

Zurich Phenomenology Workshop 2023

EFT-Diagrammatic Approach to Compact Binary Dynamics

Pierpaolo Mastrolia University of Padova and INFN January 11, 2023

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

[Bailes et al. 2021]

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

[Bailes et al. 2021]

Outline

- 1. Gravitational Waves Detection and Computational Techniques
- 2. Two-body problem in Classical GR and EFT Diagrammatic Approach
- 3. Conservative Effects from Near and Far Zone
- 4. Spin Effects

Based on collaborations with:

- G. Brunello, J. Steinhoff, M.K. Mandal, R. Patil
- D. Bini, T. Damour, A. Geralico, S. Laporta
- S. Foffa, R. Sturani, C. Sturm, W.J. Torres Bobadilla

[GW150914] DISCOVERED: 14.09.**2015** [GW151226] 1.3 BILLION LIGHT-YEARS AWAY DISCOVERED: 26.12.**2015 |** 62 SOLAR MASSES 1.4 BILLION LIGHT-YEARS AWAY [GW170104] 366 KILOMETRES IN DIAMETER 21 SOLAR MASSES 04.01.**2017** 124 DIAMETER 3 BILLION LIGHT-YEARS AWAY 49 SOLAR MASSES 289 DIAMETER 1 BILLION LIGHT YEARS 2 BILLION LIGHT YEARS 3 BILLION LIGHT YEARS 4 BILLION LIGHT YEARS

LIGO-Virgo Detection: GW150914

Zurich is here

LIGO-Virgo Detection: GW150914

LIGO-Virgo-KAGRA Collaboration

Livingston

O3b - Catalogue

:: Current GW Detectors: advanced programs

Prospects for observations within advanced Programs updated [Abbot et al. 2020]

O3 --> O5 <==> O(10) --> O(100) GW detections/year

:: (some) Future GW Detectors

[Bailes et al. 2021]

Einstein Telescope

Lisa Mission

expected sensitivity

[credit: CE Consortium]

Two-Body Dynamics and GW Signal

Two-Body Dynamics and GW Signal

[adapted from: Barak]

Two-Body Dynamics and GW Signal

Effective One Body (EOB) Formalism

[Buonanno Damour]

the contributions coming from different kinematic regions for combined and calibrated with Numerical Relativity

- Post-Minkowskian Expansion [relativistic scattering]
- $G_N \frac{m}{r} << v^2 \sim 1$

Expansion in powers of G_N

 Post-Newtonian Expansion [non relativistic system]

$$G_N \frac{m}{r} \sim v^2 << 1$$

Expansion in powers of v/c

BH perturbation theory / self force

Expansion for small metric deformation

Effective Field Theory for General Relativity

Coalescing Binary System

:: Double Hierarchy

Conservative system ::

$$r_s \ll r \ll \lambda_{rad}$$

$$r_s \ll r \ll \lambda_{rad}$$

Dissipative system ::

GW emission

:: Effective Field Theory Approach

- Fundamental [complete] theory $S[\phi, \psi]$
- $^{\circ}$ Heavy fields ψ : Λ short distance r_s
- ° Light modes ϕ : $\omega \ll \Lambda$, large distance r

$$e^{\frac{iS_{eff}[\phi]}{\hbar}} = \int D\psi \ e^{\frac{iS[\phi,\psi]}{\hbar}}$$

- ▶ Effective [incomplete] theory $S_{eff}[\psi]$
 - ▶ Sensitive to the Lower-scale dynamics: $\omega \ll \Lambda$

$$S_{tot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

[Goldberger, Rothstein]

Einstein Hilbert + gauge fixing

$$S_{GR}[g] = 2\Lambda^2 \int d^{d+1}x \sqrt{-g} \left(R - \frac{1}{2} \Gamma^{\mu} \Gamma_{\mu} \right)$$

$$\Lambda^{-1} = \sqrt{32\pi G_N}$$

Source/Worldline

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

$$= -m_a \int d\tau_a = -m_a \int d\tau \sqrt{-g_{\mu\nu}(x_a)\dot{x}_a^{\mu}\dot{x}_a^{\nu}}$$

