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• Quark-lepton unification!

• Rich collider and flavor pheno?

Why?  
Phenomenology

Theory

Pati-Salam, SU(5), SO(10) GUT predict LQs but 
generically not in this mass-coupling range.  
New model building directions…

• A LQ with a TeV-scale mass 
and (some)  couplings𝒪(1)

Buonocore, AG, Krack, Nason, Selimovic, 
Tramontano, Zanderighi; 2209.02599 
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PART I

PART II

Theory

Phenomenology

• A model building direction: Gauged flavour

• Interpretation of  anomalies after the recent LHCb updateb → sℓℓ
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 :ℒSM

 sans Yukawa:ℒSM U(3)q × U(3)ℓ × U(3)U × U(3)D × U(3)E

U(1)B × U(1)e × U(1)μ × U(1)τ

Accidental Symmetries in the SM

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + ℓ̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

qi, ℓi, Ui, Di, Ei flavour i = 1,2,3

•  and  are exact

•  is anomalous: non-perturbative dynamics implies a selection rule 

B − L Li − Lj

B + L
ΔB = ΔL = 0 (mod 3)

Admir Greljo | Protection symmetries for TeV-scale leptoquarks



TeV-scale BSM?
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Example: Leptoquarks

• A viable model at the TeV-scale should not (excessively) violate 
the accidental symmetries.

• Not a generic case!

So why do people object abog.at
TeV seat Leptoquarks

L4t y list QiQi St
13151 13 BCS 2

3

a Abrupt violation of the SM
accidental symmetries

Proton decay II y
probesseatesuptoto Tell

µ e f it j probesseatesupto105Tell

Electron EDM Amy probesseatesuptotoTell

So why do people object abog.at
TeV seat Leptoquarks

L4t y list QiQi St
13151 13 BCS 2

3

a Abrupt violation of the SM
accidental symmetries

Proton decay II y
probesseatesuptoto Tell

µ e f it j probesseatesupto105Tell

Electron EDM Amy probesseatesuptotoTell

U(1)e × U(1)μ × U(1)τ

U(1)B

dim[𝒪] = 4

• Generic TeV-scale LQs are dead!

τp ≳ 1034 years

BR(μ → eγ) ≲ 10−13
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e μ τGauged U(1)X

- Selection rules for a TeV-scale leptoquark

The storyline

+ leptoquarks

- Neutrino masses

- Proton stability

- Unification
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• The initial model U(1)B−3Lμ
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final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥

SU(2)L ⇥U(1)Y and interactions

L � �
ij
3 q

c
iS3`j + �

ij
L q

c
iS1`j + �

ij
Ru

c
iS1ej + H.c. (1)

provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),

�
ij
3 = ↵

i
3�

j2
, �

ij
L,R = ↵

i
L,R�

j2
. (3)

The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

8

A  modelU(1)X

• The generalisation

AG, Stangl, Thomsen; 2103.13991

Davighi, AG, Thomsen; 2202.05275
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J. Davighi, A. Greljo and A.E. Thomsen Physics Letters B 833 (2022) 137310

in the IR. A famous example of a discrete symmetry used to for-
bid certain !B = 1 operators, and whose UV completion might be 
a local U(1), is R-parity in supersymmetry [51]. The novelty here 
is a discrete gauge symmetry in the IR under which baryons but 
not leptons are charged, forbidding all !B = 1 operators. Such a 
symmetry can only be embedded into a lepton-non-universal local 
U(1)X , as discussed in Section 3.

Interestingly, this does not prevent further quark-lepton unifica-
tion into a semi-simple gauge group. In the final section, we sketch 
a successful quark-lepton unification model that embeds our toy 
muoquark model inside a semi-simple gauge theory, to gain better 
insights and pave the way towards the ultraviolet.

2. The UV model

Introducing scalar leptoquarks S3/1 with gauge quantum num-
bers (3̄, 3/1 )1/3 under GSM := SU(3)c × SU(2)L × U(1)Y , and inter-
actions

L ⊃ λ
i j
3 qc

i S3ℓ j + λ
i j
L qc

i S1ℓ j + λ
i j
R uc

i S1e j + H.c. , (1)

provides a well-known simplified model for the flavour anoma-
lies [55– 68 ]. Either leptoquark might be there to address a subset 
of data: only the weak triplet (singlet) is needed for the b → sℓ+ℓ−

(!aµ) anomalies. However, since the two indicated mass scales 
and the flavour structures of the couplings are compatible, it is 
appealing to consider both states together.

For our lepton-flavoured U(1)X , we start by considering the 
most general class of anomaly-free, quark-universal, vector-like2

U(1) extensions of the SM gauge group [69 – 71] that i) are consis-
tent with the ‘muoquark conditions’ of [48 ]; ii) restrict to the case 
where two lepton charges coincide, which allows for a dense neu-
trino Majorana mass matrix using only one or two U(1)X -breaking 
scalars3; and iii) do not require additional chiral fermions beyond 
the SM + 3νR. Up to normalisation, this class is parametrized by 
two coprime integers m and n ̸= 0:

X = 3m(B −L) −n
(
2Lµ −Le −Lτ

)
, gcd(m,n) = 1. (2)

The model of [47] is equivalent to the case (m, n) = (1, 3), ergo 
X ∝ B −3Lµ . In addition to the U(1)X gauge field Xµ , we introduce 
two SM singlet φeτ and φµ with U(1)X charges, which acquire vac-
uum expectation values (VEVs) at a high scale. Both the SM fields 
and S1/3 are charged under U(1)X , with charges recorded in Ta-
ble 1 detailing the full field content of the model.

At the renormalisable level, such muoquarks furnish examples 
of new physics models in which quark flavour violation is lin-
ear [72] (thus rank-one [73]),

λ
i j
3 = αi

3δ
j2, λ

i j
L,R = αi

L,Rδ j2 . (3)

The vectors αi
3,L,R that encode their couplings to quarks are, how-

ever, arbitrary in quark flavour space. Following [47], it is natural 
for αi

3,L,R to be consistent with the approximate U(2)q × U(2)u ×
U(2)d flavour symmetry observed in the quark Yukawa interactions 

2 It is convenient to restrict to vector-like lepton charges to ensure that renor-
malisable Yukawa couplings are permitted for all three charged leptons.

3 Had we picked out the electron or tauon as being special rather than the 
muon, with a corresponding ‘electroquark’ or ‘tauoquark’, our central story regard-
ing neutrino masses, discrete gauge symmetry, and exact proton stability would 
follow essentially unchanged. Furthermore, one can generalize (2) to a fully LFUV 
3-parameter class of symmetries X = 3m(B −L) + a(Le −Lµ) + b(Lτ −Lµ), allow-
ing a triplet of flavoured leptoquarks, and find a bigger class of (m, a, b) for which 
neutrino masses are generated by a scalar condensate that preserves the same cru-
cial Z9 or Z18 gauge symmetry. All the interesting physics of our mechanism is 
captured by the simpler case (2).

Table 1
The field content of the charged leptoquark model. In 
addition to the SM fields + 3νR , there is a U(1)X gauge 
field with flavour non-universal couplings to SM lep-
tons, as well as S3/1 scalar leptoquarks and a pair of 
SM singlets φeτ and φµ whose VEVs break U(1)X .

Fields U(1)X

Quarks qi , ui , di m
Electrons and taus ℓ1,3, e1,3, ν1,3 n −3m
Muons ℓ2, e2, ν2 −2n −3m
Higgs H 0
Leptoquarks S3, S1 2m + 2n
Scalars φeτ 6m −2n

φµ 6m + n

with the Higgs [74] (see also [75]). A global flavour fit [47] shows 
plenty of parameter space to fit both sets of anomalies simultane-
ously, consistent with complementary direct searches at the LHC. 
Moreover, the minimal set of couplings can be consistently extrap-
olated to the Planck scale without developing Landau poles [47].

While all the quark Yukawa couplings are permitted at the 
renormalisable level, the charged lepton Yukawa matrix has tex-
ture

Ye ∼

⎛

⎝
× 0 ×
0 × 0
× 0 ×

⎞

⎠ . (4)

This means that the charged lepton rotation matrices, that take 
us from the gauge eigenbasis to the mass basis, only act within 
the electron-tau subspace. Therefore the S3/1 leptoquarks remain 
coupled only to muons in the lepton mass basis as per Eq. (3).

