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Jet energy scale = How fo interpret calorimeter signals?
(far from trivial!)

Outline:

General aspects of the calorimeter response to jets

Calibration misery

Failing Monte Carlos

The future of hadron calorimetry

e Conclitsions



The physics of hadronic shower development

" A hadronic shower consists of two components
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» [mportant characteristics for hadron calorimetry:

» Large, non-Gaussian fluctuations in energy sharing em/non-em

» Large, non-Gaussian fluctuations in “invisible” energy losses
(e.g. 100 GeV m: energy resolution ZEUS 3.5%, D0 7%)



The calorimeter response to the two shower components
is NOT the same

(mainly because of nuclear breakup energy losses in non-n° component)
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This effect is quantified by the e/l ratio. For example, in crystal
calorimeters, e/h ~ 2, i.e. 50% of the non-em energy deposit is invisible
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its effects on calorimeter preformance



The electromagnetic component of hadron showers

Characteristics affecting calorimeter performance in crucial ways
Let f,,, (= Eem/Etot) be the em shower fraction

Characteristic Consequence for calorimetry

o <fem> increases with energy Hadronic signal non-linearity



The em shower fraction, f,, (1)
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The electromagnetic component of hadron showers

Characteristics affecting calorimeter performance in crucial ways
Let f,,, (= Eem/Etot) be the em shower fraction

Characteristic Consequence for calorimetry

o <fem> increases with energy Hadronic signal non-linearity

e Fluctuations in f,,, non-Poissonian Non-Gaussian response function
Deviations from E-12 scaling



The em shower fraction, f, (2)
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The em shower fraction, f,,, (3)
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n° effects in a calorimeter with e/h = 1.5
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The electromagnetic component of hadron showers

Characteristics affecting calorimeter performance in crucial ways
Let f,,, (= Eem/Etot) be the em shower fraction

Characteristic Consequence for calorimetry

o <fem> increases with energy Hadronic signal non-linearity

e Fluctuations in f,,, non-Poissonian Non-Gaussian response function
Deviations from E-12 scaling

e Differences betweenp and 1t Differences in response
Differences in response function



The em shower fraction, f, (%)
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The electromagnetic component of hadron showers

Characteristics affecting calorimeter performance in crucial ways
Let f,,, (= Eem/Etot) be the em shower fraction

Characteristic Consequence for calorimetry

o <fem> increases with energy Hadronic signal non-linearity

e Fluctuations in f,, non-Poissonian Non-Gaussian response function
Deviations from E -2 scaling

e Differences between p and & Differences in response
Differences in response function

e Em component distributed No “characteristic” profiles
over entire shower development



Signal (arbitrary units)

Calibration problems for hadronic shower detection

n° production may take place anywhere in the absorber
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Calibration

The pitfalls of longitudinal segmentation



Calibration of longitudinally segmented devices

- Imagine a Cherenkov calorimeter, e.g. lead glass

- High-energy electrons develop showers in this

- On average, 10 p.e. per GeV deposited energy
100 GeV e gives a signal of 1000 p.e., } :T

20 GeV e gives a signal of 200 p.e., etc. r +
- Shower particles < 0.3 MeV give NO C light

- The relative contribution of such particles increases with depth

- If this detector is cut into 3 parts, the relationship between deposited energv and resulting

signal is then, e.g.
[:15 p.e/GeV II:10 p.e/GeV II: 5 p.e/GeV

These constants have been derived for 100 GeV e, which deposit, on average, 30/40/30%
in these 3 parts, and thus give, on average, a signal of 1000 p.e., as before

- However, a low-energy shower deposits most of its energy in part I. Based on these

calibration constants, its energy is OVERESTIMATED

- And for an em shower starting in section Il (e.g.y from n°decay), the energy is
systematically UNDERESTIMATED

—» Non-linearity + energy dependence on starting point shower



Calibration of calorimeter systems
e Determine relationship between signal (pC, p.e.) and energy (GeV)

o Fundamental problem in sampling calorimeters:
Different shower components are sampled differently
Shower composition changes as shower develops
—> Sampling fraction changes with the shower age (also E dependent)

How to intercalibrate the sections
of a longitudinally segmented calorimeter?



