Use of the Jet Mass in the Reconstruction of Hadronic W and Z Boson Decays in the D0 Experiment

Outline

- Reconstructing high mass diboson resonances
 - Limitations and introduction of jet mass
- The Tevatron and the DØ experiment at FNAL
- Jet reconstruction and jet energy scale at DØ
- Diboson event selection and background estimation
 - Jet mass modeling in the Monte Carlo
- Results & Outlook

Diboson Production

Standard Model diboson production occurs primarily through t-channel quark exchange.

All diboson signals have been established by CDF and D0.

Remarkable agreement with SM!

Diboson Production

- Standard Model diboson production occurs primarily through t-channel quark exchange.
- q W,Z \bar{q} W,Z W,Z

- All diboson signals have been established by CDF and D0.
- Remarkable agreement with SM!

$$\sigma(p\bar{p} \to ZZ) = 1.19^{+0.44}_{-0.36}({\rm stat}) \pm 0.14({\rm syst}) \text{ pb}$$

 $\sigma_{SM}(p\bar{p} \to ZZ) = 1.4 \pm 0.1 \text{ pb}$

- All discoveries based on leptonic decays (Z \rightarrow II and/or W \rightarrow Iv), I = e, μ
- Recently, increased datasets allow $W \rightarrow jj$ or $Z \rightarrow jj$ decays as well.

BSM Physics in Diboson System

- Diboson cross sections agree very well with SM prediction.
 - Still room for new physics at high √ŝ.
- Traditional searches
 - WW → IvIv or WZ → IvII events and search for anomalous triple gauge couplings (TGCs).

BSM Physics in Diboson System

- Diboson cross sections agree very well with SM prediction.
 - Still room for new physics at high √ŝ.
- Traditional searches
 - WW → IvIv or WZ → IvII events and search for anomalous triple gauge couplings (TGCs).
- What about direct resonance searches?
 - Plenty of BSM diboson resonances (e.g. H^+ , ρ_T , G^* , Z', W')

- Besides resonance, these events are quite special.
- If M(W') >> M(W) + M(Z) then both W and Z bosons will be highly boosted.

- W and Z boson decay products will become increasingly collimated as the boson p_T increases.
 - \bigcirc Eventually the spatial distance crosses the reconstruction size ($\triangle R(q, q) \approx R$)

$$p_T(W/Z) \approx 0$$

- W and Z boson decay products will become increasingly collimated as the boson p_T increases.
 - Eventually the spatial distance crosses the reconstruction size ($\Delta R(q, q) \approx R$)

$$p_T(W/Z) \approx 0$$

$$p_T(W/Z) \approx M(W/Z)$$

- W and Z boson decay products will become increasingly collimated as the boson p_T increases.
 - Eventually the spatial distance crosses the reconstruction size ($\Delta R(q, q) \approx R$)

$$p_T(W/Z) \approx 0$$

$$p_T(W/Z) \approx M(W/Z)$$

$$p_T(W/Z) \gg M(W/Z)$$

- - Θ Eventually the spatial distance crosses the reconstruction size ($\Delta R(q, q) \approx R$)

$$p_T(W/Z) \approx 0$$

$$p_T(W/Z) \approx M(W/Z)$$

$$p_T(W/Z) \gg M(W/Z)$$

Overlap will occur with jets before electrons or muons due to wider shower (thereby reconstruction) size ($R_{jet} \gg R_{electron} \gg R_{muon}$)

Boosted Jet Reconstruction

As W' (WZ resonance) mass increases events will transition from two-jet events to one-jet events.

- Event topology depends on resonance mass (not terribly surprising).
- What do these merged jets look like?

Jet Mass

- Merged jet should show effect of W or Z boson origin.
- W and Z bosons are very heavy compared to QCD scale ⇒ look at mass of all jet constituents.

$$M_{\text{jet}} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{i}^{x,y,z}\right)^{2}}$$

- Merged jets have a mass that peaks at W or Z boson mass!
- QCD-jets (quark or gluon initiated) have low mass (peak below 10-20 GeV).