The neutrinos have a Yukawa coupling matrix Yν with a simi-
lar structure to the charged lepton Yukawa (4), which gives mass 
contributions set by the electroweak scale v . However, by design 
φeτ and φµ act as Majorons: Majorana mass terms for the right-
handed neutrinos are generated by the U(1)X -breaking VEVs of φeτ

and φµ , both assumed to be of order v X , through their Yukawa in-
teractions

L ⊃ ν̄ i c
R ν j

R(ξ
i j
eτ φeτ + ξ

i j
µφµ) =⇒ Mν

v X
∼

⎛

⎝
× × ×
× 0 ×
× × ×

⎞

⎠ . (5)

This mass structure can accommodate all the data pertinent to 
neutrino masses and mixings [76– 78 ], since it reduces to the two-
zero minor structure of type D R

1 [79 ] by setting some entries to 
zero. In the special case (m, n) = (1, 3), i.e. X ∝ B −3Lµ , studied 
in Ref. [47], the scalar φeτ is neutral and decouples, and four of 
the entries in M R

ν are populated by bare mass terms, whose di-
mensionful coefficients have to coincide with the scale v X to fit 
the data well. Similarly, for the case (m, n) = (1, −6), correspond-
ing to X ∝ B + 3Lµ −3Le −3Lτ , the φµ scalar decouples.

3. The IR: discrete gauge symmetry

The U(1)X gauge symmetry is broken by the VEVs of φeτ and 
φµ , whose charges are uniquely fixed so as to produce a dense 
neutrino Majorana mass matrix (5). Because these charges are non-
trivial multiples of the fundamental unit of U(1)X charge, there re-
mains an unbroken discrete subgroup * ⊂U(1)X acting on matter 
in the IR, which in our case remarkably protects baryon number. 
Such a discrete gauge symmetry imposes IR selection rules that are 
exact, holding to all orders in the EFT expansion.

2

(SM singlets)
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Selection rules

The accidental symmetry of  is 
 and 

the LQ charge is 

ℒLQ
U(1)B × U(1)e × U(1)μ × U(1)τ

( −1/3, 0, −1, 0 )
⟹

“Muoquark”
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Gauge symmetry selection rules:

• No proton decay & cLFV
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• The PMNS is full of  elements.
• The correct neutrino masses and mixings dictate the  breaking.

𝒪(1)
U(1)X

13

Neutrino Masses

• A dense Majorana mass matrix needs two SM-singlet scalar fields with 
charges  and  to get a VEV6m − 2n 6m + n

Type-I seesaw mechanism

2

final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥

SU(2)L ⇥U(1)Y and interactions

L � �
ij
3 q

c
iS3`j + �

ij
L q

c
iS1`j + �

ij
Ru

c
iS1ej + H.c. (1)

provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),

�
ij
3 = ↵

i
3�

j2
, �

ij
L,R = ↵

i
L,R�

j2
. (3)

The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).
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consider both states together.
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ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
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this class is parametrized by two coprime integers m and
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field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
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violation is linear [72] (thus rank-one [73]),
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3,L,R that encode their couplings to quarks
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ing [47], it is natural for ↵
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3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
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plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions
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ij
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ij
µ �µ) =)
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vX
⇠
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⇥ ⇥ ⇥
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(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

ν ;

• This is enough to accommodate for :

- Neutrino oscillations data,

- The Planck limit on the sum of neutrino masses,

- The absence of neutrinoless double beta decay.
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u

c

d
s

t
b

10−8

102

10−6

10−4

10−2

1

ν1
ν2 ν3

e
μ
τ

10−10

10−12

10−14

but

• What happens?

• Is there proton decay? cLFV?

In the  broken phase one can naively write renormalisable 
terms  and  that violate 

U(1)X
qqS* qiℓjS U(1)B × U(1)e × U(1)μ × U(1)τ
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The IR: discrete gauge subgroup
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final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥
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ij
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ij
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c
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provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),
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The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

• Fixed by neutrinos
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The IR: discrete gauge subgroup

3

Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.
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ken discrete subgroup � ⇢ U(1)X acting on matter in
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lection rules that are exact, holding to all orders in the
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=gcd
�
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�
= gcd
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3n, 6m+ n

�
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with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
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Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
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, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n
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On the other hand, the RHS of (8) reduces to
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n, 6m
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�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �
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charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).
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TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by
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, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd
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3a+ r, b� a
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= 1 .
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The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.
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breaking or QCD condensation and persists to the deep IR.
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final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥

SU(2)L ⇥U(1)Y and interactions

L � �
ij
3 q

c
iS3`j + �

ij
L q

c
iS1`j + �

ij
Ru

c
iS1ej + H.c. (1)

provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),

�
ij
3 = ↵

i
3�

j2
, �

ij
L,R = ↵

i
L,R�

j2
. (3)

The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

• Fixed by neutrinos

• An unbroken discrete subgroup Γ ⊂  acting on matter in the IRU(1)X
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The IR: discrete gauge subgroup

3

Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
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3b+ r, 2(a� b)
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⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).
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TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
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= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
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breaking or QCD condensation and persists to the deep IR.
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.
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final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥

SU(2)L ⇥U(1)Y and interactions

L � �
ij
3 q

c
iS3`j + �

ij
L q

c
iS1`j + �

ij
Ru

c
iS1ej + H.c. (1)

provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),

�
ij
3 = ↵

i
3�

j2
, �

ij
L,R = ↵

i
L,R�

j2
. (3)

The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

• Fixed by neutrinos

• An unbroken discrete subgroup Γ ⊂  acting on matter in the IRU(1)X
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
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The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).
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TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
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gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by
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�
3a+ r, 9b+ 3r
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, for r 2 {1, 2},
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, and gcd
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3a+ r, b� a
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The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X
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=gcd
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The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
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3n0

, 2(m� n
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. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds
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⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to
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n, 6m
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= 3gcd
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3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �
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‘U(1)X ’ in this context).
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0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
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r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by
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, for r 2 {1, 2},
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The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
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2, b+ r
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. (13)

We conclude that
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⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.

ei 2π
k [ϕ]Xϕ = ϕ

• Both B − L and the lepton-flavoured factor required!
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could not realise the complete PMNS matrix.
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final section, we sketch a successful quark-lepton unifica-
tion model that embeds our toy muquark model inside
a semi-simple gauge theory, to gain better insights and
pave the way towards the ultraviolet.

II. THE UV MODEL

Introducing scalar leptoquarks S3/1 with gauge quan-
tum numbers (3̄,3/1)1/3 under GSM := SU(3)c ⇥

SU(2)L ⇥U(1)Y and interactions

L � �
ij
3 q

c
iS3`j + �

ij
L q

c
iS1`j + �

ij
Ru

c
iS1ej + H.c. (1)

provides a well-known simplified model for the flavour
anomalies [55–68]. Either leptoquark might be there to
address a subset of data: only the weak triplet (singlet)
is needed for the b ! s`

+
`
� (�aµ) anomalies. However,

since the two indicated mass scales and the flavour struc-
tures of the couplings are compatible, it is appealing to
consider both states together.

For our lepton-flavoured U(1)X , we start by consid-
ering the most general class of anomaly-free, quark-
universal, vector-like2 U(1) extensions of the SM gauge
group [69–71] that i) are consistent with the ‘muoquark
conditions’ of [48]; ii) restrict to the case where two lep-
ton charges coincide, which allows for a dense neutrino
Majorana mass matrix using only one or two U(1)X -
breaking scalars; and iii) do not require additional chiral
fermions beyond the SM + 3⌫R. Up to normalisation,
this class is parametrized by two coprime integers m and
n 6= 0:

X = 3m(B � L)� n (2Lµ � Le � L⌧ ) , gcd(m,n) = 1.
(2)

The model of [47] is equivalent to the case (m,n) = (1, 3),
ergo X / B � 3Lµ. In addition to the U(1)X gauge
field Xµ, we introduce two SM singlet �e⌧ and �µ with
U(1)X charges, which acquire vacuum expectation values
(VEVs) at a high scale. Both the SM fields and S1/3 are
charged under U(1)X .

