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The Tevatron

Tevatron parameters (RunII)
√

s 1.96 TeV
σ(pp̄) ≈ 60 mb
bunch crosses ≈ 1.7 MHz
L 1032 cm−2s−1

pp̄ interactions ≈ 4

hadronic collider (pp̄) at√
s = 1.96 TeV

more than 10 fb−1 expected to
be recorded by CDF and DØ
before October 2011
initial instantaneous luminosity
L often at 300 · 1030 cm−2s−1
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The DØ calorimeter

The DØ detector calorimeter(s):
sampling calorimeter: liquid
argon/uranium CC (|ηd| < 1.1)
and EC (1.5 < |ηd| < 4.2)
inter-cryostate region
equipped with silicon detectors
scintillator preshower
detectors
longitudinally segmented:
electro-magnetic : 20X0

hadronic : 7.2÷ 8.0λI

cells are
≈ ∆η ×∆ϕ = 0.1× 0.1
≈ 4X0 of material in front
wrapping a 2 T magnetic field
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DØ jet algorithm

DØ uses a fixed-cone algorithm to build jets out of calorimeter cells:
the algorithm is iterative and includes “mid-points”
cells are considered to be massless
the “E-scheme” is used:

(
Ejet, ~pjet

)
=
∑

c∈cells (Ec ; Ec ûc)

we use two cone sizes, defined by the parameter
∆R ≡

√
∆η2 + ∆ϕ2:

∆R = 0.5 is used for most of the analyses
∆R = 0.7 is used mostly for di- and tri-jet analyses which have

lower final state multiplicity and care more of
collecting all the energy of the jets

Jet energy scale correction is different for each of the two cone sizes.

An equivalent algorithm can be applied in simulation starting from
stable particles (except µ and ν) instead of calorimeter cells.
We call this a particle jet.
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Quarks, particle jets, reconstructed jets

particle 
showers

hard scattering hadronization reconstruction

quark/
gluon

The goal:
The DØ JES aims to correct the reconstructed energy back to the
energy of the particles, which can in principle be directly measured.
It does not try to quantify the energy of the original gluon or quark.
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Jet energy scale correction

The Jet Energy Scale correction is summarized in this formula:

Eptcl
jet =

Emeas
jet − EO

Rjet Sjet

· kO

kR

(1)

The jet energy at level of particles, Eptcl
jet , is computed

- from the detected energy Emeas
jet (sum of energy from jet cells)

- subtracting the “offset” energy EO from activity alien to the jet
- correcting for the calorimeter response Rjet to the jet particles
- including the energy Sjet from partices fallen out of the jet cone

- with additional correction factors for zero-suppression, response
and offset biases
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Jet energy scale correction

The Jet Energy Scale correction is summarized in this formula:

Eptcl
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Emeas
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R̂jet Ŝjet
· kO

kR
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Energy offset correction

Offset energy:
Energy deposited in the calorimeter, which does not come from the
primary interaction

+ includes apparent energy from calorimeter (esp. uranium) and
electronic noise

+ includes effects from the slow response of calorimeter electronics
(“pile-up”)

+ includes energy from additional pp̄ interactions (MI)
− does not include energy deposited by the p/p̄ remnants not

involved in the hgh Q2 scattering
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Energy offset correction: method

The correction is extacted based on:

Ê ring
O (η,nPV,L) = Ê ring

NP (η,L) + Ê ring
MI (η,nPV,L) (2)

the noise and pile-up energy Ê ring
NP is obtained from “Zero Bias”

events (triggered at a random bunch-crossing) with no
reconstructed primary vertex
the energy from multiple interactions Ê ring

MI is obtained from
“Minimum Bias” events (triggered by an elastic scattering at high
η); to correct a triggered physical event with nPV primary vertices,
the energy Ê ring

MI (η,nPV,L)− Ê ring
MI (η,nPV = 1,L) is used, to

exclude the contribution from the interesting event

The energy offset ÊO of a jet is computed as sum of Ê ring
O according to

its cone radius, either ∆R = 0.5 or 0.7.
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Energy offset correction: results

The observed energy offset can become huge in extreme conditions,
but it is usually below 25 GeV for most of the jets used in the physics
analyses.
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Systematic errors on this correction are very small and dominated by
the error on the bias correction.
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Response correction

Calorimeter response:
Fraction of the energy of the jet particles which is converted and
measured

+ difference in energy response for different particles (esp. hadrons
vs. electrons, since the calorimeter is non-compensating)

+ energy loss due to inactive material (cracks) or uninstrumented
region (inter-cryostate gap)

+ non-linearity caused by zero-suppression
+ energy not detected because converted in nucleon mass
+ non-uniformity of response in different regions of the calorimeter
+ energy leaking beyond the calorimeter (“punch through”)
− undetected energy from muons and neutrinos is not added at this

stage
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Two-body processes X+jet

To evaluate the calorimeter response, a tag and probe method is used;
we use two-body events, which have the simplest topology:

γ+jet is the most important process, defining a relation between
jet energy and another energy, the one supposedly well
measured of the photon. Photon identification criteria
used here are very tight

di-jet is used to enhance statistics for the estimation of the
uniformity of the response

Z (→ e+e−)+jet has not been used because of low statistics
Events are required to have a very low number of reconstructed
primary vertices and the two bodies are required to be back to back
(∆ϕ ≥ 3 rad).
Instead of the jet energy, subject to conspicuous uncertainties, to
parametrize our corrections we use the quantity:

E ′ ≡ ptag
T cosh ηprobe (3)

where the momentum of the tag is fully corrected.
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Response: Missing ET Projection Fraction

the MPF provides
an estimation of the
ratio between the
response of the
probe and the tag
it does not depend
on the probe jet
algorithm
the jet response Rjet
is equal to the recoil
response Rhad not
better than at
percent level
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Response in the central calorimeter