Sampling fraction of 'ys, generated at random points inside a calorimeter
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The sampling fraction changes as shower develops™
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Calibration misery of longitudinally segmented devices
Example: AMS (em showers!)
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A widely used technique for calibrating segmented devices
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Calibrating longitudinally segmented calorimeters
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FIG. 6.2. The fractional width o/F of the signal distributions for electrons of different energies,
as a function of the value of the intercalibration constant B /A of the HELIOS calorimeter system.
The dashed line corresponds to the intercalibration constant derived from muon measurements [Ake 87].



Results of miscalibration: Non-linearity
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Figure 12: Signal nonlinearity for electrons resulting from miscalibration of a longitu-
dinally segmented calorimeter. The total calorimeter response (average signal per unit of
energy) 1s given for 3 different values of the ratio of the calibration constants for the 2
longitudinal segments, B/ A. See text for details.



Results of miscalibration: Mass dependence
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Figure 14: Signal distributions for s and various hadrons decaying into all-vy final
states. All particles have the same nominal energy and the detector, which has an in-
trinsic resolution of 0.5% for em showers of this energy, was calibrated with ¢lectrons
using B/A = 0.8. See text for details.



A comment for those who want to “optimize” energy resolution

Energy resolution = precision with which the energy of a particle
or jet showering in the calorimeter can be determined

A narrow signal distribution may ONLY be interpreted as a good energy
resolution if it is centered around the correct energy value

Therefore, signal linearity is an integral aspect of good energy resolution



Hadronic showers

Additional complications for intercalibrating longitudinal sections

e em showers (from ° decay) can start anywhere
e sampling fraction of non-em component also changes with depth

e response to em and non-em components not the same (if e/h + 1)

® [arge event-to-event fluctuations in energy sharing em/non-em

=) Calibration problems even worse than for em calorimeters



So what to do?

» Determine the calibration constants of the longitudinal segments
on the basis of

Monte Carlo simulations!!!



ATLAS: The longitudinally segmented (LAr) ECAL
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ATLAS: Energy reconstruction ECAL
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Monte Carlo simulations of hadronic shower development

® Reliable simulations are of crucial importance for detector development,
optimization and understanding

e Simulations based on incorrect/incomplete input of the important

physics processes cannot be expected to produce meaningful results
(regardless of your computing power!)

® [n shower development, most of the energy is deposited in the very last stages.
In multi-GeV electromagnetic showers, a large fraction of the energy is
deposited by electrons with energies in the keV range.

As we saw earlier, this has important consequences for em calorimetry

In multi-GeV hadronic showers, most of the energy is deposit in the
nuclear stage: MeV-type nuclear reactions, nuclear deexcitation, transport of p.n

Therefore, it is crucial to simulate that part correctly.



The non-electromagnetic shower component (1)
How do we know that protons dominate (~80%!) of the non-em signals?

1) Because of the small hadronic signals
(i.e. large e/h values) of calorimeters that are blind

to these protons.

In quartz-fiber calorimeters (n = 1.46), only particles with B > 0.69 emit
Cerenkov light, i.e. £;,> 0.2 MeV for electrons and > 350 MeV for protons



Average Cerenkov signal (GeV)
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The non-electromagnetic shower component (2)

How do we know that protons dominate (~80%!) of the non-em signals?

1) Because of the small hadronic signals
(i.e. large e/h values) of calorimeters that are blind
fo these protons.

In quartz-fiber calorimeters (n = 1.46), only particles with 3 > 0.69 emit
Cerenkov light, i.e. E;;,> 0.2 MeV for electrons and > 350 MeV for protons

2) Because of the absence of correlations
between the signals from adjacent active layers
in fine-sampling hadron calorimeters

The calorimeter from the example had 0.06 A;y thick sampling layers.
A mip would lose on average 12.7 MeV traversing these layers.



Correlations between signals from different sampling layers
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The crucial elements of hadronic shower simulations (2)

Where do these protons come from?

