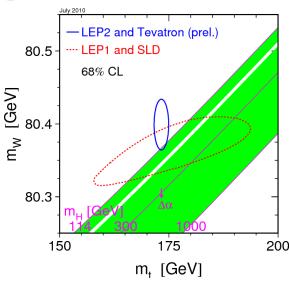
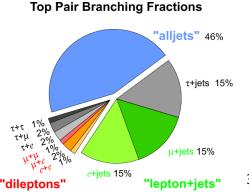
Top and top-pair mass measurements at CMS

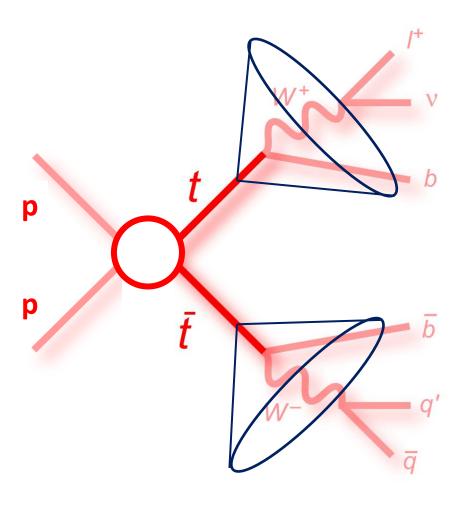
Outline


- Introduction
- The top mass in the di-lepton channel (TOP-10-006)
 - ➤ Experimental challenges at the LHC
- The top-pair mass in the semi-leptonic channels
 - Standard reconstruction techniques (TOP-10-007)
 - ➤ Tools for boosted top reconstruction (JME-10-013)
- Outlook

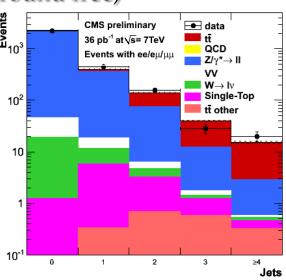


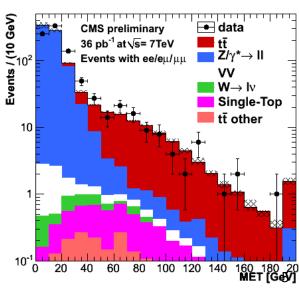
Introduction

- Top physics is one of the main pillars of the physics program at the LHC
 - ➤ The top quark is intriguing
 - The heaviest fundamental particle known
 - The only quark not hadronizing
 - ➤ The top mass is a fundamental parameter of the Standard Model (SM)
 - Whose precise knowledge allows to constrain the model itself and predict the Higgs boson mass (in the frame of the SM)
- The top quark represents a potential portal to physics beyond the SM
 - "Strongly" coupled to the Higgs/EWSB sector
 - Many models predict favorable couplings to the third family
- Top physics needs a full understanding of all detector components
 - Muons, electrons, MET, jets
 - ➤ The hadronic component of top-pair events is particularly crucial for the full event reconstruction
 - o Jet energy scale and resolution
 - Jet pairing
 - Heavy flavour tagging
 - Jet substructure reconstruction



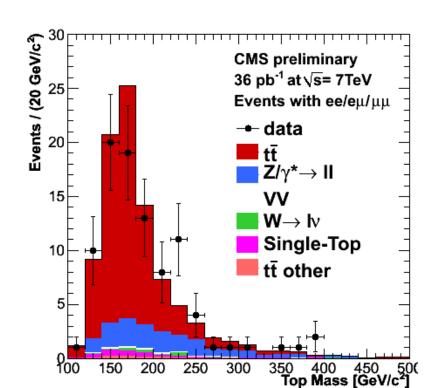
The top mass

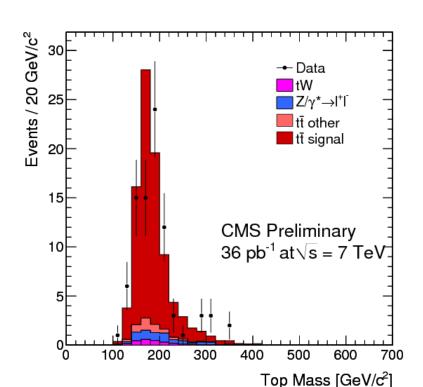



Top mass: event selection

- CMS performed the first measurement of the top mass outside Tevatron
 - Di-lepton channel (low cross-section, but more background free)
- Event selection is straightforward
 - \triangleright 2 isolated, prompt, opposite charge leptons with p_T>20GeV/c and $|\eta|$ <2.5
 - For same flavour leptons, $|m(\ell \ell)-m_Z|<15$ GeV/ c^2
 - ightharpoonup Two or more jets with p_T>30GeV/c and $|\eta|$ <2.5
 - b-tagging is not used for selection, but used for ranking the jets which enter the mass reconstruction
 - \blacktriangleright MET>30(20) GeV for the ee/ $\mu\mu$ (e μ) channels