At the renormalisable level, such muoquarks furnish
examples of new physics models in which quark flavour
violation is linear [72] (thus rank-one [73]),

�
ij
3 = ↵

i
3�

j2
, �

ij
L,R = ↵

i
L,R�

j2
. (3)

The vectors ↵i
3,L,R that encode their couplings to quarks

are, however, arbitrary in quark flavour space. Follow-
ing [47], it is natural for ↵

i
3,L,R to be consistent with

the approximate U(2)q ⇥ U(2)u ⇥ U(2)d flavour symme-
try observed in the quark Yukawa interactions with the
Higgs [74] (see also [75]). A global flavour fit [47] shows

2
It is convenient to restrict to vector-like lepton charges to ensure

that renormalisable Yukawa couplings are permitted for all three

charged leptons.

Fields U(1)X
Quarks qi, ui, di m

Electrons and taus `1,3, e1,3, ⌫1,3 n� 3m

Muons `2, e2, ⌫2 �2n� 3m

Higgs H 0

Leptoquarks S3, S1 2m+ 2n

Scalars �e⌧ 6m� 2n
�µ 6m+ n

TABLE I. Field content of the charged leptoquark model.

plenty of parameter space to fit both sets of anoma-
lies simultaneously, consistent with complementary di-
rect searches at the LHC. Moreover, the minimal set of
couplings can be consistently extrapolated to the Planck
scale without developing Landau poles [47].
While all the quark Yukawa couplings are permitted

at the renormalisable level, the charged lepton Yukawa
matrix has texture

Ye ⇠

0

@
⇥ 0 ⇥

0 ⇥ 0
⇥ 0 ⇥

1

A . (4)

This means that the charged lepton rotation matrices,
that take us from the gauge eigenbasis to the mass basis,
only act within the electron-tau subspace. Therefore the
S3/1 leptoquarks remain coupled only to muons in the
lepton mass basis as per (3).
The neutrinos have a Yukawa coupling matrix Y⌫ with

a similar structure to (4), which gives mass contribu-
tions set by the electroweak scale v. However, by design
�e⌧ and �µ act as Majorons: Majorana mass terms for
the right-handed neutrinos are generated by the U(1)X -
breaking VEVs of �e⌧ and �µ, both assumed to be of
order vX , through their Yukawa interactions

L � ⌫̄
i c
R ⌫

j
R(⇠

ij
e⌧�e⌧ + ⇠

ij
µ �µ) =)

M⌫

vX
⇠

0

@
⇥ ⇥ ⇥

⇥ 0 ⇥

⇥ ⇥ ⇥

1

A .

(5)
This structure can accommodate all the data pertinent to
neutrino masses and mixings [76–78], since it reduces to
the two-zero minor structure of type D

R
1 [79] by setting

some entries to zero. In the special case (m, n) = (1, 3),
i.e. X / B � 3Lµ, studied in Ref. [47], the scalar �e⌧

decouples and four of the entries in M
R
⌫ are populated by

bare mass terms, whose dimensionful coe�cients have to
coincide with the scale vX to fit the data well. Similarly,
for (m, n) = (1, �6), corresponding to X / B + 3Lµ �

3Le � 3L⌧ , the �µ scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The U(1)X gauge symmetry is broken by the VEVs
of �e⌧ and �µ, whose charges are uniquely fixed so as
to produce a dense neutrino Majorana mass matrix (5).

• Fixed by neutrinos

• An unbroken discrete subgroup Γ ⊂  acting on matter in the IRU(1)X

• No proton decay!
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Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).
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The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
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find that
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� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.

Charges under the remnant discrete symmetry Γ 

The IR: discrete gauge subgroup
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•The Γ protection goes beyond just banning the diquark operators. Integrate out . 
Selection rule:

S

4

a. Exact proton stability — The protection of
baryon number by � goes beyond just banning the di-
quark operators. Viewed from the low-energy EFT with
only SM fields (the SMEFT), quarks are the only fields
that carry charge mod 9 under �. In fact, because [q]�
is never divisible by 3, it is at least order 9 in �. It
immediately follows that

�B = 0 (mod 3) (15)

to all orders in the SMEFT. As a result, baryon number–
violating decays of the proton, the lightest baryon, are
kinematically forbidden and complete stability of the pro-
ton is guaranteed.

Other baryon number–violating processes are in prin-
ciple possible through �B = 3 operators, somewhat rem-
iniscent of sphalerons. However, these processes require
e↵ective operators with nine quarks and at least one lep-
ton, which start at dimension 15 in the SMEFT.

We emphasize that our mechanism for protecting the
proton stability at all-orders is much stronger than in
the generic SMEFT, for which proton decay can occur
at dimension 6. The same is true when comparing with
model extensions à la Pati-Salam [80–95] interpreted as
EFTs [96]. The protection in our model is guaranteed
by the remnant discrete gauge symmetry in the IR. Cru-
cially, it is insensitive to whatever physics might be lurk-
ing at higher energy scales.

b. Accidental lepton flavor conservation — The
muon selection rule, unlike protection of baryon num-
ber, is not enshrined by �-invariance in the IR. In par-
ticular, the leptoquark operators qS`i are �-invariant,
despite not being U(1)X -invariant, for all three lepton
flavours. This suggests that higher-order operators cou-
pling the leptoquarks to electrons and taus are allowed in
the U(1)X -invariant e↵ective theory, which could come
from even heavier dynamics integrated out at a scale
⇤ > vX . Rather, after the breaking of U(1)X ! �, muon
number remains as an accidental, and thus approximate,
symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 cou-
plings to the other lepton families: schematically,
1
⇤2�e⌧�

⇤
µ qS1/3`1,3 and

1
⇤2�e⌧�

⇤
µ uS1e1,3. Moreover, there

are dimension-6 corrections of the form 1
⇤2��

¯̀
iHej to the

charged lepton Yukawa matrix, populating the four ze-
roes in (4). For example, µ ! e�, mediated by the S1

exchange, is related to the (g�2)µ anomaly by a factor of
✏
2
X where ✏X := vX/⇤. The stringent experimental limit
on BR(µ ! e�) [97] requires ✏X . 10�2 or so [98, 99],
meaning that a modest scale separation is su�cient to
suppress LFV processes to a level compatible with cur-
rent bounds. Conversely, it is possible to introduce the
next layer of NP safely below the Planck scale even if
we take vX ⇠ 1011TeV to naturally accommodate light
neutrinos in a seesaw with order-1 couplings.

c. Dark Matter — The discrete gauge symmetry �
can be used to stabilise WIMP dark matter [100–107].
To make the dark matter, �, stable, its charge should be
such that all operators involving one � field and arbitrary

SU(12) � SU(2)L � SU(2)R
UV

IR

SU(9) � SU(2)L � SU(2)R � U(1)B�L � SU(3)�

SU(3) � SU(2)L � U(1)Y � �9(18)

SU(3) � SU(2)L � U(1)Y � U(1)X

Muoquarks

Right-handed neutrinosvX

TeV

FIG. 1. Tentative gauge–flavour unification scenario. See
Section IV for details.

other light fields should be forbidden. Since all colour-
singlet operators have � charge equal to 0 (mod 3), the
DM is automatically stabilized if [�]� 6= 0 (mod 3)—for
example, if [�]� = 1, coming from (say) the minimal unit
of U(1)X charge in the UV model.

IV. DEEPER INTO THE UV: UNIFICATION

To conclude, we tentatively discuss how the GSM ⇥

U(1)X muoquark modelcould be embedded inside a uni-
fied semi-simple gauge theory deeper in the UV. The
starting point is to realise that U(1)Y ⇥ U(1)X can
be embedded inside SU(2)R ⇥ U(1)B�L ⇥ U(1)Z , where
Z = X�3m(B�L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton
families, which we promote to a gauge symmetry. One
can also unify SU(3)c with an SU(3)quark flavour symme-
try acting on the quarks into an SU(9)quark colour-flavour
unified gauge symmetry. At this point, the gauge sym-
metry is SU(9)quark ⇥ SU(3)lepton ⇥ SU(2)L ⇥ SU(2)R ⇥

U(1)B�L. This can be embedded inside the semi-simple
gauge group

GCF := SU(12)⇥ SU(2)L ⇥ SU(2)R , (16)

which was identified in [108] and discussed in [109].
The group GCF can be viewed as an extension of the

Pati–Salam gauge group [110], whereby colour and fam-
ily quantum numbers are unified. Remarkably, all three
families of SM+3⌫R fermions are packaged into two UV
fermion fields,  L ⇠ (12,2,1) and  R ⇠ (12,1,2). The
muoquarks descend from scalars transforming in the rep-
resentations (78,3,1) and (66,1,1) of the unified gauge
group, while the scalar fields �e⌧,µ responsible for Majo-
rana neutrino masses and for breaking U(1)X ! � can
sit in an (78,1,3). A hierarchical breaking of SU(9)quark
can also give a UV explanation of the global U(2)q quark

Exact proton stability to all orders in the SMEFT!

