$\begin{array}{c} & \text{Outline} \\ & \text{Motivazions} \\ & \text{Pretag region} \\ & \text{The "3 jet problem"} \\ & \text{A novel technique to reconstruct the Z-mass in the \geq 3 jet region} \\ & \text{Conclusions and future plans} \end{array}$

Search for Diboson Production in the lepton + MET + bb channel

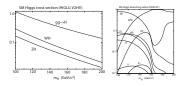
M. Trovato, G. Latino and C. Vernieri for the "3 jets" region

April 19, 2011

Outline Motivazions Conclusions and future plans

Outline

4 A novel technique to reconstruct the Z-mass in = 3 jet region


 $\begin{array}{c} & \text{Outline} \\ & \text{Motivazions} \\ & \text{Pretag region} \\ & \text{The " 3 jet problem"} \\ \text{A novel technique to reconstruct the Z-mass in the } 3 jet region \\ & \text{Conclusions and future plans} \end{array}$

Motivations

 Heavy vector boson production measurements used to test the electroweak sector of the Standard Model (SM)

 \Rightarrow SM allows for interactions between W^{\pm} , Z^0 ("triple gauge couplings")

• Preferred channel for Higgs search at Tevatron: $q\overline{q}' \rightarrow WH \rightarrow l\nu b\overline{b}, l \neq \tau$ (in $gg \rightarrow H \rightarrow b\overline{b}$ much more background)

- WZ as preliminary step for WH in $l\nu b\overline{b}$ final state
 - same final state signature
 - \Rightarrow WZ data sample usable to optimize measurement techniques

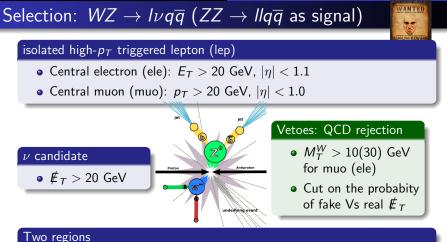
• easier:
$$\frac{\sigma_{WH} \cdot BR(W \to l\nu) \cdot BR(H \to b\overline{b})}{\sigma_{WZ} \cdot BR(W \to l\nu) \cdot BR(Z \to b\overline{b})} \simeq \frac{1}{5}$$
, for $m_H = 120 \text{ GeV}$

- WZ is a background for the Higgs search
- $ZZ \rightarrow l^+ l^- b\overline{b}$ included to increase the statistics of the sample

イロト 不得下 イヨト イヨト 二日

Motivazions Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

Selection SM processes composing the selected data sample MC Vs data (pretag sample)


Why pretag?

The first mandatory step of this analysis it validate the MC Vs Data agreement where no b-tagging is applied

- not a large statistics to do that in the *b*-tagged sample!
- *b*-tagging adds additional complications (heavy flavour composition, etc...)

 $\label{eq:construct} Motivazions $$ Motivazions $$ The "3 jet problem" $$ novel technique to reconstruct the Z-mass in the <math display="inline">\geq 3$ jet region Conclusions and future plans \$\$ Conclusions and future plans \$\$ Motivations \$\$ motivation

Selection SM processes composing the selected data samp MC Vs data (pretag sample)

Outline

• two jets with $E_T > 25, 25$ GeV, $|\eta| < 2$

Region 1: no additional jet with $E_T > 15$ GeV, $|\eta| < 2$

Region 2: one additional jet with $E_T > 15$ GeV, $|\eta| < 2$ (last part of the talk)

Motivazions Tretag region A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

Selection SM processes composing the selected data sample MC Vs data (pretag sample)

SM processes composing the selected data sample

Outline

Following SM processes contributes to the selected sample:

- Electroweak and top: WW, WZ, ZZ, Z+jets, tt, single-top
 - \Rightarrow rate normalized to the cross-section
 - \Rightarrow shapes from ALPGEN+Pythia, Pythia
- QCD: multi-jet production with a jet faking the lepton and fake ∉_T
 - \Rightarrow rate normalization and shapes from data
- W(\rightarrow I ν)+jets
 - \Rightarrow rate normalization from data
 - \Rightarrow shapes from ALPGEN+Pythia