1) Nuclear spallation.

Spallation protons typically carry ~ 100 MeV kinetic energy.
Their range 1s typically of the order of the thickness of sampling
layers in hadron calorimeters.

2) Nuclear reactions induced by neutrons, e.g. (n,p) reactions

These protons have kinetic energies comparable to those of the
(evaporation) neutrons that generated them (< 10 MeV)
These neutrons outnumber spallation protons by an order of magnitude

Measurements of neutron production in hadronic showers:
> 40 per GeV 1n some materials (NIM A252 (1986) 4)



GEANT4 based simulations of hadron showers

e MC simulations are still not in a state in which they can be considered a

useful tool for design and optimization of detectors
Crucial experimental data sets (ZEUS-Pb, ZEUS-noncorrelation, U-plastic)

have never been (even approximately) reproduced by GEANT and
(therefore) tend to be ignored by GEANT developers

A few recent quotes from the published literature:
On pion detection in ATLAS: NIM A607 (2010) 372

The measurements were compared to simulated results
obtained using Geant 4. The simulation predicts a larger response
and a lower energy resolution than what was measured.

On hadronic shower profiles (ATLAS): NIM A615 (2010) 158

The experimental data have been compared with the results of
GEANT4 simulation, using two basic physics lists, LHEP and QGSP,
as well as extensions where the Bertuini intra-nuclear cascade is
used. Neither of these physics lists is able to reproduce the data in

the whole energy range satisfactonly,




Aspects of the calibration of

Calorimeter systems at colliders
(developed without meaningful guidance from MC)

o Minimizing total width of signal distributions B/A< 1

- non-linearity, systematic mismeasurement of energys, ...

« Each section its own particles (calibrate hadronic section with pions
that penetrate the em section without starting a shower)  B/A > I

» Use the em scale for all sections B/A = 1

General comment:
Energy resolution is determined by event-to-event fluctuations

Therefore, application of overall weighting factors to signals from different
detector sections has NO effect on energy resolution



Another method used in practice

Calibrate each section with its own particles

A B

e Problem: How about hadrons that start shower in section A?

- Energy systematically mismeasured
depending on e/h values of sections A,B

- Reconstructed energy depends on starting point of shower



Wrong B/A:
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calorimeter calibration on the basis of B/A = 1.



Different depth segments calibrated in the same way (B/A = 1)

In this way, one may avoid some of the problems encountered for B/A # 1
(non-linearity, reconstructed energy depends on starting point shower,...)

However:
- Be careful interpreting the results (e.g. leakage estimates AMS)

- Starting point dependence remains if different sections have different e/l



Use the em scale for all sections (B/A = 1)
Hadronic response and signal linearity in CMS

CMS pays a price for its focus on em energy resolution
ECAL has e/h =2.4,while HCAL has e/h=1.3

—> Response depends strongly on starting point shower
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Pion signals in crystal ECAL + scintillator HCAL
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Single particles and jets in the CMS calorimeters
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Calorimeter response does not only depend on starting
point of the shower, but also on the particle type
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Some good news:

Situation for jets is better than for single particles
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Using test beam data to determine the jet energy scale (CMS)
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Figure 5.18: Average calorimeter response to jets after the test beam particles were
corrected. Almost linear response at 1 confirms the validity of our jet reconstruction
based on test beam data.
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Figure 5.20: The jet response is lower than charged pion response, because a jet
consists of mostly low energy (< 10 GeV) particles and the low calorimeter response
to these particles reduces the jet response with respect to charged pions.