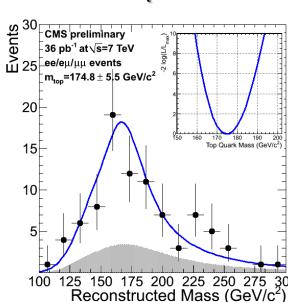
Selection cut	Data	Total expected	$tar{t}$ signal	Total background	
pre-tagged sample					
≥2 isolated leptons	27257	28934 ± 49	158.8 ± 0.9	28775 ± 49	
opposite sign	26779	28545 ± 42	157.3 ± 0.9	28388 ± 42	
Z/quarkonia-veto	2878	2873 ± 27	139.3 ± 0.8	2734 ± 27	
≥2 jets	204	193 ± 2	103.1 ± 0.7	90 ± 2	
₽ _T	102	$108.5 \pm 0.9 ^{+3}_{-2}$	$92.1 \pm 0.7 ^{ +2}_{ -1}$	$16.3 \pm 0.7 {}^{+1}_{-1}$	

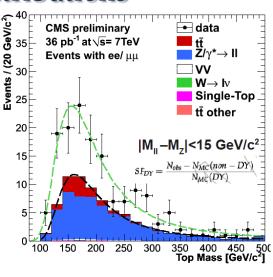


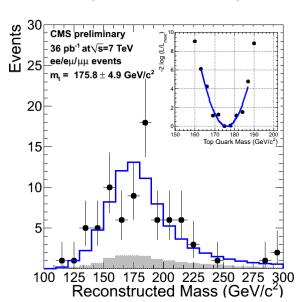


Top mass: event reconstruction

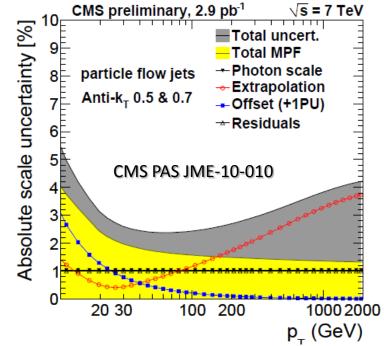
- Two partially independent methods solving the event equation
 - ➤ Impose equality of "top" masses and the W mass constraints
 - ➤ Do it for every lepton-jet combination in the event
 - Favour b-tagged jets
 - ➤ Iterate for several mass hypotheses, keep the highest weight solution


Top mass: template fitting




- Use template fitting to extract m_t from the mass distributions
 - Signal is taken from MC predictions at different m_t
 - ➤ Background parametrized with MC and data
 - Single top, tt, W+jets, di-boson from MC
 - Z+jets in di-leptons from data
 - Scale factor from mass distributions inside the Z peak

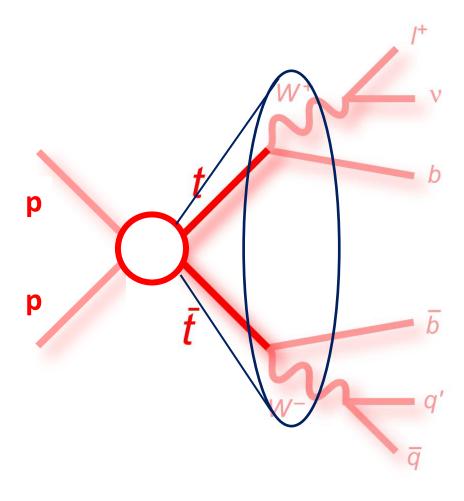
- ➤ Combine 0, 1, >=2 btag in the fit
- ➤ Methods crosschecked to be linear in m_t and with small bias (corrected for)
- ➤ The analyses provide compatible results



Top mass: results

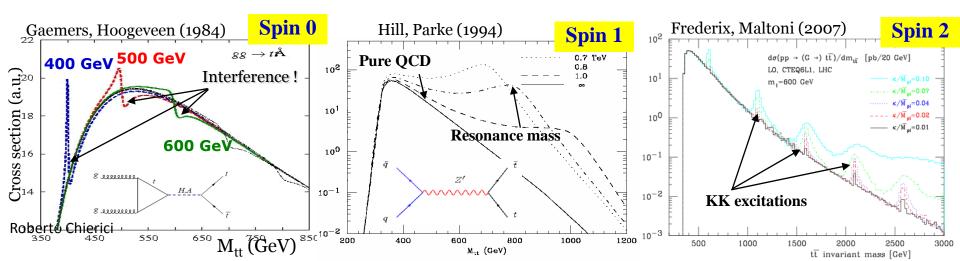
- JES is the most relevant systematic error
 - ➤ Flavour specific uncertainties accounted for
- MC modelling also accounted for
 - ➤ Radiation, PS-ME matching thresholds
 - Different generators, UE tunes, Pile-up

