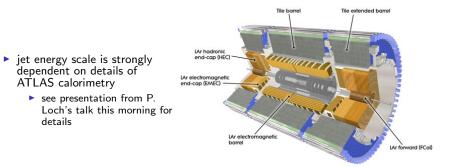
In Situ Measurements of Jet Energy Scale in ATLAS

Doug Schouten^a, for the ATLAS Collaboration

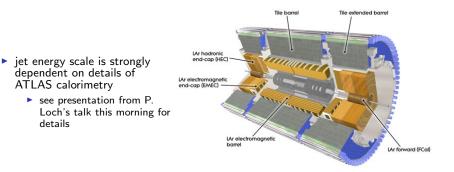
^aSimon Fraser University

PisaJet 2011 - April 18, 2011

Introduction



Introduction



- this talk: jet energy scale derived from 7 TeV collision data^a
- focus for the scale in 2010 was on robustness
 - resolution improvements with offline compensation techniques are forthcoming in ATLAS
 - overall uncertainty will also shrink as *in situ* techniques mature, and data accumulates

^aalso using input from 2004 combined testbeam (CTB) and 900 GeV data

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- response non-compensation (e/h > 1.3 in ATLAS)
- inactive regions, leakage, and punch through
- calorimeter signal definition (noise thresholds, jet width parameter)

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- response non-compensation (e/h > 1.3 in ATLAS)
- inactive regions, leakage, and punch through
- calorimeter signal definition (noise thresholds, jet width parameter)

Definitions

- ▶ the JES is defined for a particular class of "nominal" jets^a:
 - in QCD dijet events (mostly jets from gluons)
 - isolated jets: $\Delta R(jet_i, jet_{j \neq i}) > 2.0$
- and with respect to a particular reference:
 - jets from final state, stable particles^b excepting μ 's and ν 's
 - matched to measured jets in $\Delta R < 0.3$

^bstable is defined as au > 10 ps

^aunless otherwise specified, all results shown are for jets defined with the anti- k_T algorithm[1], with a width parameter R = 0.6, built from 4/2/0 topological clusters

scale

$$p_{T}^{calibrated} = C(E - \mathcal{O}, \eta) \cdot V(p_{T}) \cdot (p_{T} - \mathcal{O})$$

$$\underbrace{\mathsf{EM}}_{\mathsf{scale}} \xrightarrow{\mathsf{plleup}}_{\mathsf{correction}} \underbrace{\mathsf{vertex}}_{\mathsf{correction}} \underbrace{\mathsf{energy}}_{\mathsf{correction}}$$

correction

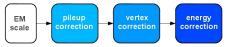
The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

$$p_T^{calibrated} = C(E - \mathcal{O}, \eta) \cdot V(p_T) \cdot (p_T - \mathcal{O})$$

The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A **pileup correction**, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

$$p_T^{calibrated} = C(E - O, \eta) \cdot V(p_T) \cdot (p_T - O)$$



The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A **pileup correction**, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

The vertex correction, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum (p_T^2)$.

$$p_{T}^{calibrated} = C(E - O, \eta) \cdot V(p_{T}) \cdot (p_{T} - O)$$

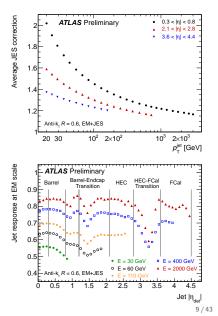
$$\underset{\text{scale}}{\overset{\text{EM}}{\overset{\text{plleup}}{\overset{\text{correction}}{\overset{\text{vertex}}{\overset{\text{correction}}$$

The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A **pileup correction**, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

The vertex correction, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum (p_T^2)$.

Finally, a Monte Carlo based energy correction, $C(E, \eta)$, corrects to the particle level, within $\pm 2\%^{a}$



^aSee extra slides for more details on the procedure for extracting these corrections from the Monte Carlo.

Evaluating the EM+JES

▶ overall strategy: evaluate the JES by factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct

 $^{^1 {\}rm the}$ pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Evaluating the EM+JES

- ► overall strategy: evaluate the JES by factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- so the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E angle_{tower}$ & track-jets	multiple interactions ¹

 $^{^1 {\}rm the}$ pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- translation is non-trivial, but exhaustively cross-checked:
 - 1. threshold effects due to noise suppression,
 - 2. fragmentation model
- E/p measurements for charged hadrons with p < 20 GeV
- ▶ for particles with 20 GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

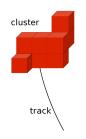
- use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- translation is non-trivial, but exhaustively cross-checked:
 - 1. threshold effects due to noise suppression,
 - 2. fragmentation model
- E/p measurements for charged hadrons with p < 20 GeV
- ▶ for particles with 20 GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

