CMS New Physics Searches with Jets

Dan Duggan, Rutgers University

For the CMS Collaboration

Workshop on Jet Reconstruction and Spectroscopy

at Hadron Colliders

Pisa, Italy

Introduction and Overview

■ Final states containing jets are an integral part of searches for New Physics at CMS

Many predicted New Physics outside the SM live in this sector:

 Dedicated analyses with jets probe all of these final states using 2010 LHC data (up to 36 pb⁻¹)

*This talk highlights just a few of these searches. For a comprehensive list:

twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Dan Duggan

18/4/2011

New Physics in the Dijet Mass Spectrum

PRL 105 (2010), 211801

Signature Selection

Leading 2 jets in event : M_{ii} > 220 GeV

 $|\eta_{1,2}| \stackrel{?}{<} 2.5, |\Delta \eta_{1,2}| < 1.3$

Narrow resonances decaying to dijets (3 initial-state models):

Quark-quark, quark-gluon, gluon-gluon

New Physics in the Dijet Mass Spectrum

Model-independent limits tested for 7 benchmark resonances Bayesian approach is used to set separate limits for gg, qg and qq

Model	Exclusion regions [TeV]
String resonance (qg, qq, gg)	0.50 - 2.50
Excited quark (<i>qg</i>)	0.50 – 1.58
Axigluon / Coloron (<i>q<mark>व</mark> / qव</i>)	0.50 – 1.17 & 1.47 – 1.52
E ₆ diquark (<i>qq</i>)	0.50-0.58, 0.97-1.08, & 1.45-1.60

Quark Compositeness in Dijet Angular Distributions

- New Physics in dijet angular distributions:
 - \mathbf{z} is related to scattering angle $\mathbf{\theta}^*$ as

$$\chi = e^{2y^*} = \exp(|y_1 - y_2|)$$

- Background from QCD is flat in χ
- Isotropic new physics peaks at low χ

Benchmark Model: quark compositeness

Signature Selection

Leading 2 jets in event :

$$M_{jj} > 250 \text{ GeV}$$

 $|\eta_{1,2}| < 2.5$

$$y_{BOOST} = \frac{1}{2} (y_1 + y_2) < 1.11$$

$$y^* = \frac{1}{2} |y_1 - y_2| < 1.39$$

Dijet χ : Data and Limits

Good agreement between data and NLO QCD found

→ Limits set using modified frequentist approach:

$$CL_{s} = \frac{P_{QCD+CI}(Q \ge Q_{obs})}{1 - P_{QCD}(Q \le Q_{obs})}$$

Observed limit: $\Lambda > 5.6 \text{ TeV}$ Expected limit: $\Lambda > 5.0 \text{ TeV}$

Three Jet Resonances in Multi-Jet **Events**

Searching for strongly coupled resonances decaying to three-jets

Benchmark model: R-parity violating gluino decays (pair-produced + strongly coupled to uds quarks)

Signature Selection

High Jet Multiplicity (≥ 6 Jets) Large event scalar sum p_{τ} (> 425 GeV) No requirement on leptons or MET

Construct Jet M_{iii} **Triplets (20 Combinations)**

For all jet triplets, plot:

$$M_{iii}$$
 vs. $\Sigma |p_T^{jet}|$

Require each to pass: $M_{iii} < \sum |p_T^{jet}| - \Delta$ (Offset)

Three Jet Resonances in Multi-Jet Events

Largest excess seen at 390 GeV/ $c^2 \rightarrow$ significance of 1.9 σ (with look-elsewhere effect)

- 1st limits from the LHC
- Highest limits to date on gluino RPV decays!

9

EXO-11-001

Exclusion for gluino RPV decay:

Observed: $200 < M_g < 280 \text{ GeV}/c^2$ **Expected:** $200 < M_g < 270 \text{ GeV}/c^2$

Expanding the toolbox

For searches past jet-only final states, we include additional objects for more discriminating power!

