

IFAST WP4 – Task 4.4:

Large scale Carbide-Carbon Materials for multipurpose applications

Meeting to prepare the milestone D4.4

F. Carra (CERN) 27th October 2022

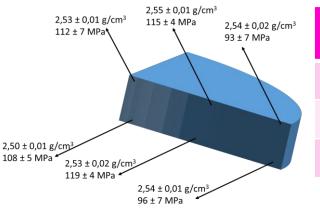
IFAST

Task 4.4 – Deliverables and Budget

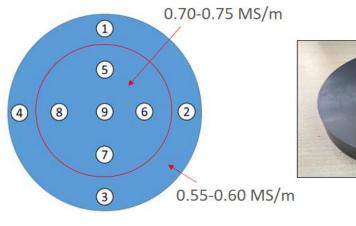
Milestone/Delivera ble Number	Title	Lead beneficiary Type		Dissemination level	Due Date (in months)
MS14	Evaluation of a CCM alternative to Molybdenum-	CERN	Report	Public	16
D4.4	Production of large-size CCM plates	CERN	Demonstrator	Public	24

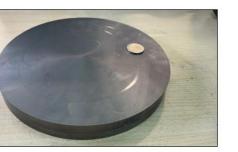
D4.4 description

• Produce two large CCM plates (cross section >400 cm²) in a single sintering cycle


Beneficiary short name	Person- months	Monthly personnel cost	Personnel costs	Travel	Equipment and consumables	Other direct costs	Sub- contracting	Material direct costs	Total direct costs	Total indirect costs	Total costs (direct + indirect)	EC requested funding
CERN	3.0	8,000.00	24,000.00	16,000.00	20,000.00	10,000.00		46,000.00	70,000.00	17,500.00	87,500.00	35,000.00
Nanoker	10.0	3,500.00	35,000.00	3,000.00	95,000.00			98,000.00	133,000.00	33,250.00	166,250.00	85,000.00
Total	13.0		59,000.00	19,000.00	115,000.00	10,000.00	0.00	144,000.00	203,000.00	50,750.00	253,750.00	120,000.00

Year 1 – Increase of volume per cycle


Molybdenum-Graphite (sintered at 2640°C)


2 plates produced with 230 mm Diameter (2x bigger section than before IFAST)

Disk (230 mm diameter)	Density (g/cm³)	Electrical Conductivity (Mean values on each side) (MS/m)
Plate #1 (p=26 MPa)	2,53	0,6 - 0,63
Plate #2 (p=40 MPa)	2,60	0,65 – 0,68
Specification	2,3 ÷2,6	>0,8

Lower electrical conductivity values than in the 170 mm diameter disks

Pre-compaction of the green powder:

Maximum Applied Force Uniaxial Hydraulic Press ~ 900 kN

- 170 mm Ø \rightarrow 40 MPa \rightarrow 2,00 g/cm³
- 230 mm $\emptyset \rightarrow$ 21 MPa \rightarrow 1,65 g/cm³

Next: <u>increase the metal content</u>, together with the higher sintering pressure

Year 1 – Decrease of sintering Temperature

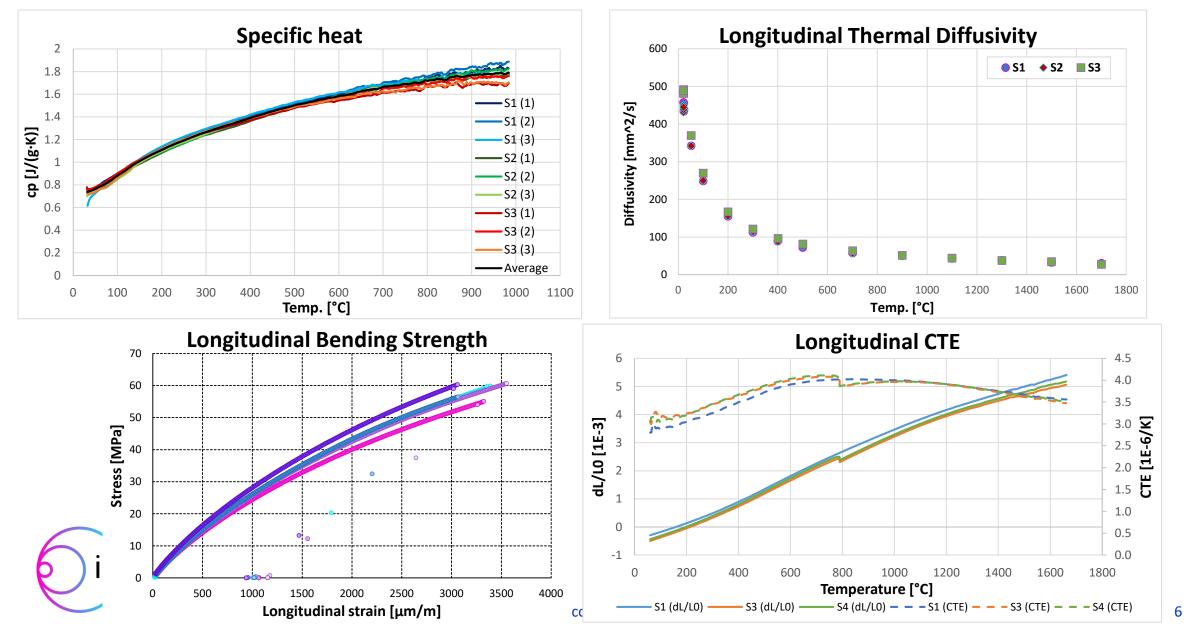
- **Chromium-Graphite** (sintered at 2000°C 1.3x lower T)
- Concept proposed by Jorge Guardia within ARIES WP14 & WP17, technically was not demonstrated yet (very poor mechanical properties)