3

Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.

Charges under the remnant discrete symmetry Γ 

qqqℓ

The IR: discrete gauge subgroup

and  so on
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a. Exact proton stability — The protection of
baryon number by � goes beyond just banning the di-
quark operators. Viewed from the low-energy EFT with
only SM fields (the SMEFT), quarks are the only fields
that carry charge mod 9 under �. In fact, because [q]�
is never divisible by 3, it is at least order 9 in �. It
immediately follows that

�B = 0 (mod 3) (15)

to all orders in the SMEFT. As a result, baryon number–
violating decays of the proton, the lightest baryon, are
kinematically forbidden and complete stability of the pro-
ton is guaranteed.

Other baryon number–violating processes are in prin-
ciple possible through �B = 3 operators, somewhat rem-
iniscent of sphalerons. However, these processes require
e↵ective operators with nine quarks and at least one lep-
ton, which start at dimension 15 in the SMEFT.

We emphasize that our mechanism for protecting the
proton stability at all-orders is much stronger than in
the generic SMEFT, for which proton decay can occur
at dimension 6. The same is true when comparing with
model extensions à la Pati-Salam [80–95] interpreted as
EFTs [96]. The protection in our model is guaranteed
by the remnant discrete gauge symmetry in the IR. Cru-
cially, it is insensitive to whatever physics might be lurk-
ing at higher energy scales.

b. Accidental lepton flavor conservation — The
muon selection rule, unlike protection of baryon num-
ber, is not enshrined by �-invariance in the IR. In par-
ticular, the leptoquark operators qS`i are �-invariant,
despite not being U(1)X -invariant, for all three lepton
flavours. This suggests that higher-order operators cou-
pling the leptoquarks to electrons and taus are allowed in
the U(1)X -invariant e↵ective theory, which could come
from even heavier dynamics integrated out at a scale
⇤ > vX . Rather, after the breaking of U(1)X ! �, muon
number remains as an accidental, and thus approximate,
symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 cou-
plings to the other lepton families: schematically,
1
⇤2�e⌧�

⇤
µ qS1/3`1,3 and

1
⇤2�e⌧�

⇤
µ uS1e1,3. Moreover, there

are dimension-6 corrections of the form 1
⇤2��

¯̀
iHej to the

charged lepton Yukawa matrix, populating the four ze-
roes in (4). For example, µ ! e�, mediated by the S1

exchange, is related to the (g�2)µ anomaly by a factor of
✏
2
X where ✏X := vX/⇤. The stringent experimental limit
on BR(µ ! e�) [97] requires ✏X . 10�2 or so [98, 99],
meaning that a modest scale separation is su�cient to
suppress LFV processes to a level compatible with cur-
rent bounds. Conversely, it is possible to introduce the
next layer of NP safely below the Planck scale even if
we take vX ⇠ 1011TeV to naturally accommodate light
neutrinos in a seesaw with order-1 couplings.

c. Dark Matter — The discrete gauge symmetry �
can be used to stabilise WIMP dark matter [100–107].
To make the dark matter, �, stable, its charge should be
such that all operators involving one � field and arbitrary

SU(12) � SU(2)L � SU(2)R
UV

IR

SU(9) � SU(2)L � SU(2)R � U(1)B�L � SU(3)�

SU(3) � SU(2)L � U(1)Y � �9(18)

SU(3) � SU(2)L � U(1)Y � U(1)X

Muoquarks

Right-handed neutrinosvX

TeV

FIG. 1. Tentative gauge–flavour unification scenario. See
Section IV for details.

other light fields should be forbidden. Since all colour-
singlet operators have � charge equal to 0 (mod 3), the
DM is automatically stabilized if [�]� 6= 0 (mod 3)—for
example, if [�]� = 1, coming from (say) the minimal unit
of U(1)X charge in the UV model.

IV. DEEPER INTO THE UV: UNIFICATION

To conclude, we tentatively discuss how the GSM ⇥

U(1)X muoquark modelcould be embedded inside a uni-
fied semi-simple gauge theory deeper in the UV. The
starting point is to realise that U(1)Y ⇥ U(1)X can
be embedded inside SU(2)R ⇥ U(1)B�L ⇥ U(1)Z , where
Z = X�3m(B�L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton
families, which we promote to a gauge symmetry. One
can also unify SU(3)c with an SU(3)quark flavour symme-
try acting on the quarks into an SU(9)quark colour-flavour
unified gauge symmetry. At this point, the gauge sym-
metry is SU(9)quark ⇥ SU(3)lepton ⇥ SU(2)L ⇥ SU(2)R ⇥

U(1)B�L. This can be embedded inside the semi-simple
gauge group

GCF := SU(12)⇥ SU(2)L ⇥ SU(2)R , (16)

which was identified in [108] and discussed in [109].
The group GCF can be viewed as an extension of the

Pati–Salam gauge group [110], whereby colour and fam-
ily quantum numbers are unified. Remarkably, all three
families of SM+3⌫R fermions are packaged into two UV
fermion fields,  L ⇠ (12,2,1) and  R ⇠ (12,1,2). The
muoquarks descend from scalars transforming in the rep-
resentations (78,3,1) and (66,1,1) of the unified gauge
group, while the scalar fields �e⌧,µ responsible for Majo-
rana neutrino masses and for breaking U(1)X ! � can
sit in an (78,1,3). A hierarchical breaking of SU(9)quark
can also give a UV explanation of the global U(2)q quark

Exact proton stability to all orders in the SMEFT!

3

Because these charges are non-trivial multiples of the fun-
damental unit of U(1)X charge, there remains an unbro-
ken discrete subgroup � ⇢ U(1)X acting on matter in
the IR, which in our case remarkably protects baryon
number. Such a discrete gauge symmetry imposes IR se-
lection rules that are exact, holding to all orders in the
EFT expansion.

Here we determine the remnant symmetry � in our
model and some of its striking consequences. The group
� is isomorphic to the cyclic group Zk, where3

k =gcd
�
[�e⌧ ]X , [�µ]X

�

=gcd
�
6m� 2n, 6m+ n

�
= gcd

�
3n, 6m+ n

�
.

(6)

The � ⇠= Zk charge of the �B = 1 inducing diquark
operator qS⇤

q, for any quark and leptoquark fields, is

[qS⇤
q]� ⌘ �2n (mod k) . (7)

This diquark operator is invariant under � i↵ [qS⇤
q]X 2

kZ, or, equivalently,

k = gcd([qS⇤
q]X , k) = gcd(3n, 6m+ n,�2n)

= gcd(n, 6m).
(8)

If n /2 3Z, (8) is automatically satisfied. Thus, for models
with n /2 3Z, diquark operators are not banned by �-
invariance in the IR and, so, are expected to arise at
some order in the EFT expansion.

Continuing, we henceforth restrict to n 2 3Z. Writing
n = 3n0, our formula (6) for k reduces to

k = 3gcd
�
3n0

, 2(m� n
0)
�
. (9)

We distinguish two further subcases. For ‘subcase A’,
consider m 6⌘ n

0 (mod 3), gcd(3, n0
� m) = 1. Then

(9) yields k = 3gcd(n0
, 2m) = gcd(n, 6m), satisfying

condition (8) for �-invariance of the diquark operators.
For ‘subcase B’, we have m ⌘ n

0 (mod 3). Defining
r := m (mod 3), clearly r = 0 is inconsistent with the
assumption gcd(m, n) = 1, so we have r 2 {1, 2}. We
parametrize m = 3a + r and n

0 = 3b + r for integers a

and b. One finds

k = 9gcd
�
3b+ r, 2(a� b)

�
⌘ 0 (mod 9) . (10)

On the other hand, the RHS of (8) reduces to

gcd
�
n, 6m

�
= 3gcd

�
3b+ r, 6a+ 2r

�
6⌘ 0 (mod 9) . (11)

It follows that condition (8) cannot be satisfied in this
case. This covers all cases for (m, n).