Correction factor (1/response) as a
Jfunction of E for single pions and jets

From: PhD thesis K.Z. Gumus (TTU, 2008)



How do we know calibration is correct?

o Check with a “known” energy deposit

em calorimeter: Use electrons whose momenta are measured with tracker

hadronic section: Use hadrons whose momenta are measured with tracker
and which penetrate em section before starting shower

Problem: Using these calibration constants, energy of hadrons that start
shower in the em section will be systematically mismeasured

o The ultimate check is the correct reconstruction of physics objects
/Z —» efe” J —» ete” Y —=>» ete”
(91.2 GeV/c?) (3.10 GeV/c?) (9.46 GeV/c?)
(cf. the “self-calibrating” DO calorimeter)



How do we know calibration is correct? (2)

e For hadron calorimeter, there is no such “easy’ calibration object

Since UA2 (1983), no experiment has observed W,Z in (minimum-bias)
Jetl/jet invariant mass distributions.
Argument: QCD background is too high.

o However, how about 7. —> b b ?
CDF, DO, ATLAS, CMS should have samples comparable in size to Z —»e*e”
Why isn't the Z seen in invariant mass distributions of b jets?
QCD background should be very small.

e QOther options: W from t-decay, W/Z from W+jet-jet events
Need several fb! to get meaningful event sample



Final comments about longitudinal segmentation & calibration

* A given fragmenting parton of a certain energy may produce very different
types of jets, e.g. jets with a leading 7° or with a leading T~.
With a correction scheme based on averages, such jets will be systematically
reconstriicted with energies that are either too high (7t°) or too low.
One could try to use additional information (tracker, energy deposit pattern)
fo recognize such cases and apply corrections

® Longitudinal segmentation may be very DANGEROUS, since readout
elements located in the developing shower may affect the signals in a
major way (e.g. the “spikes” in the CMS ECAL)

® [f vour calorimeter is not longitudinally segmented,
yvou are NOT tempted to intercalibrate the segments wrongly

e My pet pief: There is nothing that one can achieve with
longitudinal segmentation that one cannot achieve (better)
with other means



The future of calorimetry

e Hadronic calorimetry will become increasingly important,
especially if a machine such as CLIC will ever be built.
Jet spectroscopy will replace particle spectroscopy,

e.g. to distinguish final-state W/Z bosons
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e Different approaches are followed to develop calorimeter
systems that are up to that task:
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- Compensating calorimeters Calorimeter signal (GeV)

Proven technology, current holders of all performance records

- Dual-readout calorimeters
Try to improve on the performance of compensating calorimeters

by eliminating the weak points of the latter
Many experimental successes have been achieved, goals within reach

- Systems based on Particle Flow Analysis
Combine the information from a tracking system and a fine-grained
calorimeter



Compensating calorimetry

® Reasons for poor hadronic performance of non-compensating
calorimeters understood

® Compensation mechanisms fully understood

238 . . D
U absorber (fission —> compensation for invisible energy loss)

is neither needed nor sufficient

Experimentally demonstrated with Pb/scintillator calorimeters
(ZEUS, SPACAL)



Hadlronic signal distributions in a compensating calorimeter

Signal (pC)
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Hadron calorimetry in practice
Energy resolution in a compensating calorimeter
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The WARBO calorimeter as high-resolution spectrometer.
Total energy measured with the calorimeter for
minimum-bias events revealed the composition

of the momentum-selected CERN heavy-ion beam



Pros & Cons of Compensating Calorimeters

Pros
® Same energy scale for electrons, hadrons and jets. No ifs, ands or buts.

® Calibrate with electrons and you are done.
® Excellent hadronic energy resolution (SPACAL: 30%/\E).

® Linearity, Gaussian response function and all that good stuff.

® Compensation fully understood.
We know how to build these things, even though GEANT doesn t

Cons

® Small sampling fraction (2.4% 1n Pb/plastic)
—» em energy resolution limited (SPACAL: 13%/\E, ZEUS: 18%/ VE)

® Compensation relies on detecting neutrons
— Large integration volume
—> Long integration time (~50 ns)



Elements needed to improve the excellent ZEUS/SPACAL performance:

1) Reduce the contribution of sampling fluctuations to energy resolution
(THE limiting factor in SPACAL/ZEUS)

2) Eliminate/reduce effects of fluctuations in “invisible energy”

—>» calorimeter needs to be efficient in detecting the “nuclear” fraction
of the non-em shower component

3) Eliminate the effects of fluctuations in the em shower fraction, f,
in a way that does NOT prevent 1), 2)

