

Asymmetric Di-Higgs Signals of the N2HDM

Sumit Banik

(In collaboration with A. Crivellin, S. Iguro and T. Kitahara)

- Based on arXiv.2303.11351

June 16, 2023

Paul Scherrer Institute and University of Zürich.

1. Motivation

2. Next-to-minimal two-Higgs-doublet model (N2HDM-Z₂) with a Z₂ symmetry

Next-to-minimal two-Higgs-doublet model (N2HDM-U(1)') with a U(1)' symmetry

4. Phenomenology

5. Conclusions

Motivation

- The CMS, ATLAS and LEP hints for a new resonance decaying to $\gamma\gamma$ at 95 GeV.

Motivation

• CMS excess in decay of a new resonance to two scalar: $X(650) \rightarrow (h(125) \rightarrow \gamma\gamma)(Y(95) \rightarrow \overline{b}b).$

Asymmetric Higgs decays are small in most models.

Motivation

- At least three CP-even scalars needed to explain the excesses.
- Study the singlet extended version of the two-Higgs doublet model (N2HDM-*U*(1)')).
- Three CP-even, one CP-odd and two charged Higgs.
- Focus on two different versions: N2HDM- Z_2 and N2HDM- $U(1)_{H}$.

$N2HDM-Z_2$

- N2HDM- Z_2 is the standard and more studied version.
- Two Z_2 global symmetry: $\phi \rightarrow -\phi$ and $H_2 \rightarrow -H_2$.
- The scalar potential is a) Doublet Terms

$$\mathcal{V}_{H} = m_{11}^{2} |H_{1}|^{2} + m_{22}^{2} |H_{2}|^{2} + \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} (H_{1}^{\dagger} H_{1}) (H_{2}^{\dagger} H_{2}) + \lambda_{4} (H_{1}^{\dagger} H_{2}) (H_{2}^{\dagger} H_{1}) .$$
(1)

b) Singlet Terms

$$\mathcal{V}_{\phi} = |\phi|^2 \left(m_{\phi}^2 + \frac{\lambda_{\phi}}{2} |\phi|^2 + \lambda_{\phi 1} |H_1|^2 + \lambda_{\phi 2} |H_2|^2 \right) \,. \tag{2}$$

c) Additional Terms

$$\mathcal{V}_{CP} = -m_{12}^2 (H_1^{\dagger} H_2 + \text{h.c.}) + \lambda_5 ((H_1^{\dagger} H_2)^2 + \text{h.c.})$$
(3)

• No terms like $H_1H_2\phi$, etc.

Motivations for a U(1)' symmetry.

- The Z₂ version of N2HDM does not allow for sizable asymmetric di-Higgs decay as it is mixing suppressed.
- Instead introduce a single $U(1)_H$ gauge symmetry in N2HDM.
- No CP-violating terms and one less free parameter.
- Like the SM, the N2HDM–U(1)' is built on local gauge symmetries and spontaneous symmetry breaking.

N2HDM-*U*(1)'

- Scalar sector of N2HDM-U(1)' has the terms \mathcal{V}_{H} and \mathcal{V}_{ϕ} , but not $\mathcal{V}_{C\mathcal{P}}$.
- Two possible ways to get an effective m_{12} term depending on the charge assignment under the $U(1)_H$ gauge symmetry:

Case 1: $|Q_H(\phi)| = |Q_H(H_1) - Q_H(H_2)|$

$$\mathcal{V}_{\phi H}^{1} = \sqrt{2}\mu H_{1}^{\dagger} H_{2} \phi + \text{h.c.}$$
(4)

Case 2:
$$|Q_H(\phi)| = \frac{|Q_H(H_1) - Q_H(H_2)|}{2}$$

 $\mathcal{V}^2_{\phi H} = \lambda_{\phi 12} (H_1^{\dagger} H_2) \phi^2 + \text{h.c.}$ (5)

where $Q_H(\Phi)$ denotes the $U(1)_H$ charge of field Φ .