From this brief arithmetical excursion, we conclude
that the troublesome diquark operator is banned by �

3
Here and throughout, we use the notation [A]G to denote the

charge of A under an Abelian symmetryG (with ‘X’ abbreviating

‘U(1)X ’ in this context).

b+ r (mod 2) � ` q S qS` qS
⇤
q

0 Z18 9(b� a) 3a+ r 6a+ 8r 0 12r
1 Z9 0 3a+ r 6a+ 8r 0 3r

TABLE II. Charges under the remnant discrete symmetry
�. Here q and ` refers to any of the quark and lepton fields,
respectively, and S refers to either S1 or S3. The parameter
r 2 {1, 2}, while a and b can be any integers satisfying the
second line of (12).

gauge invariance only for the subset of U(1)X models
defined in (2) parametrized by

(m, n) =
�
3a+ r, 9b+ 3r

�
, for r 2 {1, 2},

(a, b) 2 Z2
, and gcd

�
3a+ r, b� a

�
= 1 .

(12)

The condition on a and b in the second line, which evades
a simple parametrization, is simply to ensure that m and
n label unique UV theories.
We proceed to consider the family of U(1)X mod-

els (12). We emphasize that, since �e⌧ and �µ are �-
singlets, no number of scalar insertions in the EFT can
make a �-invariant diquark operator. To our knowledge,
this mechanism for banning B-violating operators using
a remnant discrete gauge symmetry that derives from a
flavour–non-universal U(1)X gauge symmetry at a high
scale, is novel. It is therefore worth exploring in more
detail.
First, as both m and n are necessarily non-zero, it is

not enough to consider only B � L or only the lepton-
flavoured factor; both are required to construct a model
whose remnant symmetry exactly stabilizes the proton.
Next, for the particular class of models (12), we can de-
termine the remnant symmetry � explicitly. Substituting
the ‘uniqueness condition’ gcd(m, n) = 1 into (10), we
find that

k = 9gcd
�
2, b+ r

�
. (13)

We conclude that

� ⇠=

⇢Z9, for b+ r 2 2Z+ 1

Z18, for b+ r 2 2Z
. (14)

We record the charges of the lepton, quark, and lep-
toquark fields, as well as the leptoquark and diquark
operators, in Table II. The � charges of SM fermions
are flavour-universal, despite coming from a flavour-
dependent U(1)X symmetry in the UV. While this might
seem surprising, it had to be the case—after all, the rem-
nant � gauge symmetry remains exact at all energies,4

and, so, if the � charges were flavour-dependent, one
could not realise the complete PMNS matrix.

4
The Z9(18) symmetry is not broken by electroweak symmetry

breaking or QCD condensation and persists to the deep IR.

Charges under the remnant discrete symmetry Γ 

qqqℓ

• Neutron—antineutron oscillations also forbidden

• ∆B = 3 processes are allowed, in analogy to sphalerons. 

The IR: discrete gauge subgroup

and  so on

•The Γ protection goes beyond just banning the diquark operators. Integrate out . 
Selection rule:

S
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• Γ is lepton flavour universal, otherwise no PMNS.

• cLFV through higher-dim. operators in the -invariant effective theory:U(1)X

4

a. Exact proton stability — The protection of
baryon number by � goes beyond just banning the di-
quark operators. Viewed from the low-energy EFT with
only SM fields (the SMEFT), quarks are the only fields
that carry charge mod 9 under �. In fact, because [q]�
is never divisible by 3, it is at least order 9 in �. It
immediately follows that

�B = 0 (mod 3) (15)

to all orders in the SMEFT. As a result, baryon number–
violating decays of the proton, the lightest baryon, are
kinematically forbidden and complete stability of the pro-
ton is guaranteed.

Other baryon number–violating processes are in prin-
ciple possible through �B = 3 operators, somewhat rem-
iniscent of sphalerons. However, these processes require
e↵ective operators with nine quarks and at least one lep-
ton, which start at dimension 15 in the SMEFT.

We emphasize that our mechanism for protecting the
proton stability at all-orders is much stronger than in
the generic SMEFT, for which proton decay can occur
at dimension 6. The same is true when comparing with
model extensions à la Pati-Salam [80–95] interpreted as
EFTs [96]. The protection in our model is guaranteed
by the remnant discrete gauge symmetry in the IR. Cru-
cially, it is insensitive to whatever physics might be lurk-
ing at higher energy scales.

b. Accidental lepton flavor conservation — The
muon selection rule, unlike protection of baryon num-
ber, is not enshrined by �-invariance in the IR. In par-
ticular, the leptoquark operators qS`i are �-invariant,
despite not being U(1)X -invariant, for all three lepton
flavours. This suggests that higher-order operators cou-
pling the leptoquarks to electrons and taus are allowed in
the U(1)X -invariant e↵ective theory, which could come
from even heavier dynamics integrated out at a scale
⇤ > vX . Rather, after the breaking of U(1)X ! �, muon
number remains as an accidental, and thus approximate,
symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 cou-
plings to the other lepton families: schematically,
1
⇤2�e⌧�

⇤
µ qS1/3`1,3 and

1
⇤2�e⌧�

⇤
µ uS1e1,3. Moreover, there

are dimension-6 corrections of the form 1
⇤2��

¯̀
iHej to the

charged lepton Yukawa matrix, populating the four ze-
roes in (4). For example, µ ! e�, mediated by the S1

exchange, is related to the (g�2)µ anomaly by a factor of
✏
2
X where ✏X := vX/⇤. The stringent experimental limit
on BR(µ ! e�) [97] requires ✏X . 10�2 or so [98, 99],
meaning that a modest scale separation is su�cient to
suppress LFV processes to a level compatible with cur-
rent bounds. Conversely, it is possible to introduce the
next layer of NP safely below the Planck scale even if
we take vX ⇠ 1011TeV to naturally accommodate light
neutrinos in a seesaw with order-1 couplings.

c. Dark Matter — The discrete gauge symmetry �
can be used to stabilise WIMP dark matter [100–107].
To make the dark matter, �, stable, its charge should be
such that all operators involving one � field and arbitrary
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other light fields should be forbidden. Since all colour-
singlet operators have � charge equal to 0 (mod 3), the
DM is automatically stabilized if [�]� 6= 0 (mod 3)—for
example, if [�]� = 1, coming from (say) the minimal unit
of U(1)X charge in the UV model.

IV. DEEPER INTO THE UV: UNIFICATION

To conclude, we tentatively discuss how the GSM ⇥

U(1)X muoquark modelcould be embedded inside a uni-
fied semi-simple gauge theory deeper in the UV. The
starting point is to realise that U(1)Y ⇥ U(1)X can
be embedded inside SU(2)R ⇥ U(1)B�L ⇥ U(1)Z , where
Z = X�3m(B�L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton
families, which we promote to a gauge symmetry. One
can also unify SU(3)c with an SU(3)quark flavour symme-
try acting on the quarks into an SU(9)quark colour-flavour
unified gauge symmetry. At this point, the gauge sym-
metry is SU(9)quark ⇥ SU(3)lepton ⇥ SU(2)L ⇥ SU(2)R ⇥

U(1)B�L. This can be embedded inside the semi-simple
gauge group

GCF := SU(12)⇥ SU(2)L ⇥ SU(2)R , (16)

which was identified in [108] and discussed in [109].
The group GCF can be viewed as an extension of the

Pati–Salam gauge group [110], whereby colour and fam-
ily quantum numbers are unified. Remarkably, all three
families of SM+3⌫R fermions are packaged into two UV
fermion fields,  L ⇠ (12,2,1) and  R ⇠ (12,1,2). The
muoquarks descend from scalars transforming in the rep-
resentations (78,3,1) and (66,1,1) of the unified gauge
group, while the scalar fields �e⌧,µ responsible for Majo-
rana neutrino masses and for breaking U(1)X ! � can
sit in an (78,1,3). A hierarchical breaking of SU(9)quark
can also give a UV explanation of the global U(2)q quark

4

a. Exact proton stability — The protection of
baryon number by � goes beyond just banning the di-
quark operators. Viewed from the low-energy EFT with
only SM fields (the SMEFT), quarks are the only fields
that carry charge mod 9 under �. In fact, because [q]�
is never divisible by 3, it is at least order 9 in �. It
immediately follows that

�B = 0 (mod 3) (15)

to all orders in the SMEFT. As a result, baryon number–
violating decays of the proton, the lightest baryon, are
kinematically forbidden and complete stability of the pro-
ton is guaranteed.

