⁻¹]	Beam loss/bunc h [nC]	Number of particles [10 ¹⁰ /s]
FAS	100m	300MeV	200	0.5	62.5
Positron target	15mm	4GeV		10	1250
PSPAS	15m	5~200MeV		10	1250
SAS	3m	300MeV		2	250
	30m	600MeV		0.2	25
TAS	1163m	1.1~30GeV		0.1	12.5

SIMULATION SETUP

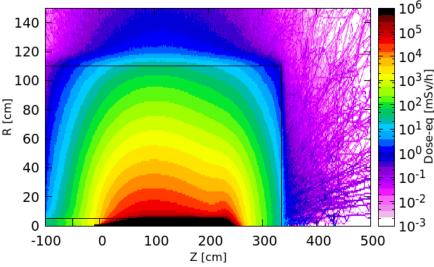
- Beam pipes and concrete wall
 Dose-eq distribution example: SAS
- Top/side view

X [cm]

X [cm]


 Thickness of Shielding wall according to upper limit
 5.5mSv/h (left/right/bottom) or 2.5uSv/h(top).

Wall thickn ess	FAS	SAS	TAS
Left	0.3m	1.9m	0.3m
Right	0.2m	1.9m	0.3m
Bottom	0.3m	2.1m	0.3m
Тор	1.3m	4.1m	2.0m


LOCAL SHIELD DESIGN FOR HOT SPOTS

- Carbon and iron is selected as the absorber material, surrounded by the polyethylene as local shielding.
- 5.5mSv/h is set as upper limit to decide the thickness of local shielding.

Absorber geometry and local shielding:

Size for carbon and iron for different beam energy, adopt from other projects, is suitable but haven't been optimized.

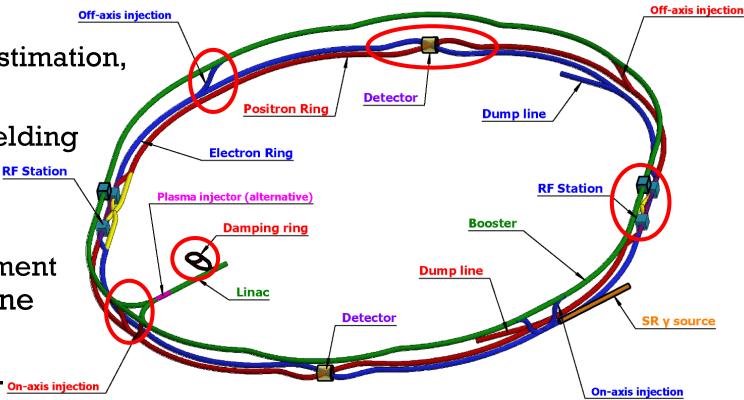
Local size selection (20GeV dump as example): 2D map of dose distribution is obtained using FLUKA, the dose rate alone Z or R axis was averaged by 1x1cm^2 area, the shielding size can be selected by setting dose rate limit.

Beam energy	R/m	Length/ m
60MeV	0.7	1
4GeV	1.2	2.6
250MeV	0.55	1
1.1GeV	0.85	1.7
6GeV	1	2.5
30GeV	1.3	3.8

Preliminary design results for different beam energy analysis station:

Radiation level nearby each energy analysis station was figured out, also specify a roughly space for the future local shielding.

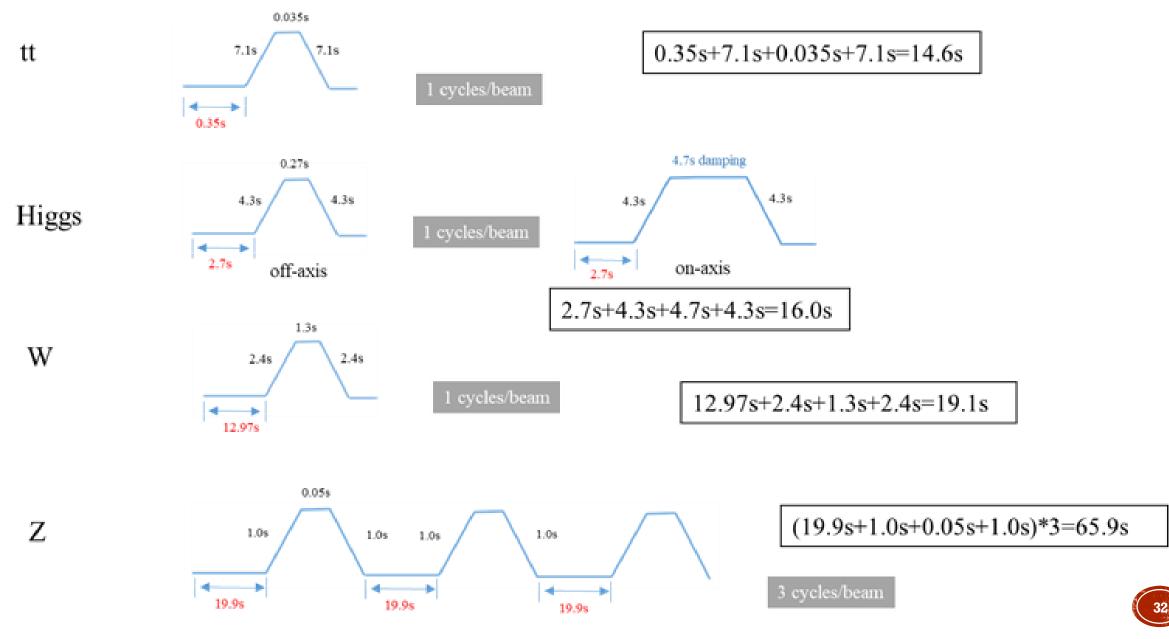
The thickness of shielding will be optimized combined with Linac tunnel geometry in the next stage.


SUMMARY

Have studied:

- lead shielding design,
- radionuclides productions estimation,
- Collider dump design,
- Linac hot spots and bulk shielding

Go on:


- Shielding design for experiment hall/RF hall/DR/transport line
- Reliability study for dump.
- Machine protection: fault cases. On-axis injection

Thank you

BACKUP