• Case 2 is novel to the best of our knowledge.

• Field content:

$$H_1 = \begin{pmatrix} W_1^+ \\ \frac{\nu_1 + H + i\eta_1}{\sqrt{2}} \end{pmatrix}, \qquad H_2 = \begin{pmatrix} W_2^+ \\ \frac{\nu_2 + h + i\eta_2}{\sqrt{2}} \end{pmatrix}, \qquad \phi = \frac{\nu_S + S + i\eta_S}{\sqrt{2}}.$$
(6)

• 11 parameters in our model:

$$m_h, m_H, m_S, m_A, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3, \tan\beta, v_S, v$$
(7)

$$\alpha_i$$
 are the CP-even mixing angles, $\tan \beta = \frac{v_2}{v_1}$ and $v = \sqrt{v_1^2 + v_2^2}$.

• In the absence of mixing, the mass eigenstates within H_2 , H_1 , and ϕ are h, H, and S, respectively

• CP-even mass matrix,

$$M_{\rho}^{2} \approx \begin{pmatrix} -\mu V_{S} \tan \beta & \mu V_{S} & \mu V \\ \mu V_{S} & \lambda_{2} V^{2} & 0 \\ \mu V & 0 & \lambda_{\phi} V_{S}^{2} \end{pmatrix}, \qquad (8)$$

for vanishing $\lambda_{\phi 2}$, and assuming v_1 is very small such that $\tan \beta$ is very large.

- In this limit, the mixing of H h and H S is negligible
- Only unsuppressed decay of *H*, in the absence of Yukawa couplings of H_1 , is $H \rightarrow Sh$ for Case 1, and in addition $H \rightarrow SS$ for Case 2, if $m_H \gg m_S$

- Asymmetric Higgs decays are useful in the context of CMS di-Higgs analysis.
- Here, X \approx 650 GeV boson decay into Y \approx 95 GeV scalar and the SM Higgs, and then Y decays into $b\bar{b}$ and the SM Higgs into $\gamma\gamma$
- + $\sigma(pp
 ightarrow b ar{b} \gamma \gamma)$ is $pprox 0.35^{+0.17}_{-0.13}$ fb
- Taking BR($h \rightarrow \gamma \gamma$) \approx 0.23% and the upper-limit of $pp \rightarrow b\bar{b}\tau\bar{\tau}$ is \approx 4 fb, we aim to explain within 2 σ

 $\sigma(pp \to (650) \to (95) h) \times BR((95) \to b\bar{b}) \approx 70 \text{ fb}.$ (9)

Phenomenology

- There are two options within the N2HDM; identify the \approx 95 GeV state with *H* and the \approx 650 GeV one with S or vice versa
- If *H* is lighter, then μ is small $(m_H \approx -\mu v_S \tan \beta)$, and therefore the branching ratio is suppressed (due to $\mu H_1^{\dagger} H_2 \phi$)
- Consider the second case, i.e. $pp \rightarrow H \rightarrow Sh$, for a larger branching ratio

Phenomenology

- Grey region is excluded from having positive eigenvalues of the mass matrix as well as perturbative couplings
- For sufficient production cross-section of H, assume effective coupling $-\tilde{Y}^t \bar{Q}_L \tilde{H}_1 t_R$
- Predict the cross-section of $H \rightarrow tt$, $A \rightarrow tt$ and $pp \rightarrow t\bar{t}A \rightarrow t\bar{t}t\bar{t}$
- Red region excluded by the $pp \rightarrow t\bar{t}t\bar{t}$ search of ATLAS

Summary

- In comparison to N2HDM-Z₂, our model is
 - 1. More predictive as it contains one less free parameter
 - 2. Built on local gauge symmetries and spontaneous symmetry breaking
 - Large branching ratios for asymmetry decays H → Sh even in the limit of small mixing angles.
 - 4. No CP violation
- Z Z' mixing can naturally account for the higher than expected W mass, as suggested by CDF II
- Detailed phenomenological studies are left for future work