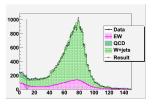
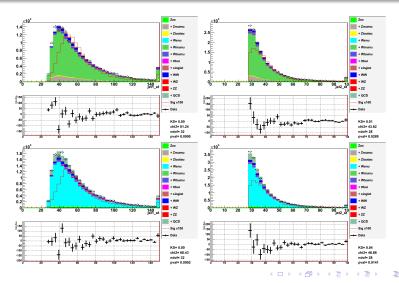


Figure: Fit on M_T^W for the QCD and W+jets rate in data

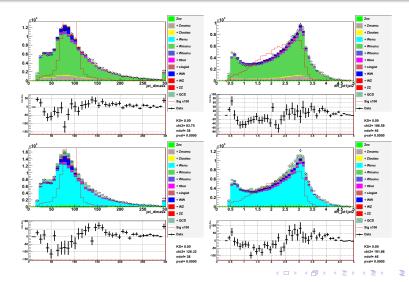
イロト 不得下 イヨト イヨト 二日


Motivazions Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

Selection SM processes composing the selected data sample MC Vs data (pretag sample)

MC Vs data (pretag sample)

Selection SM processes composing the selected data sample MC Vs data (pretag sample)


first/second leading jet E_T - Ele (up), Muo (bottom)

Motivazions Pretag region The "3 jet problem" ovel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

Selection SM processes composing the selected data sample MC Vs data (pretag sample)

Dijet Mass - Ele (up), Muo (bottom)

Motivazions Pretag region **The "3 jet problem"** A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

Region 2: 3 jets are found...What do you do?

 $\begin{array}{c} Motivazions\\ Pretag region\\ Pretag region\\ \textbf{A} novel technique to reconstruct the Z-mass in the <math display="inline">\geq 3$ jet region\\ Conclusions and future plans\\ \end{array}

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

Handling of the extra jet(s) at CDF: state of the art

Definition

jets are ordered in decreasing E_T : j1, j2, j3

CDF analyses by default either:

- discard events
- In the second secon
- ightarrow but \sim 25-40% of WZ events are rejected or
- ightarrow but $M_{j_1 j_2}$ shape is degraded

 $\begin{array}{c} & \mbox{Motivations}\\ & \mbox{Pertay region}\\ & \mbox{The "3 jet problem"}\\ & \mbox{A novel technique to reconstruct the Z-mass in the } \geq 3 jet region\\ & \mbox{Conclusions and future plans} \end{array}$

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

Handling of the extra jet(s) at CDF: state of the art

Definition

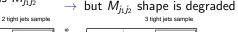
jets are ordered in decreasing E_T : j1, j2, j3

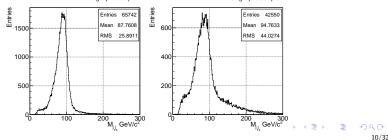
CDF analyses by default either:

- discard events
- I reconstruct Z-mass as $M_{j_1j_2}$
- $\rightarrow\,$ but \sim 25-40% of WZ events are rejected or
- ightarrow but $M_{j_1j_2}$ shape is degraded

Outline Motivazions Pretag region A novel technique to reconstruct the Z-mass in the > 3 jet region Conclusions and future plans

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

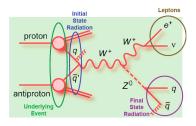

Handling of the extra jet(s) at CDF: state of the art


Definition

jets are ordered in decreasing E_T : j1, j2, j3

CDF analyses by default either:

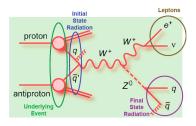
- discard events
- reconstruct Z-mass as M_{j1j2}
- ightarrow but \sim 25-40% of WZ events are rejected or



 $\begin{array}{l} & Outline \\ & Motivazions \\ & Pretag region \\ & \textbf{The "3 jet problem"} \\ & novel technique to reconstruct the Z-mass in the <math display="inline">\geq 3$ jet region \\ & Conclusions and future plans \\ & Conclusions \\ & C

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

Jet origin: where do the extra-jets comes from?


- Radiation from interaction partons (ISR)
- Radiation from Z-decay products (FSR)
- lepton mis-identified as a jet (to be investigated)
- Extra-activity produced by spectator partons/protons (probably negligible)

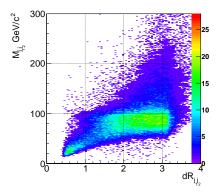
 \Rightarrow we'll be focusing on the first two effects

 $\begin{array}{l} & Outline \\ & Motivazions \\ & Pretag region \\ & \textbf{The "3 jet problem"} \\ & novel technique to reconstruct the Z-mass in the <math display="inline">\geq 3$ jet region \\ & Conclusions and future plans \\ & Conclusions \\ & C

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

Jet origin: where do the extra-jets comes from?