Other baryon number–violating processes are in prin-
ciple possible through �B = 3 operators, somewhat rem-
iniscent of sphalerons. However, these processes require
e↵ective operators with nine quarks and at least one lep-
ton, which start at dimension 15 in the SMEFT.

We emphasize that our mechanism for protecting the
proton stability at all-orders is much stronger than in
the generic SMEFT, for which proton decay can occur
at dimension 6. The same is true when comparing with
model extensions à la Pati-Salam [80–95] interpreted as
EFTs [96]. The protection in our model is guaranteed
by the remnant discrete gauge symmetry in the IR. Cru-
cially, it is insensitive to whatever physics might be lurk-
ing at higher energy scales.

b. Accidental lepton flavor conservation — The
muon selection rule, unlike protection of baryon num-
ber, is not enshrined by �-invariance in the IR. In par-
ticular, the leptoquark operators qS`i are �-invariant,
despite not being U(1)X -invariant, for all three lepton
flavours. This suggests that higher-order operators cou-
pling the leptoquarks to electrons and taus are allowed in
the U(1)X -invariant e↵ective theory, which could come
from even heavier dynamics integrated out at a scale
⇤ > vX . Rather, after the breaking of U(1)X ! �, muon
number remains as an accidental, and thus approximate,
symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 cou-
plings to the other lepton families: schematically,
1
⇤2�e⌧�

⇤
µ qS1/3`1,3 and

1
⇤2�e⌧�

⇤
µ uS1e1,3. Moreover, there

are dimension-6 corrections of the form 1
⇤2��

¯̀
iHej to the

charged lepton Yukawa matrix, populating the four ze-
roes in (4). For example, µ ! e�, mediated by the S1

exchange, is related to the (g�2)µ anomaly by a factor of
✏
2
X where ✏X := vX/⇤. The stringent experimental limit
on BR(µ ! e�) [97] requires ✏X . 10�2 or so [98, 99],
meaning that a modest scale separation is su�cient to
suppress LFV processes to a level compatible with cur-
rent bounds. Conversely, it is possible to introduce the
next layer of NP safely below the Planck scale even if
we take vX ⇠ 1011TeV to naturally accommodate light
neutrinos in a seesaw with order-1 couplings.

c. Dark Matter — The discrete gauge symmetry �
can be used to stabilise WIMP dark matter [100–107].
To make the dark matter, �, stable, its charge should be
such that all operators involving one � field and arbitrary
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other light fields should be forbidden. Since all colour-
singlet operators have � charge equal to 0 (mod 3), the
DM is automatically stabilized if [�]� 6= 0 (mod 3)—for
example, if [�]� = 1, coming from (say) the minimal unit
of U(1)X charge in the UV model.

IV. DEEPER INTO THE UV: UNIFICATION

To conclude, we tentatively discuss how the GSM ⇥

U(1)X muoquark modelcould be embedded inside a uni-
fied semi-simple gauge theory deeper in the UV. The
starting point is to realise that U(1)Y ⇥ U(1)X can
be embedded inside SU(2)R ⇥ U(1)B�L ⇥ U(1)Z , where
Z = X�3m(B�L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton
families, which we promote to a gauge symmetry. One
can also unify SU(3)c with an SU(3)quark flavour symme-
try acting on the quarks into an SU(9)quark colour-flavour
unified gauge symmetry. At this point, the gauge sym-
metry is SU(9)quark ⇥ SU(3)lepton ⇥ SU(2)L ⇥ SU(2)R ⇥

U(1)B�L. This can be embedded inside the semi-simple
gauge group

GCF := SU(12)⇥ SU(2)L ⇥ SU(2)R , (16)

which was identified in [108] and discussed in [109].
The group GCF can be viewed as an extension of the

Pati–Salam gauge group [110], whereby colour and fam-
ily quantum numbers are unified. Remarkably, all three
families of SM+3⌫R fermions are packaged into two UV
fermion fields,  L ⇠ (12,2,1) and  R ⇠ (12,1,2). The
muoquarks descend from scalars transforming in the rep-
resentations (78,3,1) and (66,1,1) of the unified gauge
group, while the scalar fields �e⌧,µ responsible for Majo-
rana neutrino masses and for breaking U(1)X ! � can
sit in an (78,1,3). A hierarchical breaking of SU(9)quark
can also give a UV explanation of the global U(2)q quark

• A modest scale separation is sufficient to suppress cLFV processes to a level 
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we take vX ⇠ 1011TeV to naturally accommodate light
neutrinos in a seesaw with order-1 couplings.
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can be used to stabilise WIMP dark matter [100–107].
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other light fields should be forbidden. Since all colour-
singlet operators have � charge equal to 0 (mod 3), the
DM is automatically stabilized if [�]� 6= 0 (mod 3)—for
example, if [�]� = 1, coming from (say) the minimal unit
of U(1)X charge in the UV model.

IV. DEEPER INTO THE UV: UNIFICATION

To conclude, we tentatively discuss how the GSM ⇥

U(1)X muoquark modelcould be embedded inside a uni-
fied semi-simple gauge theory deeper in the UV. The
starting point is to realise that U(1)Y ⇥ U(1)X can
be embedded inside SU(2)R ⇥ U(1)B�L ⇥ U(1)Z , where
Z = X�3m(B�L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton
families, which we promote to a gauge symmetry. One
can also unify SU(3)c with an SU(3)quark flavour symme-
try acting on the quarks into an SU(9)quark colour-flavour
unified gauge symmetry. At this point, the gauge sym-
metry is SU(9)quark ⇥ SU(3)lepton ⇥ SU(2)L ⇥ SU(2)R ⇥

U(1)B�L. This can be embedded inside the semi-simple
gauge group

GCF := SU(12)⇥ SU(2)L ⇥ SU(2)R , (16)

which was identified in [108] and discussed in [109].
The group GCF can be viewed as an extension of the

Pati–Salam gauge group [110], whereby colour and fam-
ily quantum numbers are unified. Remarkably, all three
families of SM+3⌫R fermions are packaged into two UV
fermion fields,  L ⇠ (12,2,1) and  R ⇠ (12,1,2). The
muoquarks descend from scalars transforming in the rep-
resentations (78,3,1) and (66,1,1) of the unified gauge
group, while the scalar fields �e⌧,µ responsible for Majo-
rana neutrino masses and for breaking U(1)X ! � can
sit in an (78,1,3). A hierarchical breaking of SU(9)quark
can also give a UV explanation of the global U(2)q quark
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are !-invariant, despite not being U(1)X -invariant, for all three 
lepton flavours. This suggests that higher-order operators coupling 
the leptoquarks to electrons and taus are allowed in the U(1)X -
invariant effective theory, which could come from even heavier 
dynamics integrated out at a scale " > v X . Rather, after the break-
ing of U(1)X → !, muon number remains as an accidental, and 
thus approximate, symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 couplings to 
the other lepton families: schematically, 1

"2 φeτ φ∗
µ qS1/3ℓ1,3 and 

1
"2 φeτ φ∗

µ uS1e1,3. Moreover, there are dimension-6 corrections of 
the form 1

"2 φφℓ̄i He j to the charged lepton Yukawa matrix, popu-
lating the four zeroes in Eq. (4). The fact that the leptoquarks now 
have couplings to both muons and electrons means that µ → eγ
is mediated by the leptoquark exchange. In the case of the S1 lep-
toquark, this contribution to µ → eγ is related to its contribution 
to the (g − 2)µ anomaly by a factor of ϵ2

X where ϵX := v X/". 
The stringent experimental limit on BR(µ → eγ ) [98] requires 
ϵX ! 10− 2 or so [99,100], meaning that a modest scale separa-
tion is sufficient to suppress LFV processes to a level compatible 
with current bounds. Conversely, it is possible to introduce the 
next layer of NP safely below the Planck scale even if we take 
v X ∼ 1011 TeV to naturally accommodate light neutrinos in a see-
saw with order-1 couplings.

c. Dark matter — The discrete gauge symmetry ! can be used 
to stabilise the WIMP dark matter [101–108]. To name one exam-
ple, a dark matter candidate could be a scalar χ thermalised via 
the Higgs portal interaction |H |2|χ |2. To make the dark matter, χ , 
stable, its U(1)X charge should be such that all operators involving 
one χ field and arbitrary other light fields should be forbidden. 
Since all colour-singlet operators have ! charge equal to 0 (mod 
3), the DM is automatically stabilized if [χ ]! ≠ 0 (mod 3)—for ex-
ample, if [χ ]! = 1, coming from (say) the minimal unit of U(1)X
charge in the UV model.

d. Matter asymmetry — The scale of the right-handed neutri-
nos can allow for the usual high-scale leptogenesis scenario [109–
111]. The global U(1)B+L is anomalous allowing for the efficient 
sphalerons processes to take place.