Source	KINb	AMWT
jet energy scale	+3.1/-3.7	3.0
b-jet energy scale	+2.2/-2.5	2.5
Underlying event	1.2	1.5
Pileup	0.9	1.1
Jet-parton matching	0.7	0.7
Factorization scale	0.7	0.6
Fit calibration	0.5	0.1
MC generator	0.9	0.2
Parton density functions	0.4	0.6
b-tagging	0.3	0.5

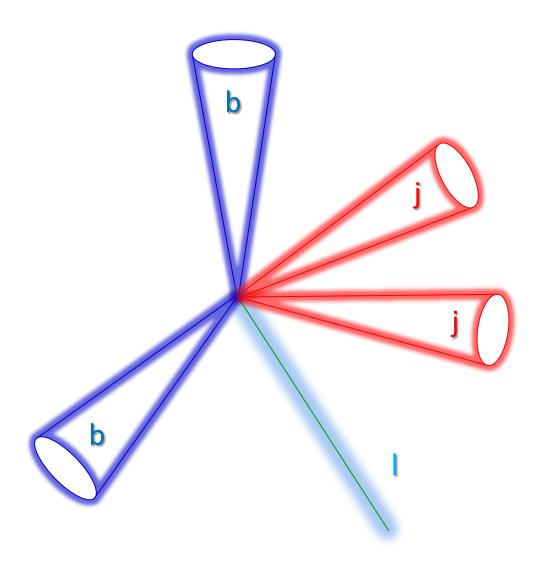

- Analyses are combined by using BLUE
 - Statistical correlation determined via pseudo experiments to be 0.57
 - Statistical and systematic errors already of the same size

Method	Measured m_{top} (in GeV/ c^2)	Weight
AMWT	$175.8 \pm 4.9(stat) \pm 4.5(syst)$	0.65
KINb	$174.8 \pm 5.5(stat)^{+4.5}_{-5.0}(syst)$	0.35
combined	$175.5 \pm 4.6(stat) \pm 4.6(syst)$	$\chi^2/dof = 0.040 \text{ (p-value} = 0.84)$

The top-pair mass



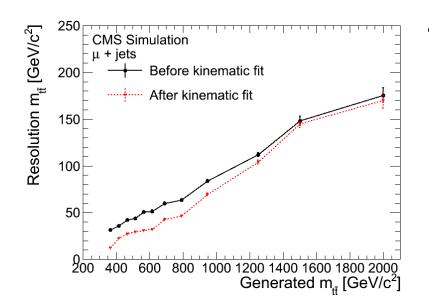
Why is that interesting?

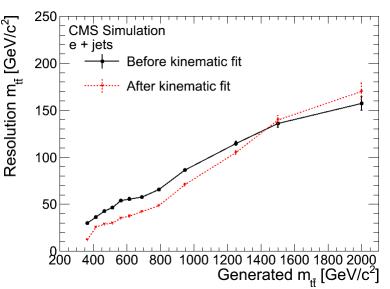

- Studying m(tt) is particularly important in many respects:
 - ➤ As a measure within the SM
 - o top pair kinematics
 - indirect probe of the top mass
 - ➤ Undiscovered heavy s-channel resonances can decay to a pair of top quarks
 - MSSM Higgs (spin o) (H/A, if mH,mA>2mt, BR(H/A \rightarrow tt) \approx 1 for tan $\beta\approx$ 1)
 - Technicolor, strong EW SB, Topcolor (spin 1)
 - KK excitations (spin 2)
 - Distortions in the top pair mass distributions are predicted by other models
 - Associated production of invisible scalars, SUSY, ...