- Radiation from interaction partons (ISR)
- Radiation from Z-decay products (FSR)
- lepton mis-identified as a jet (to be investigated)
- Extra-activity produced by spectator partons/protons (probably negligible)


 \Rightarrow we'll be focusing on the first two effects

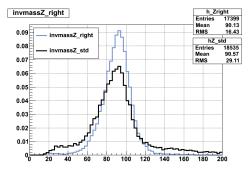
Utitine Motivazions Pretag region The "3 jet problem" Novel technique to reconstruct the Z-mass in the 2 3 jet region Conclusions and future plans

Handling of the extra jet(s) at CDF: state of the art Jet origin: where does the extra-jet(s) comes from? History

History: $M_{j_1j_2}$ Vs $dR_{j_1j_2}$

ONCE UPON A TIME...

- bulk of events at $M_{j_1 j_2} \sim M_Z^{pdg}$
- but large
 - Iow mass tails
 - high mass tails


 $\begin{array}{c} & Outline \\ Motivazions \\ Pretag region \\ The "3 jet problem" \\ A novel technique to reconstruct the Z-mass in the <math display="inline">\geq 3$ jet region \\ Conclusions and future plans \\ \end{array}

The best we can do The RIGHT jet combination j1j2 as right jet combination NN output

The best we can do

- If we knew the RIGHT jet combination from Z: $M_Z \rightarrow M_{Z_{right}}$ (blue)
 - \rightarrow RIGHT jet combination is
 - correct jet pair if ISR
 - jet triplet if FSR

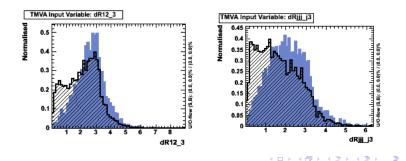
• but we don't $\rightarrow M_Z \rightarrow M_{std} \equiv M_{j1j2}$ (black)

Outline Motivazions Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the 2 3 jet region Conclusions and future plans

The best we can do **The RIGHT jet combination** j1j2 as right jet combination NN output

How to understand the RIGHT jet combination (RJC)?

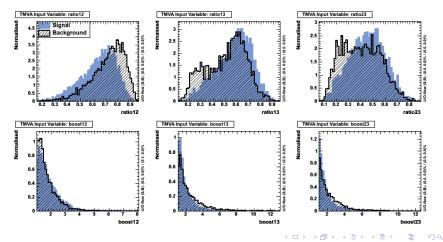
Procedure


- Jets are matched in direction to quarks from Z decay
- Reject events (\sim 40%) with # matches \neq 2
- Investigate at generator level origin of the not-matched jet: ISR or FSR
 - RJC = j1j2 in 40%
 - RJC = j1j3 in 18%
 - Skip RJC = j2j3 in 9%
 - RJC = j1j2j3 in 19%
- Isolate RJC = j1j2 (\sim 40%). Coming next
- "bottle-neck" of the procedure...we'll play by hear on how to handle the rest 60%.
 - \rightarrow Caterina Vernieri will return on this during the Open discussion

Outline Motivazions Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

The best we can do The RIGHT jet combination j1j2 as right jet combination NN output

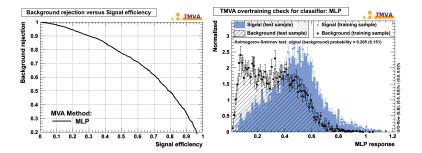
Isolating RJC = j1j2


- A neural-network (NN) is trained on WZ events to distinguish RJC = j1j2 (signal) from the rest (background)
 - \rightarrow background weighted to have the same dijet mass shape
- Several kinematical variables (full list and distributions in backup)
- dR_{(j1j2)j3}, dR_{(j1j2j3)j3}

Motivaziona Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

The best we can do The RIGHT jet combination j1j2 as right jet combination NN output

• M_{j1j2}/M_{j1j2j3} , M_{j1j3}/M_{j1j2j3} , M_{j2j3}/M_{j1j2j3} • $(E_{j1} + E_{j2})/m_{j1j2}$, $(E_{j1} + E_{j3})/m_{j1j3}$, $(E_{j2} + E_{j3})/m_{j2j3}$

