TESTING OF THE ATLAS ITK DATA TRANSMISSION CHAIN

Daniele Dal Santo (daniele.dalsanto@unibe.ch), Dr. Aaron O'Neill, Dr. Silke Möbius, Roman Müller, Lea Halser, Prof. Dr. Michele Weber

THE ATLAS ITK PIXEL DETECTOR

The High Luminosity LHC (HL-LHC) will deliver on average 200 interactions per bunch crossing at 40 MHz. In view of the HL-LHC, the current Inner Detector (ID) of the ATLAS experiment will be substituted by the Inner Tracker (ITk). **ITk requirements**:

higher resolution tracking compared to ID to deal with the more challenging pile-up → from ~ 10⁸ to 5 · 10⁹ electrical channels;
read-out speed of 1 MHz, which corresponds to 50 Tbps;

• resistant to the harsh radiation environment of HL-LHC as the foreseen maximum integrated dose is of ~ 10 MGy.

The key component to read out the ITk Pixel detector is the Optosystem which equalizes, multiplexes, converts all the signals coming from the front-end chips from electrical to optical and transport them to the off-detector readout FELIX cards; it also distributes the command and trigger lines. A total of \sim 1600 Optoboards, connected to \sim 190 FELIX cards via more than 4000 optical fibers, is needed to read out the

THE ITK PIXEL OPTOSYSTEM: FROM THE OPTOBOARD TO THE OPTOPANELS

• Up to 8 Optoboards are housed in an Optobox.

 8 Optopanels are foreseen for the ITk detector, housing 28
 Optoboxes each and providing them with Faraday cage shielding and cooling system.

I. TESTS OF THE OPTOSYSTEM

To ensure high quality in the ITk readout, the 95% C.L. Bit Error Ratio (BER) limit of the Data Transmission Chain is required to be lower than 10^{-12} .

II. CONTRIBUTION TO LOCAL LOADED SUPPORT

In view of the HL-LHC upgrade, 11 sites have been appointed to build and test sections of the ITk detector. The contribution of the Bern group to the Local Loaded Support (LLS) is twofold:

The Optoboard configuration is optimized, using the setup in FIG.5, to achieve this goal. The BER limit is estimated with 2 methods:

- checking the PRBS7 produced by ITkPix on the pattern checker of the lpGBT
- checking the 64b/66b ITkPix idle frames with FELIX.

FIG. 6: Scan of the BER limit varying the equalization parameters, using PRBS7.

Additional tests on the Optosystem:

FIG. 5: Setup for the QC of the Optoboard Data Transmission.

- A) provide a user-friendly software for the configuration of the Optoboards (FIG. 8), integrated in a suite of microservices for the operation of the demonstrators:
 - each microservice is composed of a GUI connected to a backend (FIG.
 9), distributed over various docker containers
 - the microservices orchestration is done via ETCD, a distributed keyvalue store, that implements a dynamic service discovery approach and is used for runtime configuration
 - the status of the system can be monitored via Portainer.

FIG. 8: GUI for Optoboard configuration.

FIG. 9: Microservice architecture.

B) provide single-box Optopanels (FIG. 10) with realistic mechanics, powering and cooling to be used for module readout.

- the BER limit has been monitored during Optoboard irradiation with 18 MeV protons at the Bern Medical Cyclotron to ensure radiation hardness;
- the thermal behaviour of an Optopanel populated with heat dummies and heat pads has been tracked;
- the ITkPix module has been read out during a testbeam at CERN.

FIG. 10: Single-box Optopanels for LLS, each containing one Optoboard.

OUTLOOK

- Validation of the latest Optoboard iteration (halogen-free).
- Finalization of the software for Loading Sites.
- Production Readiness Review and QA/QC on final production components.

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