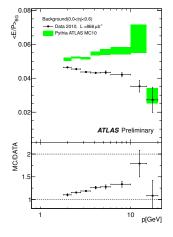
E/p analysis:

- \blacktriangleright select events using minimum bias trigger, using \sim 0.9pb^{-1} of 7 TeV data
- > 20M minimum bias events in Pythia
- collect isolated tracks ($\Delta R > 0.4$) with $p_T > 2 \text{ GeV}^a$
- \blacktriangleright considered systematics: E/p background, CTB \rightarrow in situ, EM scale, detector simulation

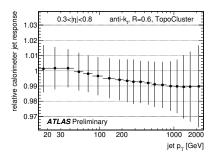
^a for particles with lower p_T , data collected at 900 GeV was used in analagous way

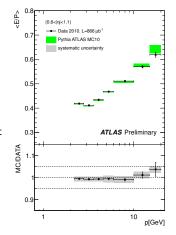
- ▶ select calorimeter cells in topological clusters, within $\Delta R < 0.2^a$ of extrapolated track at each layer
- ▶ neutral background measured by looking in annulus 0.1 < R < 0.2 around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/p > 0.4 \& E_{EM}^{0.1} < 1 \text{ GeV})$
 - discrepancy between MC & data at 7 TeV indicates mismodeling of soft QCD





- ▶ select calorimeter cells in topological clusters, within $\Delta R < 0.2^{a}$ of extrapolated track at each layer
- neutral background measured by looking in annulus 0.1 < R < 0.2 around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/p > 0.4 \& E_{EM}^{0.1} < 1 \text{ GeV})$
 - discrepency between MC & data at 7 TeV indicates mismodeling of soft QCD
- difference between MC & data (right), and uncertainties on *E/p* measurement propagated to jet response (below)





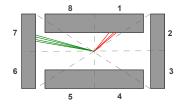
Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E angle_{tower}$ & track-jets	multiple interactions ¹

 $^{^1 {\}rm the}$ pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
 - better knowledge of central geometry
- use matrix method to couple all regions
 - improves statistics since σ falls steeply with $\Delta \eta$

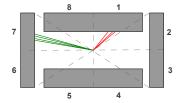


$$A = \frac{p_T^i - p_T^i}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$
$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_i}$$

- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
 - better knowledge of central geometry
- use matrix method to couple all regions
 - improves statistics since σ falls steeply with $\Delta \eta$

$$\mathcal{S} = \sum_{i < j} \left(rac{1}{\Delta \mathcal{R}_{ij}} (lpha_j \left< \mathcal{R}_{ij} \right> - lpha_i)
ight)^2 + \chi(lpha)$$

- minimze S subject to constraint that $\langle \alpha \rangle_{n < 0.8} = 1$
- yields coefficients $\alpha(p_T)|_n \pm \Delta$



$$A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$
$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_i}$$

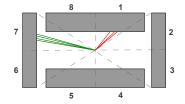
- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
 - better knowledge of central geometry
- use matrix method to couple all regions
 - improves statistics since σ falls steeply with $\Delta \eta$

$$\mathcal{S} = \sum_{i < j} \left(rac{1}{\Delta \mathcal{R}_{ij}} (lpha_j \left< \mathcal{R}_{ij} \right> - lpha_i)
ight)^2 + \chi(lpha)$$

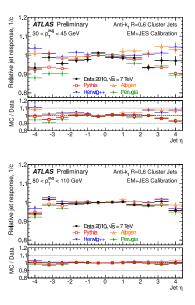
- minimze S subject to constraint that $\langle \alpha \rangle_{n < 0.8} = 1$
- yields coefficients $\alpha(p_T)|_n \pm \Delta$

Intercalibration analysis

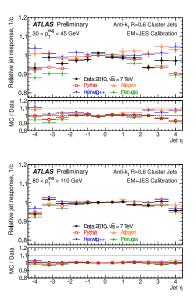
- \triangleright use combination of minimum bias and jet triggers for different p_T regions
- require $\Delta \phi(j_1, j_2) > 2.6$, $p_T^{j_3} < \max(0.15 \, p_T, 7 \, \text{GeV})$



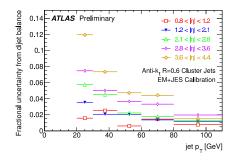
$$A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$
$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}$$



- puzzling inconsistency between Monte Carlo generators
 - compare Herwig++, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune $(2 \rightarrow 2,$ Lund string model)
 - effect is strongest in forward region, at low p_T