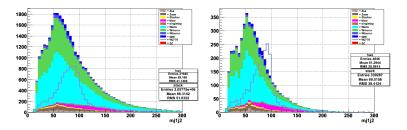


Motivazions Pretag region The "3 jet problem" A novel technique to reconstruct the Z-mass in the ≥ 3 jet region Conclusions and future plans

The best we can do The RIGHT jet combination j1j2 as right jet combination NN output

NN output

- Background rejection Vs signal efficiency
- Signal Vs Background separation



The best we can do The RIGHT jet combination j1j2 as right jet combination NN output

Putting all together

- We cut on NN>0.5
 - $\rightarrow \sim$ 63% RJC=12

 $\rightarrow \sim$ 14% RJC=13, 9% RJC=23, 3% RJC=123 after the cut

- Signal peak is appreciably narrower after the NN cut
 - \rightarrow Resolution improved by ${\sim}25\%$
 - \rightarrow Signal over background improved by a factor of 2
- more work to do to improve NN

イロト 不得下 イヨト イヨト 二日

 $\begin{array}{c} & \text{Outline} \\ & \text{Motivazions} \\ & \text{Pretag region} \\ & \text{The "3 jet problem"} \\ \text{A novel technique to reconstruct the Z-mass in the ≥ 3 jet region} \\ & \text{Conclusions and future plans} \end{array}$

Conclusions and future plans

Region1: = 2 jets

- The agreement data Vs MC in the pretag shapes looks not so bad
 - however, still some mis-modeling
 - **2** investigating other generators (SHERPA) for W+jets
 - oneed to do more validation on the data-driven QCD models
- how will the shapes look like in the tag sample?

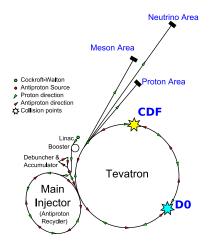
Region 2: = 3 jets

• The technique seems promising

 \rightarrow if successfull, it will drastically increase the signal acceptance of several important analyses (Diboson, Higgs, etc.)

Plans

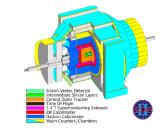
- 3 jet technique to be applied to the *b*-tag region
 - \rightarrow however, the behavior in $\emph{b}\textsc{-tag}$ region may be different
 - **(**) different background composition (mostly $t\bar{t}$)
 - D-quarks fragment in a different way compared to the light quarks

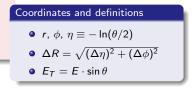

う **へ** (~ 19/32

Part I

Backups

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●


Tevatron Collider (Run II)



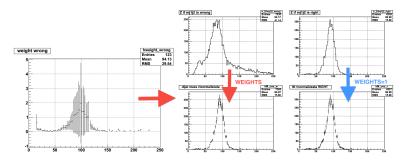
- Run II: current data taking period $(2001 \rightarrow ...)$
- $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- 2 high-luminosity regions, 2 experiments: CDF, DØ
- Maximum instantaneous luminosity $\sim 3 \cdot 10^{32} \mbox{ cm}^{-2} \mbox{s}^{-1}$
- Integrated delivered luminosity \sim 10 fb⁻¹ (December 2010)

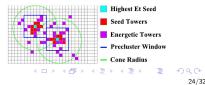
CDFII (Collider Detector at Fermilab in Run II)

- Tracking System composed of:
 - silicon microstrip trackers for precise vertex identification
 - open-cell drift chamber
 - in a magnetic field (1.4 T)
- Sampling calorimeters split into projective towers
- Planar drift chambers backed by scintillation counters for muon identification

Weight

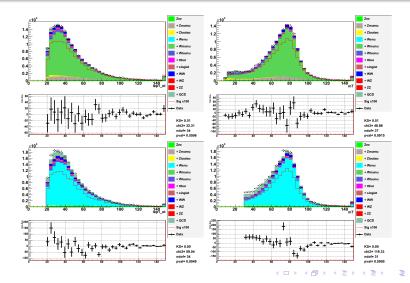
We normalized at the same distribution MJ1J2 in both subsamples.