—>» Dual-Readout Calorimetry



An attractive option for improving the quality of hadron calorimetry:

Use Cerenkov light!! Why?

em component (7°)

Hadron showers < non-em component (mainly soft p)

Calorimeter response to these components not the same (¢/22 # 1)

Cerenkov light almost exclusively produced by em component
(~80% of non-em energy deposited by non-relativistic particles)

= DREAM (Dual REAdout Method) principle:
Measure f,,, event by event by comparing C and dE/dx signals



DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM: How to determine [, and E?
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DREAM: Effect of event selection based on f,,,
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DREAM: Signal dependence on f.,
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DREAM: Eftect of corrections (200 GeV "jets")
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Effects of /S corrections on

hadronic signal linearity and
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Figure 9: The scintillator response of the DREAM calorimeter to single pions (a) and the energy resolution for
“jets” (D), before and after the dual-readout correction procedures were applied to the signals [5].



CONCLUSIONS
from tests of fiber prototype

e DREAM offers a powerful technique to /72 rove hadronic calorimeter performance :
- Correct hadronic energy reconstruction, in an instrument calibrated with electrons!
- Linearity for hadrons and jets
- Gaussian response functions
- Energy resolution scales with 1/vVE
- 0/FE < 5% for high-energy "jets", in a detector with a mass of only | ton!

dominated by fluctuations in shower leakage

In other words:
The same advantages as intrinsically compensating calorimeters (e/h = 1)

WITHOUT the limitations (sampling fraction, integration volume, time)



Particle Flow Analysis
o The basic idea

Combine the information of the tracker and the calorimeter system
to determine the jet energy

Momenta of charged jet fragments are determined with the tracker
Energies of the neutral jet fragments come from the calorimeter

® This principle has been used successfully to improve the hadronic
performance of experiments with poor hadronic calorimetry
However, the improvements are fundamentally limited
In particular, no one has ever come close to separating W/Z this way

o The problem

The calorimeters do not know that the charged jet fragments have already
been measured by the tracker. These fragments are also absorbed in the

calorimeter. Confusion: Which part of the calorimeter signals comes from
the neutral jet fragments?

o Advocates of this method claim that a fine detector granularity will help
solve this problem. Others believe it would only create more confusion.
Like with all other issues in calorimetry, this issue has to be settled by
means of experiments, NOT by Monte Carlo simulations!!



Conclusions

o Interpretation of calorimeter signals is crucially important for the jet energy scale

® Longitudinal segmentation = asking for (calibration) trouble,
especially if the different segments have different e/l values

* By calibrating all segments of a longitudinally segmented calorimeter system in
the same way, some important problems may be avoided (non-linearity, response
dependence on starting point showers,...)

e [n the past 20 vears, the quality of hadron calorimetry has decreased,
partly because of the lack of meaningful guidance from MC simulations

* [n calorimeters, more information does not necessarily lead to better results,
but instead to more confusion (cf. thermal calorimeters)

e There are major advantages in a calorimeter that has the same response
(signal/GeV) to ALL particles, regardless their nature or energy,
such as the one DREAM is developing



Backup slides



LESSONS FROM 25 YEARS OF R&D

e LESSON [: Energy resolution is determined by fluctuations,
not by average values

o LESSON 2: Digital calorimetry has been tried and abandoned, for good reasons

e LESSON 3: A narrow signal distribution is useless if the mean value is incorrect
Correct energy scale is at least as as important as good resolution

® LESSON 4: Longitudinal segmentation means asking for (calibration) trouble

® LESSON 5: GEANT based MC simulations of hadronic shower development
are fundamentally flawed —— useless as design tool

® LESSON 6: If you want to improve hadronic calorimeter performance
—> reduce/eliminate the (effects of) fluctuations
that dominate the performance :

i) Fluctuations in the em shower fraction, £,
ii) Fluctuations in visible energy (nuclear binding energy losses)



Hadronic signal (non-)linearity: Dependence on e/h
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F1G. 3.14. The response to pions as a function of energy for three calorimeters with different
e/h values: the WA1 calorimeter (e/h > 1, [Abr 81]), the HELIOS calorimeter (e/h ~ 1,
[Ake 87]) and the WA78 calorimeter (e/h < 1, [Dev 86, Cat 87]). All data are normalized to
the results for 10 GeV.