Jet Mass

- Merged jet should show effect of W or Z boson origin.
- W and Z bosons are very heavy compared to QCD scale ⇒ look at mass of all jet constituents.

- Merged jets have a mass that peaks at W or Z boson mass!
- QCD-jets (quark or gluon initiated) have low mass (peak below 10-20 GeV).

Event Reconstruction Strategy

Two distinct final states from WW or WZ resonance

(a)
$$WV \rightarrow \ell\nu + jj$$

$$M_V - 2\sigma_{jj} < M_{jj} < M_V + 2\sigma_{jj}$$

(b)
$$WV \rightarrow \ell\nu + j$$

$$M_V - 2\sigma_j < M_j$$

Without single jet events, mass reach is limited.

First, a brief overview of the detector.

The Tevatron Collider @ FNAL

Silicon Detector
Vertex measurement
and tracking close to PV

Silicon Detector
Vertex measurement
and tracking close to PV

Fiber Tracker
Charged particle tracking
momentum + charge

Silicon Detector
Vertex measurement
and tracking close to PV

Fiber Tracker
Charged particle tracking
momentum + charge

Solenoid
Trackers in
2 Telsa B
Field

Silicon Detector
Vertex measurement
and tracking close to PV

Fiber Tracker
Charged particle tracking
momentum + charge

Solenoid
Trackers in
2 Telsa B
Field

EM & Hadronic

Calorimeter

Energy

measurement

Muon Tracking

Central Tracking

Calorimeter

Silicon Detector Vertex measurement and tracking close to PV

Fiber Tracker Charged particle tracking momentum + charge

Solenoid Trackers in 2 Telsa B Field

EM & Hadronic Calorimeter Energy measurement

Muon Tracking

Muon System

Central Tracking

Calorimeter

Jet Reconstruction @ DØ

- Quarks hadronize to form color singlet particles.
- We observe these particles as energy deposits in EM & HAD calorimeters.

- DØ Run II Jet Reconstruction:
 - 9 1) Sum energy within calorimeter towers and keep if E_T (tower) > 1 GeV. ($R_{tower} = \Delta \Phi \times \Delta \eta = 0.1$)
 - \bigcirc 2) Combine tower energies in cone of radius 0.5 and keep if $E_T > 6$ GeV.
 - 3) Split/merge overlapping jets.

G.C. Blazey et al., "RunII Jet Physics", hep-ex/0005012

DØ Jet Energy Scale Correction

Jet energy scale weight corrects the raw jet energy (calo) to the particle-level.

- Large source of photon+jet events available at the Tevatron.
 - Balance jet energy against well measured photon energy (EM-scale set by Z).

See Gianluca Petrillo's Talk for more details. https://indico.cern.ch/sessionDisplay.py? sessionId=7&confld=12162

Uncertainty less than 5% in high jet p_T events.

Diboson Search with 5.4 fb⁻¹

- Tevatron performing very well.
- DØ has recorded over 9.5 fb⁻¹!

Analysis presented uses half of current dataset (5.4 fb⁻¹)

Diboson Event Selection

We select WW or WZ events with 1 leptonic W/Z decay and 1 hadronic W/Z decay.

- Θ Electrons: EM cluster + track, $p_T > 20$ GeV and |η| < 1.1 or 1.5 < |η| < 1.5.
- **Muons:** Muon scintillator + wire hits + track, $p_T > 20$ GeV and $|\eta| < 2.0$.
- \bigcirc Jets: P_T > 20 GeV and lηl < 3.0 (remove overlapping electrons).
- Missing E_T: Negative vector sum of calorimeter energy corrected for electrons, muons and jets.

Background Estimation

- Event selection yields high number of W and Z boson + jets events.
 - W/Z+jets modeled with ALPGEN + Pythia (MLM matching)
 - QCD multijet production modeled with data (reverse lepton ID).
 Normalized to data using matrix method (simultaneous QCD+W/Z+jets norm.)

MC used for all other backgrounds

- with the state of the second of the sec
- singletop (tb + tqb) modeled with CompHEP+Pythia scaled to ≈NLO (http://arxiv.org/abs/hep-ph/0609287) assuming mtop = 172.5 GeV.
- WW/WZ/ZZ modeled with Pythia scaled to MCFM prediction.