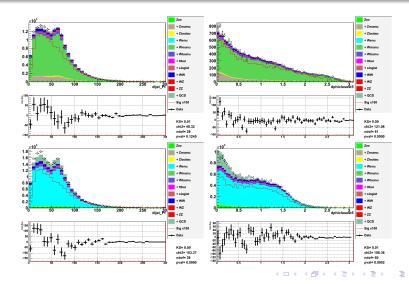

Figure: Right: Mj1j2 distribution in both subsamples before and after normalization. Left: Weights used for normalizing.

Jets at CDF (JETCLU)

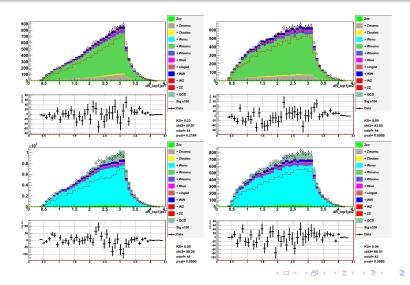
• Cluster of calorimeter towers


→ a list of seed towers ($E_T > 1 \text{ GeV}$) is sorted in decreasing E_T → the seed towers contained in a in a 49-towers square centered around the hardest seed are grouped into a precluster (PC) → θ^{PC} , ϕ^{PC} are calculated according to "Original Snowmass Scheme" (REFERENZA)

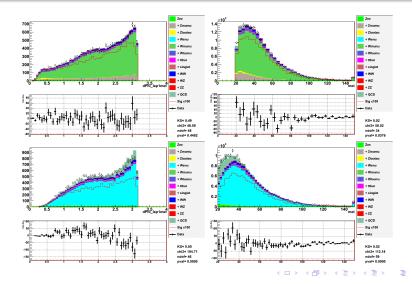
→ a cone of radius R(=0.4,0.7) is drawn about θ^{PC} , ϕ^{PC} and towers $(E_T > .1 \ GeV)$ within the cone used to calculate θ^{PC} , ϕ^{PC} , E_T^{PC} → loop over the step above until a stable cone is found → apply the split/merge procedure to have the final jet list → E_T^{PC} is corrected for known instrumental and physics effects


Tevatron Collider (Run II) CDFII (Collider Detector at Fermilab in Run II)

lep E_T , M_T^W - Ele (up), Muo (bottom)


Tevatron Collider (Run II) CDFII (Collider Detector at Fermilab in Run II)

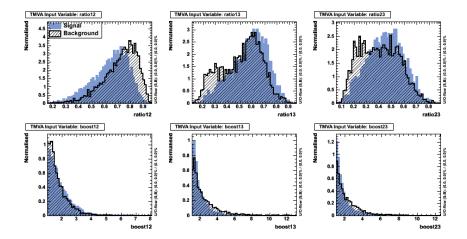
dijet Pt, dphiclosest5 - Ele (up), Muo (bottom)

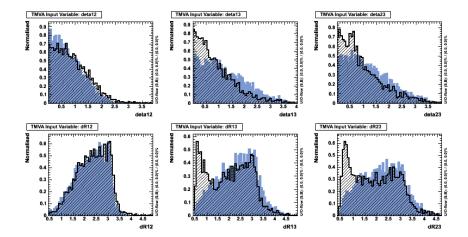

Tevatron Collider (Run II) CDFII (Collider Detector at Fermilab in Run II)

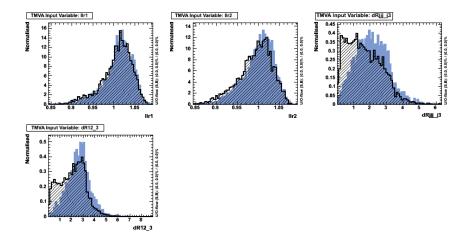
dR_{lep1jet} - Ele (up), Muo (bottom)

Tevatron Collider (Run II) CDFII (Collider Detector at Fermilab in Run II)

*dphi*_{lep1met}, met - Ele (up), Muo (bottom)




Isolating RJC = j1j2


- A neural-network is trained to distinguish RJC = j1j2 from the rest
- following variables are used (Caterina puoi controllare?)

(a)
$$m_{jj'}/m_{j1j2j3} *$$

(b) $\gamma_{jj'} \equiv (E_j + E_{j'})/m_{jj'} *$
(c) $dR_{j\ell} *$
(c) $dR_{jj',j''} *$
(c) $d\eta_{jj'} *$
(c) $dr_{jj'} *$
(c) dr_{j

*: 3 combinations