- puzzling inconsistency between Monte Carlo generators
 - compare Herwig++, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune $(2 \rightarrow 2,$ Lund string model)
 - effect is strongest in forward region, at low p_T
- use RMS deviation between MC and data as systematic uncertainty \oplus uncertainty in central region



Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
<i>E</i> / <i>p</i> single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E \rangle_{tower}$ & track-jets	multiple interactions ¹

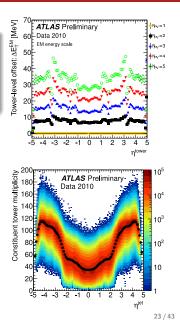
 $^{^1 {\}rm the}$ pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Pileup Correction (derive \mathcal{O})

Offset analysis

- L1 jet trigger, only subleading jets are used to avoid trigger bias
- count N_{PV} using vertices near beam line with $N_{trk}^{p_T > 150 \text{ MeV}} \geq 5$
- two methods for estimating pileup contribution
 - tower-based offset:

$$\mathcal{O}_{jet|tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tower}^{jet} \right\rangle_{\eta}$$



Pileup Correction (derive O)

Offset analysis

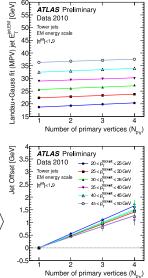
- L1 jet trigger, only subleading jets are used to avoid trigger bias
- count N_{PV} using vertices near beam line with $N_{trk}^{p_T > 150 \text{ MeV}} \geq 5$
- two methods for estimating pileup contribution
 - 1. tower-based offset:

$$\mathcal{O}_{jet|tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tower}^{jet} \right\rangle_{\eta}$$

2. track \leftrightarrow calorimeter jet comparison

$$\begin{aligned} \mathcal{O}_{jet|track}(\eta, N_{PV}) &= \left\langle E_T^{jet}(\eta, N_{PV} | p_T^{track-jet}) \right\rangle - \\ \left\langle E_T^{jet}(\eta, N_{PV} = 1 | p_T^{track-jet}) \right\rangle \end{aligned}$$

technique	systematic uncertainty
tower	26% (~)
jet	34% (~)



Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E angle_{tower}$ & track-jets	multiple interactions ¹

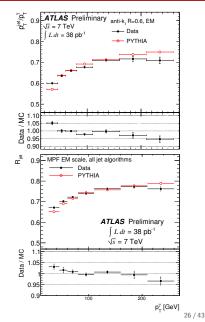
Further, we validate the uncertainty using various other measurements: γ + jet, QCD multijet balancing, and relative track \leftrightarrow calorimeter jet comparisons

 $^{^1 {\}rm the}$ pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

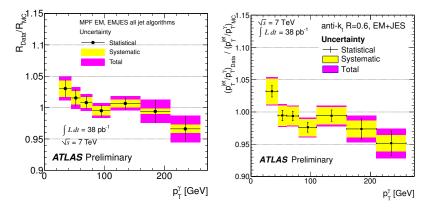
γ + Jet

- jet response probed with two complementary methods¹:
- γ + jet analysis
 - using $\int \mathcal{L} = 38 \text{pb}^{-1}$
 - γ selected based on shower shape, isolation²
 - ▶ back-to-back topology ($\Delta \phi > \pi 0.2$, $p_T^{j_2}/p_T^{\gamma} < 0.1$)
 - considered systematics from: QCD jet background, ISR/FSR mismodelling, γ energy scale, pileup

¹both depend on p_T conservation but are differently sensitive to systematics

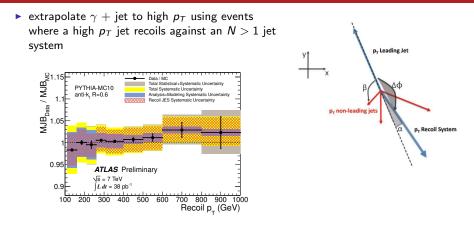


 $^{^2 {\}rm corrected}$ for UE and γ cluster leakage



Monte Carlo : Data comparison for MPF and direct balance, versus p_T^γ

QCD Multijet Balancing



multijet analysis

- $\Delta \phi$ (lead, recoil) > π 0.3, $\Delta \phi$ (lead, closest recoil) $\equiv \beta > 1$
- require $A = p_T^{j_2}/p_T^{recoil} < 0.6$
- exhaustive list of systematics: recoil JES, ISR & FSR, nearby jets, flavor

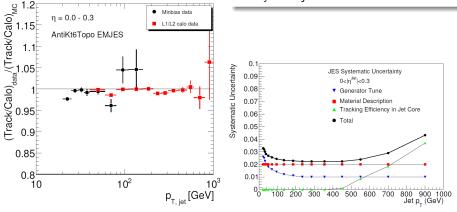
JES Validation

Track \leftrightarrow Calorimeter Jet

Despite uncertainties in jet fragmentation, ratio of charged to total energy is highly constrained