Signal Enhancement Cuts

- Enhance signal content by selecting boosted events
 - Require 60(70) < M(jet1,jet2) < 105(115) GeV (if two jet events)
 </p>
 - Require $P_T(\text{jet1,jet2}) > 100 \text{ GeV or } P_T(\text{jet1}) > 100 \text{ GeV}$ (if single jet event).
 - Pequire P_T(Z → II) > 100 GeV or P_T(W → Iv) > 100 GeV.
 - \bigcirc Δ R(jet1, jet2) < 1.5 [Rad] (if two jets)
 - Θ ΔR(lep1, lep2) < 1.5 [Rad] (if two leptons) or ΔΦ(lepton, ME_T) < 1.5 [Rad] (if one lepton)

Boosted Jets

- So far, analysis follows previous search strategy (i.e. select isolated objects and form combined objects like W and Z bosons).
- Look for high mass jets in data
- Important to check background model.

- Immediate difficulty: No easy control sample available due to very limited statistics even with 5.4 fb⁻¹.
 - Large jet mass events very rare in W/Z+jets events.
- Natural W/Z-jet sample from highly boosted diboson or ttbar events.
 - Low rate at Tevatron.
 Excellent calibration source for LHC.

based on data/MC agreement in signal free sample ($P_T(Z \rightarrow II) < 100 \text{ GeV}$)

More Monte Carlo Modeling

- Analysis requires reweighting V+jets MC
- Jet multiplicity well modeled with ALPGEN using MLM machine (not w/ Pythia alone)
 - Spectrum agrees for loose W and Z selection What about W/Z + highly boosted jets?

More Monte Carlo Modeling

- Analysis requires reweighting V+jets MC
- Jet multiplicity well modeled with ALPGEN using MLM machine (not w/ Pythia alone)
 - Spectrum agrees for loose W and Z selection What about W/Z + highly boosted jets?
- \bigcirc ALPGEN has trouble with modeling $\triangle R(jet, jet)$.
 - Systematic taken as 100% of reweighting factor in control region (25% uncertainty on W/Z+jets).

Preselection Sample

M(jj) Selection Sample

More Monte Carlo Modeling

- Analysis requires reweighting V+jets MC
- Jet multiplicity well modeled with ALPGEN using MLM machine (not w/ Pythia alone)
 - Spectrum agrees for loose W and Z selection What about W/Z + highly boosted jets?
- \bigcirc ALPGEN has trouble with modeling $\triangle R(jet, jet)$.
 - Systematic taken as 100% of reweighting factor in control region (25% uncertainty on W/Z+jets).

Preselection Sample

M(jj) Selection Sample

Large Jet Mass Results

- No statistically significant excess of data in this search.
 - Very mild evidence for ttbar + WW + WZ in jet mass, but not significant.

- Many improvements expected for LHC-era searches with much larger datasets and increased ttbar production.
 - Substructure using CA and k_T splitting scales,
 - Jet mass calibration similar to JES
 - Larger jet sizes combined with splitting scales.

Combined Search Results

- High mass resonance searches need hadronic final states to increase sensitivity.
 - Leptonic final states have low BR.
- Sensitive to WW/WZ resonance increased by 20% (same as 40% more ∫ Ldt).

Result recently accepted for publication in PRL.

http://arxiv.org/abs/1011.6278

Eager to test this and other jet reconstruction techniques with LHC data!

DØ Jet Energy Correction Inputs

- Offset Correction due to pileup (importance increases for forward jets)
 - Measured in minimum bias events (luminosity trigger) and zero bias events (Tevatron clock trigger).
- Response measured using γ+jet events.
 - Balance EM/γ scale (very well known)
 against hadron/jet scale (less well known).

DØ Jet Energy Correction Inputs

- Offset Correction due to pileup (importance increases for forward jets)
 - Measured in minimum bias events (luminosity trigger) and zero bias events (Tevatron clock trigger).
- Response measured using γ+jet events.
 - Balance EM/γ scale (very well known)
 against hadron/jet scale (less well known).