4. Deeper into the UV: unification

To conclude, we tentatively discuss how the GSM × U(1)X muo-
quark model, which gives rise to both LFUV and exactly stable 
protons in the IR, could be embedded inside a unified semi-simple 
gauge theory deeper in the UV (see Fig. 1 for a tentative gauge–
flavour unification scenario). The starting point is to realise that 
U(1)Y × U(1)X can be embedded inside SU(2)R × U(1)B− L × U(1)Z , 
where Z = X − 3m(B − L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton fami-
lies, which we promote to a gauge symmetry. One can also unify 

SU(3)c with an SU(3)quark flavour symmetry acting on the quarks 
into an SU(9)quark colour-flavour unified gauge symmetry. At this 
point, the gauge symmetry is SU(9)quark × SU(3)lepton × SU(2)L ×
SU(2)R × U(1)B− L . This can be embedded inside the semi-simple 
gauge group

GCF := SU(12) × SU(2)L × SU(2)R , (16)

which was identified in [112] and discussed in [113].
The group GCF can be viewed as an extension of the Pati–Salam 

gauge group [114], whereby colour and family quantum numbers 
are unified. Remarkably, all three families of SM+3νR fermions are 
packaged into two UV fermion fields, *L ∼ (12, 2, 1) and *R ∼
(12, 1, 2). The muoquarks descend from scalars transforming in 
the representations (78, 3, 1) and (66, 1, 1) of the unified gauge 
group, while the scalar fields φeτ ,µ responsible for Majorana neu-
trino masses and for breaking U(1)X → ! can sit in an (78, 1, 3). A 
hierarchical breaking of SU(9)quark can also give a UV explanation 
of the global U(2)q quark flavour symmetry that appears acciden-
tal in the IR (in a similar way to [82]). We save a detailed study 
of this embedding of the muoquark model inside a unified gauge 
theory for future work.

In this work, we sketched a complete story for lepton-flavoured 
TeV-scale leptoquarks that respect the SM accidental symmetries, 
consistent with very light neutrino masses. The proton is exactly 
stable thanks to a remnant discrete gauge symmetry in the IR. Of 
course, there remains the puzzle of why such a scalar leptoquark 
(and the Higgs) would reside at the TeV scale in the first place, in 
the presence of complicated physics at much higher scales. This 
hints at orthogonal routes towards the deep UV, in which the 
muoquark could arise from partial compositeness [115 ,116] or be 
embedded in a supersymmetric U(1)X extension of the SM. Such 
flavour-dependent supersymmetric extensions were recently clas-
sified in [117 ], suggesting a second path to the UV for future study. 
Beyond that, we wish to emphasize that the mechanism for stabi-
lizing the proton with a remnant subgroup of a lepton-flavoured
gauged U(1)X can be adapted to many other NP models with or 
without leptoquarks. Notably, this mechanism does not seem to 
work in lepton-universal models, perhaps an ever so small hint 
that something might be up with the muons.
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dynamics integrated out at a scale " > v X . Rather, after the break-
ing of U(1)X → !, muon number remains as an accidental, and 
thus approximate, symmetry in the IR.
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saw with order-1 couplings.
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hierarchical breaking of SU(9)quark can also give a UV explanation 
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of this embedding of the muoquark model inside a unified gauge 
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Fig. 1. Tentative gauge–flavour unification scenario. See Section 4 for details.

are !-invariant, despite not being U(1)X -invariant, for all three 
lepton flavours. This suggests that higher-order operators coupling 
the leptoquarks to electrons and taus are allowed in the U(1)X -
invariant effective theory, which could come from even heavier 
dynamics integrated out at a scale " > v X . Rather, after the break-
ing of U(1)X → !, muon number remains as an accidental, and 
thus approximate, symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 couplings to 
the other lepton families: schematically, 1

"2 φeτ φ∗
µ qS1/3ℓ1,3 and 

1
"2 φeτ φ∗

µ uS1e1,3. Moreover, there are dimension-6 corrections of 
the form 1

"2 φφℓ̄i He j to the charged lepton Yukawa matrix, popu-
lating the four zeroes in Eq. (4). The fact that the leptoquarks now 
have couplings to both muons and electrons means that µ → eγ
is mediated by the leptoquark exchange. In the case of the S1 lep-
toquark, this contribution to µ → eγ is related to its contribution 
to the (g − 2)µ anomaly by a factor of ϵ2

X where ϵX := v X/". 
The stringent experimental limit on BR(µ → eγ ) [98] requires 
ϵX ! 10− 2 or so [99,100], meaning that a modest scale separa-
tion is sufficient to suppress LFV processes to a level compatible 
with current bounds. Conversely, it is possible to introduce the 
next layer of NP safely below the Planck scale even if we take 
v X ∼ 1011 TeV to naturally accommodate light neutrinos in a see-
saw with order-1 couplings.

c. Dark matter — The discrete gauge symmetry ! can be used 
to stabilise the WIMP dark matter [101–108]. To name one exam-
ple, a dark matter candidate could be a scalar χ thermalised via 
the Higgs portal interaction |H |2|χ |2. To make the dark matter, χ , 
stable, its U(1)X charge should be such that all operators involving 
one χ field and arbitrary other light fields should be forbidden. 
Since all colour-singlet operators have ! charge equal to 0 (mod 
3), the DM is automatically stabilized if [χ ]! ≠ 0 (mod 3)—for ex-
ample, if [χ ]! = 1, coming from (say) the minimal unit of U(1)X
charge in the UV model.

d. Matter asymmetry — The scale of the right-handed neutri-
nos can allow for the usual high-scale leptogenesis scenario [109–
111]. The global U(1)B+L is anomalous allowing for the efficient 
sphalerons processes to take place.

4. Deeper into the UV: unification

To conclude, we tentatively discuss how the GSM × U(1)X muo-
quark model, which gives rise to both LFUV and exactly stable 
protons in the IR, could be embedded inside a unified semi-simple 
gauge theory deeper in the UV (see Fig. 1 for a tentative gauge–
flavour unification scenario). The starting point is to realise that 
U(1)Y × U(1)X can be embedded inside SU(2)R × U(1)B− L × U(1)Z , 
where Z = X − 3m(B − L). U(1)Z can in turn be embedded in-
side an SU(3)lepton flavour symmetry that acts on lepton fami-
lies, which we promote to a gauge symmetry. One can also unify 

SU(3)c with an SU(3)quark flavour symmetry acting on the quarks 
into an SU(9)quark colour-flavour unified gauge symmetry. At this 
point, the gauge symmetry is SU(9)quark × SU(3)lepton × SU(2)L ×
SU(2)R × U(1)B− L . This can be embedded inside the semi-simple 
gauge group

GCF := SU(12) × SU(2)L × SU(2)R , (16)

which was identified in [112] and discussed in [113].
The group GCF can be viewed as an extension of the Pati–Salam 

gauge group [114], whereby colour and family quantum numbers 
are unified. Remarkably, all three families of SM+3νR fermions are 
packaged into two UV fermion fields, *L ∼ (12, 2, 1) and *R ∼
(12, 1, 2). The muoquarks descend from scalars transforming in 
the representations (78, 3, 1) and (66, 1, 1) of the unified gauge 
group, while the scalar fields φeτ ,µ responsible for Majorana neu-
trino masses and for breaking U(1)X → ! can sit in an (78, 1, 3). A 
hierarchical breaking of SU(9)quark can also give a UV explanation 
of the global U(2)q quark flavour symmetry that appears acciden-
tal in the IR (in a similar way to [82]). We save a detailed study 
of this embedding of the muoquark model inside a unified gauge 
theory for future work.