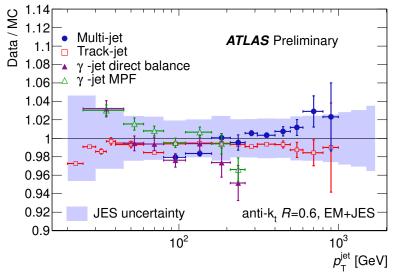
Trackjet analysis

- construct jets from selected tracks and match to jets from calorimeter clusters
- compare distribution of p_T^{track}/p_T^{calo} with Pythia dijet simulation



Conclusions

JES Summary



JES uncertainty for jets in barrel region, with $N_{PV} = 1$

1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel

- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES
 - $\blacktriangleright \gamma + jet$
 - $\blacktriangleright \ track \leftrightarrow calorimeter \ jet \ comparison$
 - multi-jet balancing

- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES

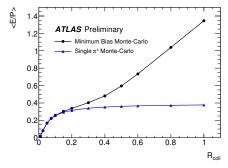
 - track \leftrightarrow calorimeter jet comparison
 - multi-jet balancing
- 3. local calibration schemes are being commissioned
 - results for local and sequential schemes already tested at jet level, and show good resolution improvement
- 4. in situ techniques will improve scale with increased statistics

EXTRA SLIDES

Topological Clustering Algorithm

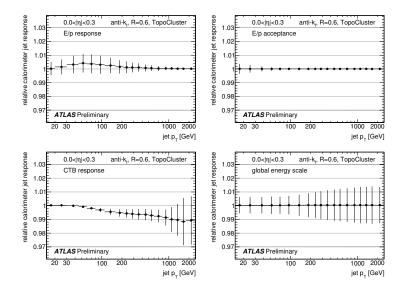
- 1. select cells with $|E|/\sigma > 4$ as seed cells
- 2. collect all cells with $|E|/\sigma > 2$ that are connected to seed cells
- **3.** add in all neighbouring cells (0σ)

Selection of Cone Radius for E/p

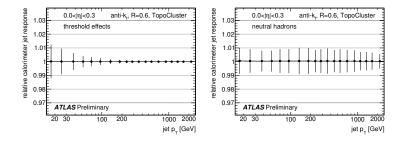


 $\Delta R <$ 0.2 collects \simeq 90% of deposited energy but is simultaneously unaffected by nearby particle showers

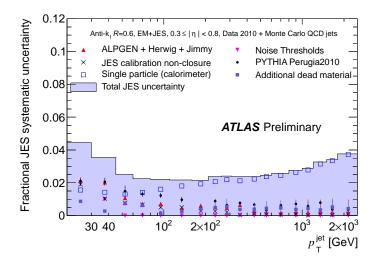
Components of JES Uncertainty from Single Particle Response



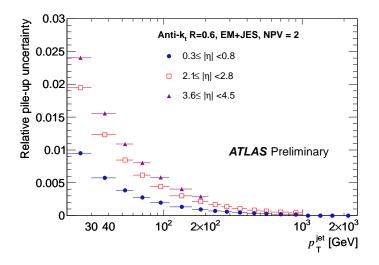
Components of JES Uncertainty from Single Particle Response



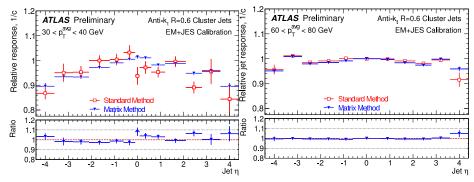
Components of JES Uncertainty in $0.3 < \eta < 0.8$



Relative Uncertainty for Jets in Events with Pileup

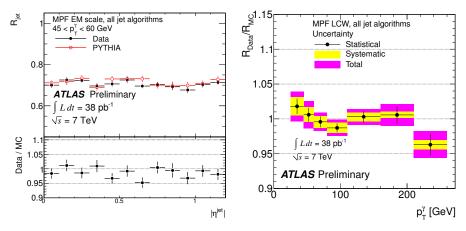


Comparison of Matrix Solution to Reference Method



Compare relative calibration coefficients for the case where only events are used in which a jet is in the central $\eta < 0.8$ and a jet is in a probe region in $\eta > 0.8$, compared to the method where all events are used.

Extra Plots



Validating JES in η with MPF (left) and other calibration scheme, based on local hadronic response correction (right).

- 1. M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].
- 2. ATLAS Jet/ETMiss Conference Notes