Standard reconstruction -moderate top boost-

Event selection and yields

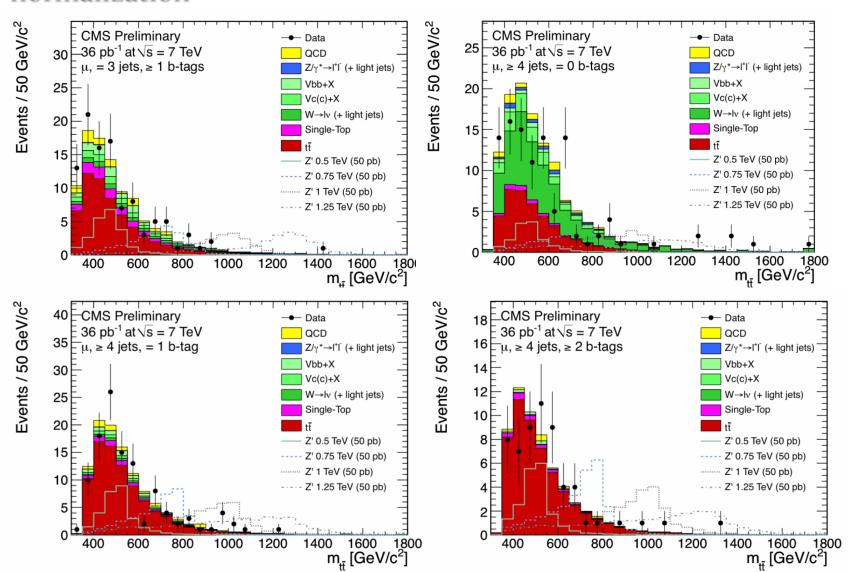
- Focus on semi-leptonic events with an electron or a muon
 - ➤ Single muon/electron trigger and good primary vertex
 - ➤ One isolated lepton in the acceptance with p_T>20GeV/c (30 GeV/c for electrons), veto on a second isolated lepton
 - \triangleright At least three (four) jets with p_T>70/50/30(/30)GeV/c and $|\eta|$ <2.4
 - ➤ MET>20 GeV
- Yields in agreement with the expectations
 - ➤ Divided into jet+btag (SV) bin multiplicities
 - ➤ All then taken from MC, with exception for QCD, taken from data estimates


Yields	t t	W/Z+LF	W/Z+HF	Single-top	QCD	Data	Sum BG
μ 3j1t	96.9 ± 0.6	7.9 ± 0.2	28.6 ± 1.1	11.6 ± 0.1	8.2 ± 8.2	142 ± 11.9	153.2 ± 8.3
μ 4 j0t	40.4 ± 0.5	62.8 ± 2.2	25.0 ± 1.0	2.5 ± 0.1	4.5 ± 4.5	107 ± 10.3	135.1 ± 5.1
μ 4j1t	84.8 ± 0.6	3.8 ± 0.1	12.5 ± 0.7	4.2 ± 0.1	5.1 ± 5.1	112 ± 10.6	110.5 ± 5.2
μ 4j2t	51.6 ± 0.4	0.1 ± 0.0	2.4 ± 0.2	2.0 ± 0.0	1.0 ± 1.0	58 ± 7.6	57.1 ± 1.1
e 3j1t	80.3 ± 0.6	5.4 ± 0.1	22.8 ± 1.0	8.5 ± 0.1	9.4 ± 9.4	114 ± 10.7	126.4 ± 9.5
e 4j0t	31.8 ± 0.4	47.0 ± 1.9	19.1 ± 0.9	1.9 ± 0.0	10.8 ± 10.8	106 ± 10.3	110.4 ± 11.0
e 4j1t	66.7 ± 0.5	2.8 ± 0.1	9.0 ± 0.6	3.2 ± 0.1	3.0 ± 3.0	80 ± 8.9	84.7 ± 3.1
e 4j2t	40.9 ± 0.4	0.1 ± 0.0	2.1 ± 0.2	1.5 ± 0.0	0.1 ± 0.1	50 ± 7.1	44.6 ± 0.5