In this work, we sketched a complete story for lepton-flavoured 
TeV-scale leptoquarks that respect the SM accidental symmetries, 
consistent with very light neutrino masses. The proton is exactly 
stable thanks to a remnant discrete gauge symmetry in the IR. Of 
course, there remains the puzzle of why such a scalar leptoquark 
(and the Higgs) would reside at the TeV scale in the first place, in 
the presence of complicated physics at much higher scales. This 
hints at orthogonal routes towards the deep UV, in which the 
muoquark could arise from partial compositeness [115 ,116] or be 
embedded in a supersymmetric U(1)X extension of the SM. Such 
flavour-dependent supersymmetric extensions were recently clas-
sified in [117 ], suggesting a second path to the UV for future study. 
Beyond that, we wish to emphasize that the mechanism for stabi-
lizing the proton with a remnant subgroup of a lepton-flavoured
gauged U(1)X can be adapted to many other NP models with or 
without leptoquarks. Notably, this mechanism does not seem to 
work in lepton-universal models, perhaps an ever so small hint 
that something might be up with the muons.
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Figure 5. Sample Feynman diagrams for the partonic processes relevant at hadron colliders. For
the scalar leptoquark S3 one should exchange q $ q̄.

CL limits that define the targeted parameter space for all considered models to be explored
at future colliders.

3.1 Di-muon: pp ! µ
+
µ
�

Following Ref. [15], a short-distance new physics above the electroweak scale contributing to
the (semi)leptonic B-meson decays, generically predicts a correlated effect in the Drell–Yan
(DY) process (pp ! µ

+
µ
�). This applies to all tree-level mediators considered in this work.

In particular, a Z
0 would show up as an s-channel resonance, while a leptoquark would lead

to a non-resonant effect via a t-channel contribution, see Fig. 5 for the respective Feynman
diagrams. Should the mass of these mediators be above the accessible di-muon invariant
mass spectrum, their impact would be described by a four-fermion quark-lepton interaction
considered in Section 4. Such interactions modify the high-invariant mass tails of the DY
process [15, 66, 68–92]. After specifying the quark flavour structure for a given operator,
the sensitivity in the tails can be compared to those from the low-energy flavour physics.

The production cross section depends crucially on the quark flavours involved in the
initial state. For example, quark-flavour universal Z 0 models with B/Lµ ⇠ O(1) and MFV
in the quark sector are already very well tested by current DY data at LHC. The dominant
production channel in these models is due to the valance quarks, and it is enhanced because
of their large PDFs. In this work, we only consider models in which the dominant couplings
are with the heavy flavours and which can evade LHC searches thanks to the suppression
from the sea quark PDFs. In Section 5.1 we investigate the U(1)B3�L2 gauge extension of
the SM where the Z

0 primarily interacts with the third generation of quarks and second
generation of leptons. The dominant DY channel in this model is the bb̄ fusion. In Section 6,
we derive the DY limits on the leptoquark models. While the main results are summarised
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Figure 14: The best-fit regions at 1� for all relevant constraints for the LFU leptoquark
model. The global fit is shown at 1 and 2�. See Section 6.3 for details.

predicts the left-handed rotations to dominate over the right-handed ones.11 The important
effect is that the leading Xµ interactions in the mass basis are associated with the current

Jµ
X = Jµ

3B3�L +
1

3
✏ij q̄i�

µqj , (6.15)

where |✏ij | ⌧ 1. The rest of the matching calculation proceeds as in Section 6.1. The
matching results in Eqs. (6.8)–(6.13) stay the same after the replacement of �ij ! 3 �i3�j3
for all quark indices. We again choose the down-aligned basis.

In Fig. 13, we show the best-fit regions for different data sets assuming the two cases
for ✏ij as in the previous section, see Eq. (6.5). The only difference with respect to the
U(1)B�L case is that the high-mass Drell-Yan bound is less stringent (dominant couplings
are with b quarks) and now compatible with the intersection of �F = 2 and b ! s`+`�.
However, the four-lepton contact interactions are inconsistent with this parameter space at
the 1� level. This is a general feature of the LFU Z 0 models — the e+e� ! `+`� becomes
a critical constraint. This is in contrast to the LFU violating models such as Lµ�L⌧ , where
the analogous bound was a neutrino trident production, and thus much weaker [129].

6.3 LFU leptoquark

Let us consider a triplet of scalar leptoquarks S↵ (↵ = 1, 2, 3) in the same SM gauge
representation (3̄,3, 1/3).12 The flavor index ↵ refers to the lepton flavor, and leptoquarks

11For the explicit realization of the left-handed dominance with vector-like quarks, see a closely related
model in Section 2.3 in Ref. [118]. By choosing appropriate representations, operators of the type 1

⇤ q̄3H�†di

are absent, while 1
⇤ q̄iH�d3 is present.

12Adding n copies of scalars in the (anti)fundamental representation of SU(3)c and the adjoint represen-
tation of SU(2)L modifies the SM beta functions of both gS and g2. While the strong coupling gS stays
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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The  atlasU(1)X

Allanach, Davighi, Melville; 1812.04602• Integer charges: 

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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21’546’920 inequivalent solutions (up to flavour permutation, etc)

• 18 chiral fermions
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• Muoquark requirement

[276 inequivalent solutions]

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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extensions some care needs to be taken to remove the potential Goldstone bosons, as well
as to avoid baryon number violating operators at dimension-5. While the catalog of the
models derived in this manuscript provides a good starting point, a detailed discussion of
the neutrino sector is beyond the scope of the present work and is left for future studies.

With the above caveat about neutrino masses in mind let us now move to the classification
of different anomaly free U(1)X models. It is remarkable that almost all anomaly-free charge
assignments XFi 2 [�10, 10] in the quark flavor universal U(1)X automatically satisfy the
muoquark conditions. The list of charge assignments can be classified into two categories:

vector category : XLi = XEi for all i = 1, 2, 3 , (2.14)
chiral category : the rest. (2.15)

In the vector category models the charged lepton Yukawas for all three generations are
allowed by the U(1)X symmetry, while in the chiral category models at least some of the
charged lepton Yukawas are forbidden and thus all the lepton masses are generated only
after the U(1)X symmetry is spontaneously broken.

Before discussing each of the two categories in more detail, let us consider several
examples of muoquarks adopting the nomenclature from Ref. [75]:

• The scalar leptoquark S3 ⌘ (3,3, 1/3, XS3), where XS3 = �Xq � XL2 , gives V � A

contribution to b ! sµ
+
µ

� transitions, see e.g. [1, 75, 77, 83–91]. The condition
in Eq. (2.13b) implies XL2 6= �3Xq such that the dimension-4 operator QQS3 is
forbidden.

• The scalar leptoquark S1 ⌘ (3,1, 1/3, XS1), where XS1 = �Xq � XL2 or XS1 =

�Xq � XE2 , implemented in “vector category” models, couples to both L2 and E2

to give the mt-enhanced contribution to (g � 2)µ, see e.g. [1, 75, 87, 91–95]. The
condition in Eq. (2.13b) is X`2 6= �3Xq.

• The scalar leptoquark R2 ⌘ (3,2, 7/6, XR2), where XR2 = Xq � XL2 or XR2 =

Xq�XE2 , and the condition in Eq. (2.13a) is X`2 6= 3Xq such that dimension-5 operator
ddH

†
R2 is forbidden. Note that otherwise such operators would lead to excessive

proton decay even when suppressed by the Planck scale [75, 96, 97]. This scalar
leptoquark representation is also used to address the (g � 2)µ, see e.g. [75, 91, 93, 95].
We will employ it in Section 4 to build a model for radiative muon mass and (g � 2)µ.

• The vector leptoquark U1 ⌘ (3,1, 2/3, XU1), where XU1 = Xq � XL2 or XU1 =

Xq � XE2 . The baryon number violating dimension-5 operator QdH
†
U1 is forbidden

when X`2 6= 3Xq, Eq. (2.13a). Possible UV completions for the U1 vector muoquark
will be presented in Section 5. This leptoquark representation was extensively discussed
in the literature to address the B-decay anomalies, see e.g. [98–112].

2.2.1 Vector category U(1)X charge assignments

The vector category is defined such that the left-handed and the right-handed e, µ and
⌧ leptons carry the same X charge. Solutions to the anomaly conditions (2.2)–(2.7) that
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•  are allowed => Yu,d

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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[273 inequivalent solutions]

[21 inequivalent solutions]
 allowed => Ye

(XH = 0)

eg.  LQ: S3 XL2
≠ {XL1,3

, −3Xq}

[252 inequivalent solutions]

Lepton-flavoured catalog

• Further classification:

Quark flavour universal class

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518
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