Hadronic response function: Effect of e/h

b) e/h =1.05

e/h=1.5 a)

140 GeV 75GeVr

pulse height

F1G. 7.24. Signal distributions for mono-energetic pions in calorimeters with different e/h
values. Data from WA1 [Abr 81], ZEUS [Beh 90] and WA78 [Dev 86].



Hadronic resolution of non-compensating calorimeters
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FIG. 4.48. The energy resolution calculated with Equation 4.29 for energies up to 400 GeV

(the solid line), and calculated with a sole stochastic term with a slightly larger a1 value (the
dotted line). See text for details.



The em shower fraction, f
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<Lmn> and the fluctuations in /., are different
in 7t- and p-induced showers



Intercalibrating sections by minimizing total signal width

GIVES WRONG RESULTS!
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Figure 11: The fractional width, o/ F, of the signal distribution for 80 GeV 7~ in the
SPACAL detector as a function of the weighting factor applied to signals from the central
calorimeter tower into which the pion beam was steered. The calorimeter towers were

calibrated with high-energy electrons [7].
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The importance of hydrogen in the absorbing structure
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(Nuclear evaporation) neutrons are typically produced with Ey;, ~ few MeV.
Elastic n-p scattering slows these neutrons down.
239Np is produced by thermal neutron capture in uranium



The special role of neutrons in calorimetry

In calorimeters with hydrogenous active material,
neutrons lose a major fraction of their kinetic energy
through elastic n-p scattering in that material.

The recoil protons may contribute to the signals.

Therefore, the neutron component may be very efficiently sampled
in such calorimeters.The sampling fraction may be much larger than
for the other shower particles .

This 1s the key element of compensation.



Avoid repeating mistakes from the past

e Don't place readout elements that produce HUGE signals for one
particular type of shower particle in the path of the developing shower
(“Texas tower” effect)

e Charged nuclear fragments may be
-20 N Nl ley 100 - 1000 times minimum ionizing.
et A When traversing an APD, they may
create a signal 100,000 times larger
than that from a scintillation photon.

w me st lm B
i

S e D0 SO Example: In CMS ECAL, such events
s may fake energy deposits of tens of GeV.

e “Digital” calorimetry was tried and abandoned for good reasons (1983)



Particle identification with calorimeters

e/Tt separation using time structure signals
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How to improve DREAM performance

e Build a larger detector — reduce effects side leakage



Expected effect of full shower containment

I”()Z Mean 133.1
- E_ RMS 18.6
80
w0E )
> 0t - .
L 300F
O - |Entries 13507
o = |%*/ndf 292/158
© 2005 IMean 1901
jo =2 .
- — |Sigma 9.69
= 100E
o £ p) /S method
> =
m 0: L 1 |
600 = = i :
3 Entries 13507 Knowledge of
E X /ndf 95/65 jet energy used
400 = |Mean 202.5 ' o
— |Sigma 4.29
2005 S it ot
. C) E
0% —— N - |
0 50 100 150 200 250

Cerenkov Signﬁl (GeV)

Figure 2: Cerenkov signal distributions for 200 GeV multi-particle events. Shown are the raw data (a), and the
signal distributions obtained after application of the corrections based on the measured em shower content, with (¢)
or without (b) using knowledge about the total “jet” energy [5].



How to improve DREAM performance

e Build a larger detector —— reduce effects side leakage

e Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/\VE

e Reduce sampling fluctuations
These contributed ~ 40%/ \/E to hadronic resolution in DREAM



Homogeneous calorimeters (crystals)

e No reason why DREAM principle should be limited to fiber calorimeters

e (Crystals have the potential to solve light yield + sampling fluctuations problem
e HOWEVER: Need to separate the light into its C, S components

OPTIONS:
1) Directionality. S light is isotropic, C light directional
2) Time structure. C light is prompt, S light has decay constant(s)

3) [Spectral characteristics. C light 5.8 light depends on scintillator

4) Polarization. C light polarized, S light not.