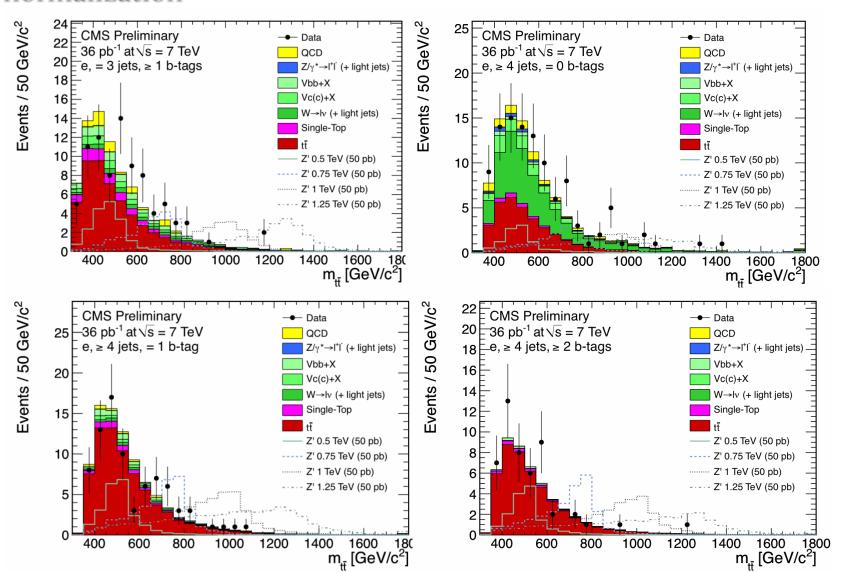
Event reconstruction

- Reconstruct neutrino p_Z component by using the W mass constraint
- Associate jets to form the two top systems
 - \triangleright Use a $χ^2$ method with information from the hadronic and leptonic reconstructed masses, the p_T of the tt system, the H_T of the event
- Four jet events: apply a full kinematic fit
 - Exploit known top and W masses
 - Use jet resolutions from simulation
- Improve the resolution and linearity on m(tt) in most of the interesting range



Muon+jets m(tt) distributions

 Data is superimposed to MC expectations and Z' signals in arbitrary normalization



Electron+jets m(tt) distributions

 Data is superimposed to MC expectations and Z' signals in arbitrary normalization

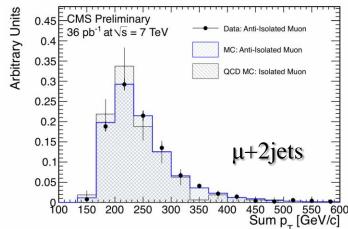
Statistical treatment

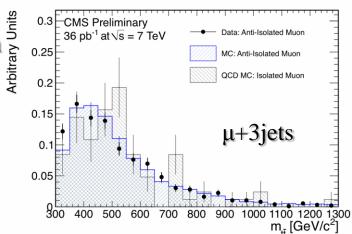
Mass distributions modeled by templates for signal and background

$$n_k(m_{t\bar{t}}, \vec{\sigma}^r, \vec{\sigma}^s) = N_k^{signal}(\vec{\sigma}^r, \vec{\sigma}^s) \cdot \operatorname{pdf}^{signal}(m_{t\bar{t}}, \vec{\sigma}^s) \cdot \operatorname{pdf}^{background}(m_{t\bar{t}}, \vec{\sigma}^s)$$
 shape-changing nuisances $+ \sum_i N_{ki}^{background}(\vec{\sigma}^r, \vec{\sigma}^s) \cdot \operatorname{pdf}^{background}(m_{t\bar{t}}, \vec{\sigma}^s)$, rate-changing nuisances

- Fully bayesian approach, all uncertainties are included as nuisance parameters modifying the templates in rates and shapes
- Gaussian or log-normal priors
- Shape changing nuisances extrapolated bin-by-bin by fitting the variation as a function of the systematic source with cubic functions
- ➤ Full marginalization over nuisances is granted via a numerical integration using Markov chains MC
- Background rates and shapes taken from both MC and data
 - All reference rates and shapes, except for QCD, taken from MC
 - QCD constrained with data

Uncertainty	Variation	Type
Luminosity	4%	rate
Electron efficiency (trigger + ID + isolation)	5%	rate
Muon efficiency (trigger + ID + isolation)	5%	rate
tt cross section	20%	rate
Single top cross section	30%	rate
W+jets cross section	50%	rate
Ratio Drell-Yan to W cross section	30%	rate
Ratio W/Z+HF to σ (W)	100%	rate
Muon QCD yield	100%	rate
Electron QCD yield	100%	rate
Jet energy scale	$p_{\rm T}$, η dependent	shape
Jet energy resolution	10%	shape
Unclustered energy	10%	shape
b tagging efficiency (b jets)	15%	shape
b tagging efficiency (c jets)	30%	shape
Q ² scale for W and Drell-Yan events		shape
t t modelling		shape
Q^2 scale for t t events		shape
Amount of ISR/FSR for tt events		shape
Matching scale for tt events	_	shape

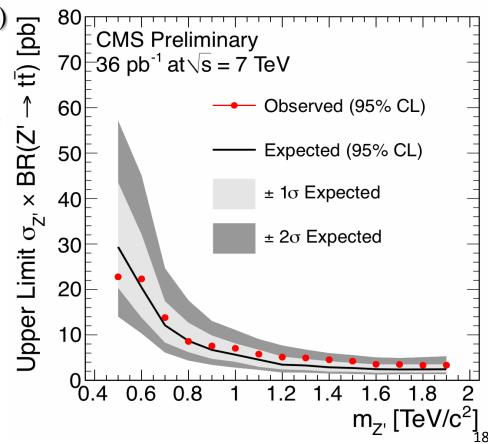

Determining the QCD component



- Use control regions enriched in QCD to determine shape and difference in rate with respect to the MC predictions
 - Electron: fit to the relative isolation of the lepton extrapolated to signal region