Define new variable S_T

 $S_T = \sum |p_T| + MET$

Selected Objects

– Lepton requirements:

- Charge pairing of μ/e: Same-Sign (SS) and Opposite Sign (OS)
- Isolation to reject QCD background
- Large Missing E_T

Searches for Leptoquarks

Leptoquarks

- Predicted by many extensions to the SM (TC, GUTs, and more)
- Couple to both quarks and leptons with interaction scale λ
- 3 types of final states possible through pair production: (Ilqq, Ivqq, vvqq)
- * β is the branching fraction Br(LQ \rightarrow Iq)

1st Generation Leptoquarks (e⁺e⁻jj)

arXiv:1012.4031 (hep-ex)
Accepted by PRL

Pre-Selection

At least 2 isolated electrons, each $p_T > 30 \text{ GeV}$ At least two jets, each $p_T > 30 \text{ GeV}$ $M_T(e,e)$ greater than 50 GeV S_T (2 electrons, 2 jets, MET) > 250 GeV

Full Selection

 $M_T(e,e) > 125 \text{ GeV}$ $S_T > f(x)$, where x is LQ mass hypothesis

Dan Duggan

1st Generation Leptoquarks (e⁺v⁻jj)

EXO-10-006

Pre-Selection

Exactly 1 isolated electron with $p_{\tau} > 35 \text{ GeV}$ At least two jets, each $p_{T} > 30 \text{ GeV}$ Missing E_T greater than 45 GeV $|\Delta\Phi(MET,e)| > 0.8$ and $|\Delta\Phi(MET,iet_1)| > 0.5$ No good muons with $p_T > 10 \text{ GeV}$ S_{T} (e, 2 jets MET) > 250 GeV

Full Selection

 $M_{\tau}(e, MET) > 125 \text{ GeV}$ $min(p_{T}(e), MET) > 85 GeV$ $S_T > f(x)$, where x is LQ mass hypothesis

2nd Generation Leptoquarks (μ+μ-jj)

arXiv:1012.4033 (hep-ex)
Accepted by PRL

Pre-Selection

At least 2 isolated muons, each $p_T > 30$ GeV At least two jets, each $p_T > 30$ GeV $M_T(\mu,\mu)$ greater than 50 GeV S_T (2 muons, 2 jets, MET) > 250 GeV

Full Selection

 $M_T(\mu,\mu) > 115 \text{ GeV}$ $S_T > f(x)$, where x is LQ mass hypothesis

2nd Generation Leptoquarks (μ+ν-jj)

EXO-10-008

Pre-Selection

Exactly one muon with $p_T > 35 \text{ GeV}$ At least two jets, each $p_T > 30 \text{ GeV}$ Missing E_T greater than 45 GeV No good electron with $p_T > 15 \text{ GeV}$ S_T (muon, 2 jets MET) > 250 GeV

Full Selection

 $M_T(\mu, MET) > 125 \text{ GeV}$ min(p_T(μ), MET) > 85 GeV S_T > f(x), where x is LQ mass hypothesis

Leptoquark limits

Limits for both 1^{st} and 2^{nd} generation Leptoquarks outperform Tevatron limits for all but very low β

New combined limits:

 $M_{LQ1} > 384, 340 \text{ GeV/c}^2, \beta = 1, 0.5$

New limit from the μμjj channel:

 $M_{LQ2} > 394 \text{ GeV/c}^2$

Search for b'

arXiv:1102.4746 (hep-ex)

Pair produced 4th generation heavy quarks b' → tW → bWW

Signature Selection

2 (3) Leptons with p_T > 20 GeV At least 2 (4) Jets with p_T > 25 GeV

2 SS leptons (3 leptons: 2OS + 1 extra)

Large Missing E_T > 425 GeV

Large S_T > 350 GeV

Closing in on Tevatron limit (m_b , > 385 GeV) with just 34 pb⁻¹

Search for Black Holes

PLB 697 (2011), 434

Microscopic Black Holes

Lifetimes of ~10⁻²⁷ seconds

Decays into wide range of particles

Mostly quarks and gluons

But also γ 's, e's, μ 's, W, Z and more

Cross section proportional to $\pi \cdot R_s^2$

(R_s is the Schwartzchild Radius)

And with extra dimensions (n > 0)

Cross sections accessible at LHC

Signature Selection

Large amount of total energy expected: Construct S_T using all objects with $p_T > 50$ GeV (jets and isolated $\gamma^0/e^\pm/\mu^\pm$) Events divided into object multiplicity bins

Black Holes: Limits

No excess observed in data

Limits are set based on:

Black Hole Mass (M_{BH})

True Planck Scale (M_D)

First direct limits on BH

production at hadron colliders

19

95% CL Black Hole Exclusion Limit

√ Bayesian Technique with flat prior

 M_{BH} : from 3.5 – 4.5 TeV for

 $M_{\rm p}$: from 1.5 – 3.5 TeV

- No discoveries yet for hadronic resonances using 2010 data, however...
 - Well understood backgrounds and datadriven techniques
 - Competitive limits are set in all analyses, and in many cases world's best limits are set
- Already plans for updating results with 2011 data and extending analyses into new channels

Potential for New Physics is right down the road!