Separation of PbWO4 :1%Mo signals into S, C components
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Figure 3: Unraveling of the signals from a Mo-doped PbWOj crystal into Cerenkov and scintillation components.
The experimental setup is shown in diagram a. The two sides of the crystal were equipped with a UV filter (side
R) and a yellow filter (side L), respectively. The signals from 50 GeV electrons traversing the crystal are shown
in diagram b, and the angular dependence of the ratio of these two signals is shown in diagram c .



Separating the Cerenkov and scintillation components
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Cerenkov and Scintillator information from one signal !
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Figure 14: The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a
UV filter. These signals were measured with a sampling oscilloscope, which took a sample every 0.8 ns. The UV
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How to improve DREAM performance

e Build a larger detector —— reduce effects side leakage

o Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/VE

o Reduce sampling fluctuations
These contributed ~ 40%/ \/E to hadronic resolution in DREAM

e For ultimate hadron calorimetry (15%/\/E): Measure Ey;, (neutrons)
Is correlated to nuclear binding energy loss (invisible energy)

Can be inferred from the time structure of the signals



Time structure of the DREAM signals: the neutron tail
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Probing the total signal distribution with the neutron fraction
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Figure 18: Distribution of the total Cerenkov signal for 200 GeV “jets” and the distributions for three subsets of
events selected on the basis of the fractional contribution of neutrons to the scintillator signal .



A critical look at PFA

o The fact that 65% of the jet energy is measured with excellent precision
in the tracker is irrelevant

i In our detectors, the charged tracks are better measured than photon(s) B
which are themselves better measured than neutral hadron(s)
Resolution on the charged track(s)  Ap/p ~qq 107 || Eiq = Echagedwracks ¥ B, T Ejy
Resolution on the photon(s) AE/E ~12% racton 63% SO .
Resolution on the h° AE/E ~45%

\ E

From:
J.C. Brient
CALOR 08

What matters for the jet energy resolution are the fluctuations in this 65%.

In the absence of a calorimeter, one should
therefore not expect to be able to measure jet
energy resolutions better than 25-30% on the basis

of tracker information alone, at any energy. And

From: NIM A495 (2002) 107



A critical look at PFA (2)

o The crucial issue is if one can eliminate the contributions from showering
charged hadrons in the calorimeter system, i.e. avoid double counting

All claims in this respect are based on GEANT4 MC simulations, which
a) have never predicted anything correctly concerning hadron calorimetry
b) are especially wrong in predicting lateral shower shapes (100 narrow)

and since the advocates still don’t like the results (tails in distribitions), they

c) resort to phony statistics to make them look better

resolution over-emphasises the importance of these tails. In this
paper, performance is quoted in terms of rmssg. which is defined From:

as the rms in the smallest range of reconstructed energy which :
contains 90% of the events. NIM A611 (2009) 25

Even for a perfectly Gaussian distribution, rmsgg << Ofj

perform the first systematic study of the potential of high granularity PFlow calorimetry. For simulated
events in the ILD detector concept, a jet energy resolution of g /E < 3.8% is achieved for 40-400 GeV
jets. This result, which demonstrates that high granularity PFlow calorimetry can meet the challenging




A critical look at PFA (3)

o Testing claims of how well PFA algorithms are capable of avoiding
double counting should be straightforward for the CALICE Collaboration,
who have pursued this technique experimentally in the last 10 years

A jet is a collection of particles, mainly Example:

pions and photons. If one has a data base Jet response function CMS
of beam particles of different energies
hitting the calorimeter system at
different impact points, one could
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A critical look at PFA (4)

* Proposed PFA systems consist of millions of readout channels
(fine granularity!)
Question: How does one want to calibrate these calorimeters?
(cf. problems discussed earlier)
Answer (CALICE): DIGITAL calorimetry (energy X -#of channels that fired)
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