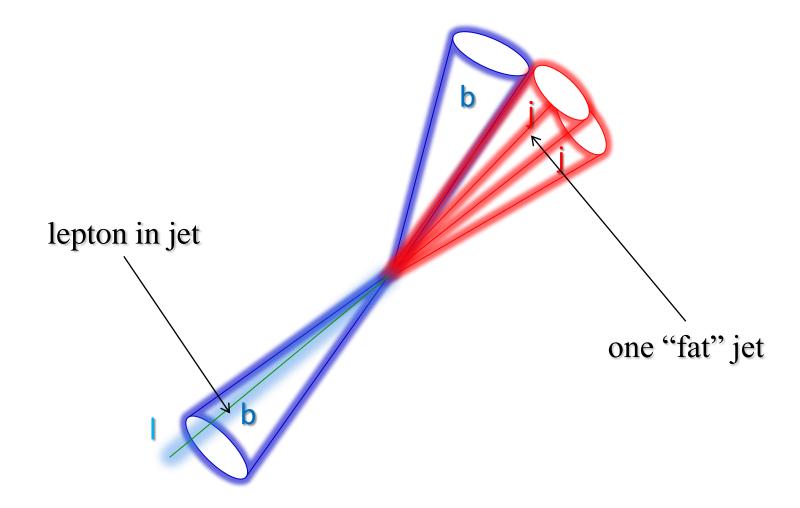
➤ Muon: matrix method using the lepton relative isolation and the (x,y) distance to the primary vertex

- Factor ~two underestimation of the QCD component by the MC
- Shapes are studied in the control regions
 - Verify data and MC shape agree in the control regions (dominated by QCD)
 - Fegions (dominated by QCD)
 Verify m(tt) is not correlated with the definition of the control region
 - ➤ Use the shape of data in the control region to describe QCD in the signal region


Results

- No observed excess of events in the mass range in reach
- Bayesian integration over nuisances to derive 95% upper limits
 - ➤ Use all data collected in 2010, corresponding to 36/pb
- Limits presented in terms of the production cross-section x BR of a Z'
- imits presented in terms

 ➤ Narrow width hypothesis (Γ/m<10%)

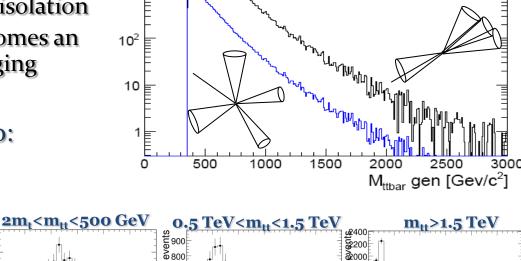

 ➤ Expected and observed limits are in good agreement
 - ➤ No observed significant discrepancy with respect to the SM expectations
 - Exclusion possible for models predicting cross sections of about 10 pb for masses about 1TeV

Boosted tops!

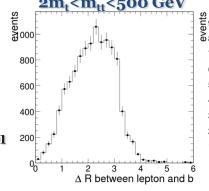
Boosted tops

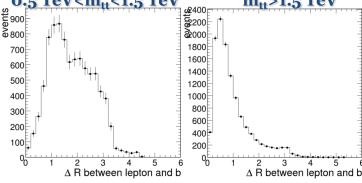
- 100 pb

- CMS prepares to cover all portions of the phase space for top-pair production
 - adapt to final state configuration that are very different from threshold top-pair production


 10^{3}

- The event kinematics drastically change as a function of m(tt)
 - ➤ Leptons progressively loose their isolation
 - ➤ Individual jet reconstruction becomes an issue because of (partial) jet merging
- This imposes stringent requests to:
 - Event triggering
 - Event reconstruction


- ➤ Identify jet substructures
- Based on:


Kaplan et al: Phys. Rev. Lett. 101, 142001 Ellis et al: Phys Rev. n D80 (2009)