3 plates produced with 170 mm Diameter

FAST

Disk (170 mm diameter)	Density (g/cm³)	Electrical Conductivity (MS/m)
Plate #1	2,30	1,00 - 1,07
Plates #2 & #3	2,30	0.75/0.81
Specification	2,3 ÷2,6	>0,8

Reusable Mold and Parts → Important Cost Reduction


- Plate #1 produced in a single plate per cycle, very promising properties, decision for full characterization at CERN
- Plates #2 and #3 double-plate per cycle, losing a bit in conductivity →
- composition and cycle to be optimized

Year 1 – CrGr Characterization

ICa						red
• Fu	Ill thermomechanical characterizatio	n done at CER	in Mechar		_	2114
• Ve sti	Il thermomechanical characterizatio ery promising results, some parameter rength increased by a factor of 5 wrt a Property Density at 20°C Specific heat at 20°C Electrical conductivity Thermal Diffusivity Thermal Diffusivity Thermal conduct Volur Coeffici F	ers to be impro ARIES!	oved durin	rep	ortfin	
		St CA		۲,۰		~1
	Property	WS.	+ifie		F	Unit
	Density at 20ºC	ne ·		<u></u>	3 <mark>2</mark>	[g/cm ³]
	Specific heat at 20°C)' , (d'		0.6	87	[J/(g·K)]
	Electrical conductivity	61		1.()2	[MS/m]
	Thermal Diffusivity	NO~	,0	470/120	33/9	[mm^2/s]
	Thermal conduct		- 35/20	<mark>750</mark> /350	52/27	[W/(m·K)]
	Volur	1		6.	7	[10 ⁻⁶ K ⁻¹]
	Coefficie	. 9	< 15	<mark>4.0</mark>	12.0	[10 ⁻⁶ K ⁻¹]
	all	E < 75 > E <	5 < E < 8	46	<mark>3</mark>	[GPa]
		> 60	> 10	58	<mark>8</mark>	[MPa]
	FILLE	> 2500	> 4000	3280	4200	[µm/m]
6	h.	< 0.05	< 0.25	-0.05	<mark>0.45</mark>	%
\mathbf{b}	IFAST					

manical

Year 1 – CrGr Characterization

D4.4 (month 24 \rightarrow April 2023)

- Produce two large CCM plates (cross section >400 cm2) in a single sintering cycle (task 4.4)
- No need of fulfilling the spec here (yet) \rightarrow this is an objective for the end of the project (2025)
- Translation: to produce two Ø230mm plates in the same cycle
 - Which material? MoGr or CrGr?
 - Which intermediate steps? MoGr looks more advanced, but probably require first more iterations with single Ø230mm plate... whereas CrGr would probably be cheaper

D4.4 (month 24 \rightarrow April 2023)

Possible roadmap:

- MoGr:
 - End 2022? 1 single Ø230mm plate, discuss together about possible changes wrt past tests
 - Q1 2023 \rightarrow preparation of 2x Ø230mm plates test
 - March 2023 \rightarrow sintering of 2x Ø230mm plates in one cycle
 - April 2023 \rightarrow D4.4 reporting
- CrGr:
 - End 2022
 - Nanoker:
 - Machine a collimator block from plate #1?
 - Make another trial on 2x Ø170mm plates in one cycle
 - Q1 2023
 - CERN:

Perform UHV and metrology on collimator block from plate #1

İFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.