The first step for the response correction is the absolute response:

exclusively from very clean
γ+jet events (and di-jet
contamination is corrected for)
relates the response of very
central jets (|η| ≤ 0.4) to the
well known photon energy
increases with the energy
(because of more π0 → γγ)
parametrized as P2 (log E ′/E0)

main uncertainties: γ energy
and di-jet contamination
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This response is extrapolated to higher energies using simulation.
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Relative response anywhere in the calorimeter

The second step for the response correction is the relative response:

from very clean γ+jet and di-jet
events
relates the response of any part of
the calorimeter to the very central one
the tag object has |η| ≤ 0.4, the probe
jet can be up to |η| ≤ 3.6
shows strongly reduced response in
the inter-cryostate region
response from γ+jet and di-jet events
is very different due to the different jet
composition
the main uncertainty comes from the
response parametrization in E ′ and η
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Out-of-cone energy

Out-of-cone energy:
Energy contributed or lost due to the cone geometry.

+ energy of particles from the jet which fell outside the jet cone
+ energy of particles alien to the jet which fell inside the jet cone
+ energy of particles from the jet so weak that they never reached

the calorimeter due to the magnetic field
− does not include energy from gluon radiation at large angles
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Out-of-cone energy estimation method

a energy profile is defined as the energy of
particles within a given radius δR from the jet
axis: E (R) =

∑
δR<R Eparticles

three profiles are extracted from simulation for:
particles from the jet: EMC

from-jet (R)

particles not from the jet: EMC
non-jet (R)

offset energy: EMC
ofs (R)
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The correction for a jet of cone ∆R (either 0.5 or 0.7) is:

Ŝjet =
EMC

from-jet (δR < ∆R)

EMC
from-jet

+
α

β

EMC
non-jet (δR < ∆R)

EMC
from-jet

(4)

The first and second ratio describe the fraction of the measured
energy of the particles, respectively from the jet and alien to the jet,
falling inside the ∆R cone. The global parameters α and β are
simulation-to-data energy scale factors for the two categories of
particles.
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Out-of-cone energy measurement

γ+jet sample is used for data
and for the simulation
an energy profile is extracted
from data as well
the energy scale parameters α
and β are estimated by a
template fit on EMC (δR < 0.2)

the correction is extracted for
different E ′ and η
some relevant uncertainties
are the simulation of the gluon
radiation, statistics for
templates and the purity of the
γ+jet sample
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Jet Energy Scale uncertainty

at the end of the Jet Energy Scale
measurement, dozens of sources of
uncertainty can and have been
identified and included
the largest contribution to the
uncertainty comes from the largest
component of the correction, the
response
a few of the contributions can be
reduced by expanding the simulation
samples, much more by collecting
and analysing more data
as time goes, detector performances
change, as do accelerator’s: it is not
always possible to combine additional
data to the existing measurement
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Comparison between data and simulation

for a sizeable number of
analyses the consistency of
JES between data and
simulation is more important
than the correctness of its
absolute scale
consistency is verified on a
γ+jets sample
the simulated sample is
contributed by both γ+jets and
QCD processes, proportionally
to the estimated purity in data
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Summary

in an hadron collider, Jet Energy Scale is of capital importance for
most analyses
the complete treatment of the measurement is complex (and in
this talk a lot of corrections were not even mentioned)
at DØ we can estimate the Jet Energy Scale with a precision of
O (2%) in most of the regions
we are updating the measurement as new data becomes
available, although the combination of different data epochs can
be tricky due to changes in configuration of the detector and
simple aging
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Backup
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Calorimeter readout: zero suppression

To save bandwidth and storage space,
calorimeter readout is «zero-suppressed»:

1 each cell has its noise (quantified as
RMS σ of ADC count)

2 readings below 1.5σ are discarded by
hardware

3 readings below 2.5σ are discarded by
software

4 cells above 2.5σ are included only if
they have a neighbor (in 3D) with
reading above 4σ

This is a source of energy loss on
reconstructed objects.
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Energy offset correction: zero-suppression bias

Energy deposits from an interesting event which would be ignored
because of the zero-suppression can be saved by the presence of
additional energy from other interactions.

in order to correct this bias,
simulation is used, comparing
the energy deposit of a γ+jet
simulated event:

with no minimum bias
overlay (the reference
energy)
with minimum bias overlay
(what we actually measure)

This bias (shown in the plot as function of jet energy) is found to be of
a few percent.
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DØ jet algorithm

The algorithm used in DØ is fixed-cone in ∆R ≡
√

∆η2 + ∆ϕ2 with
midpoints:

1 cell towers are defined as pseudo-projective groups of
(unsuppressed) cells, with ∆η ×∆ϕ = 0.1× 0.1

2 the reconstructed interaction vertex is then used as projection
point

3 proto-jets are created drawing cones of radius ∆R around seeds
(high-pT towers, plus additional mid-points), using the
«E-scheme» (pjet =

∑
c∈cells

(
Ec , ~pc

)
, cells are massless)

4 the process is repeated using cones around the newjet axes until
the result is stable

5 the overlapping proto-jets are either split or merged, depending on
the shared energy

6 jets with pT < 6 GeV/c are discarded

back to algorithm summary
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A photon

a cluster of cells mostly (96%) in the e.m. calorimeter
reconstructed within the fiducial region of the calorimeter
associated with no tracks
isolated respect to other clusters in the calorimeter
isolated respect to reconstructed tracks
has reconstructed positions from the preshower detector and from
the calorimeter close (to suppress π0 → γγ)
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