QCD tt

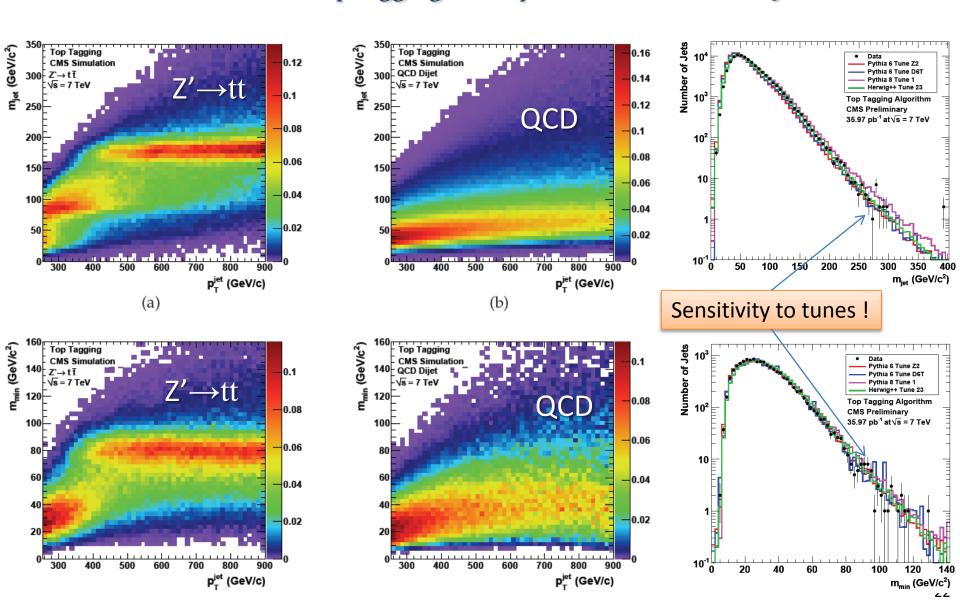
Alpgen

Top tagging in a nutshell

- Cambridge-Aachen (C-A) is a κ_T like algorithm:
 - Finds the min d_{min} of $\{d_{ij}, d_{iB}\}$ for all pairs. If d_{min} is a d_{ij} merge the pair, if it is a d_{iB} then final jet
 - κ_{T} algo: n=2. Anti- κ_{T} : n=-2. C-A: n=0 (no κ_{T} weighing)

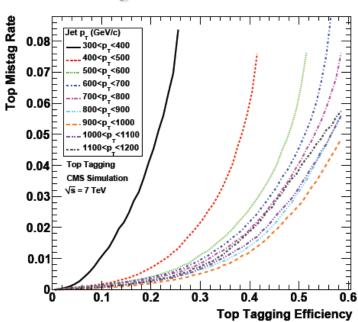
 κ_{T} of particle i w.r.t. beam axis w.r.t. particle j w.r.t. particle j $d_{ij} = \min(k_{\mathrm{T},i}^n, k_{\mathrm{T},j}^n) \frac{\Delta R_{ij}^2}{R^2}$ $d_{i\mathrm{B}} = k_{\mathrm{T},i}^n$

- The top tagging C-A (modified) algorithm (for boosted tops):
 - \triangleright 1. Cluster all with R=0.8, consider only hard jets with p_T>250 GeV, |y|<2.5
 - 2. Decomposition of the jets into pieces:
 - o find iteratively 2 "parent jets" with more than 5% the energy of the jet
 - o if only 2 jets are found in a), find 2 "grandparents" with the same procedure.

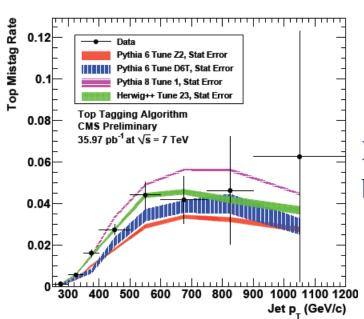

 Decomposition successful if at least one of the parent has two subjets.
 - ➤ 3. Kinematic standard conditions for the decomposed jets
 - Mass m_{iet} of the 4vector sum of the towers of the initial jet between 100 and 250 GeV.
 - \circ The min invariant mass m_{min} of all the subjet pairs is required to be larger than 50 GeV.
- The jet pruning algorithm
 - At each step of the C-A clustering sequence cuts are imposed to avoid too soft and too large-angle pairings $z_{ij} \equiv min(p_{T,i}, p_{T,j})/p_{T,p} < z_{cut}$
 - \circ Reject soft radiation at large angle $\Delta R_{ij} > D_{cut}$

m_{jet} and m_{min}

Main variables for the top tagging already well understood in QCD data



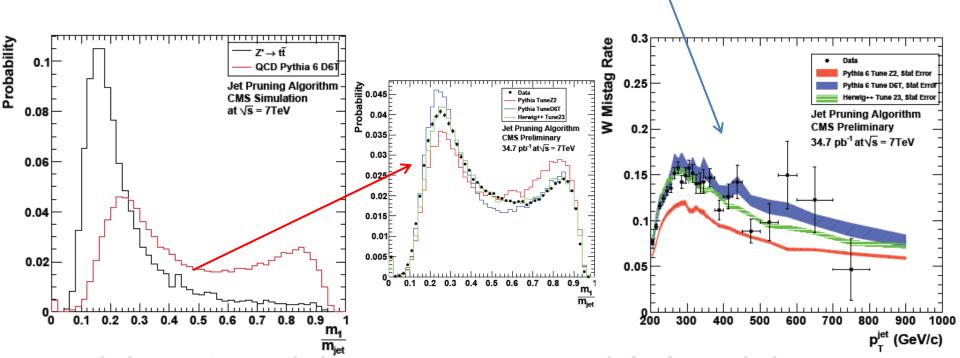
Mistag rate from data


- The algorithm's parameters can be varied to optimize its performance
 - Plot results in a 2D way showing top efficiency versus fake rate
 - allow a better and more direct comparison between different algorithm
 - allow a choice of a working point of the algorithm and efficiency defined w.r.t. the jets matching a jet decaying hadronically Top efficiency defined w.r.t. the jets matching a top jet decaying hadronically
 - Mistag rate defined w.r.t. QCD jets
 - Optimization done by minimizing the mistag rate at a certain efficiency by changing the cuts

on m_{iet} and m_{min} thia 6 Tune Z2, Stat Error Pythia 6 Tune D6T, Stat Error Pythia 8 Tune 1, Stat Error

Mistag rate can be directly determined from data by selecting anti-tag and probe in QCD events

- Use di-jet topologies
- Good agreement with predictions from simulation



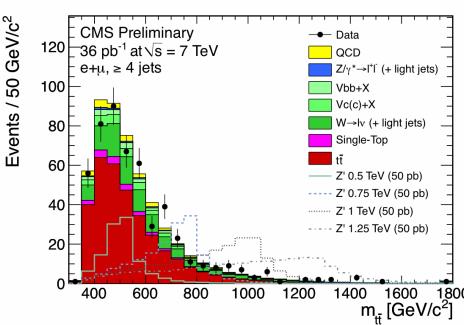
W tagging

- A jet pruning algorithm with the requirement of a two-jet substructure
 - With 60 GeV/ c^2 <m_{iet}<100 GeV/ c^2
- Extra conditions applied to the "mass drop" and the "p_T asymmetry"
 - ightharpoonup Mass drop: $m_{highest pT}/m_{jet}$ (typically required to be <0.4)
 - ho_T asymmetry: min($p_{T_1}^2$, $p_{T_2}^2$) $\Delta R_{12}^2/m_{jet}^2$ ensures a minimum energy to the less energetic subjet
- Mistag rate can already be measured with QCD data (tag and probe in di-jet)
 - Extremely good accord between data and MC expectations

Summary and outlook

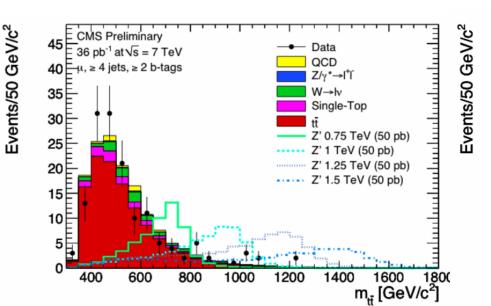
- The CMS program for exploiting top events for precision physics or for beyond the Standard Model searches is well under way
- Jet reconstruction, tagging, pairing, substructures are key aspects for a complete analysis of top-pair production at the LHC
 - Top physics at CMS addresses all of them in the top mass and top-pair mass analyses
- Analyses with these reconstruction techniques are applied to 2010 data
 - Top mass determined in the leptonic channel
 - Semileptonic channels under way
 - Top-pair mass distribution in the semi-leptonic channels
 - Analysis with standard reconstruction shows no presence of new physics so far
 - Boosted top (and W) tagging techniques are validated with QCD data and ready to be exploited
- Excellent performance of detector and simulation so far
 - CMS is ready for the increase in statistics in 2011

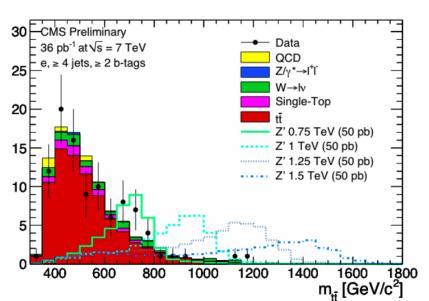
Backup



M(tt) distributions

- Electron and muon channels added up together
 - Distributions to be taken with grain of salt: limits are not derivable from these





Crosscheck analysis for m(tt)

- A simpler analysis is used for crosschecking the m(tt) result
 - ➤ Different (looser) lepton isolation to grant high efficiency in moderately boosted top configurations
 - > Jet b-tagging is used as a selection criteria (no optimal use of all information)
 - Background directly derived from data by definition of "side-bands" regions obtained by inverting the b-tagging condition
- Limits in accord with the reference analysis. Minor expected sensitivity