- Non-relativistic approximation [method of regions]: [Beneke Smirnov]
 - Weak field expansion:

$$v \ll 1$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \qquad h_{\mu\nu} = H_{\mu\nu} + \bar{h}_{\mu\nu}$$

$$h_{\mu\nu} = H_{\mu\nu} + \bar{h}_{\mu\nu}$$

• Potential gravitons
$$H_{\mu\nu}$$
: $(k_0,\mathbf{k}) \sim \left(\frac{v}{r},\frac{1}{r}\right)$ -----
• Radiation gravitons $\bar{h}_{\mu\nu}$: $(k_0,\mathbf{k}) \sim \left(\frac{v}{r},\frac{v}{r}\right)$

• Radiation gravitons
$$\bar{h}_{\mu\nu}$$
: $(k_0,\mathbf{k}) \sim \left(\frac{v}{r},\frac{v}{r}\right)$

- Worldline/BH x_a :
- Effective action by integrating out gravitons:

$$e^{iS_{eff}[x_a]} = \int D\bar{h} \int DH e^{iS_{tot}[x_a, H, \bar{h}]}$$

GREFT / Action / Near & Far Zone

[Goldberger, Rothstein]

$$e^{iS_{eff}[x_a]} = \int D\bar{h} \int DH \ e^{iS_{tot}[x_a, H, \bar{h}]} = \int D\bar{h} \ e^{\left\{iS_{bulk}[\bar{h}] + ---- + -\frac{3}{2} + -\frac{3}{2} + ---\right\}} + \dots$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}$$
 $DH e^{iS_{tot}[x_a, H, \bar{h}=0]} = exp\{ _$

Far zone (
$$\lambda_{rad}$$
):

Far zone (
$$\lambda_{rad}$$
): $S_{rad}[g, \{Q_i\}] = S_{GR}[g] + S_{mult}[g, \{Q_i\}]$

$$g_{\mu\nu} = \eta_{\mu\nu} + \bar{h}_{\mu\nu}$$

$$\int D\bar{h} e^{iS_{rad}[x_a,\bar{h}]} = exp\left\{ \frac{exp\left\{ -\frac{1}{2} exp\left(-\frac{1}{2} exp(-\frac{1}{2} exp\left(-\frac{1}{2} exp(-\frac{1}{2} exp\left(-\frac{1}{2} exp(-\frac{1$$

Conservative Dynamics:: Near Zone Spinless

Near Zone/EFT Diagrammatic Approach

[Goldberger, Rothstein] [Gilmore, Ross] [Foffa, Sturani]

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

▶ Kaluza-Klein parametrization:

[Kol Smolkin] [Blanchet Damour]

$$g_{\mu\nu} = e^{2\phi/\Lambda} \begin{pmatrix} -1 & A_j/\Lambda \\ A_i/\Lambda & e^{-c_d\frac{\phi}{\Lambda}}\gamma_{ij} - A_iA_j/\Lambda^2 \end{pmatrix} \qquad \begin{array}{c} \text{Graviton} = \text{Scalar} + \text{Vector} + \text{Sym} \\ 10 & 1 + 3 + 6 \\ g_{\mu\nu} \Rightarrow \phi \quad A^i \quad \sigma^{ij} \\ \end{array}$$

Graviton = Scalar + Vector + Sym. Tensor
$$10 1 + 3 + 6$$

$$\varphi \Rightarrow \Phi A^i \sigma^{ij}$$

$$\gamma_{ij} = \delta_{ij} + \frac{\sigma_{ij}}{\Lambda} \qquad c_d = 2\frac{d-1}{d-2}$$

Feynman rules for: ϕ A^i σ^{ij} χ_{α}

Static / non-propagating source:

Propagators:

Source couplings:

Self-interactions:

Newton Potential

Diagrammatic approach

Just 1 diagram:

$$\mathcal{M}_{0PN} = \frac{im_1m_2}{2c_d\Lambda^2} \frac{1}{\mathbf{p}^2}$$

Fourier transform: from amplitude to the effective action:
$$\mathscr{L}_{0PN} = -i\lim_{d\to 3}\int \frac{d^d\mathbf{p}}{(2\pi)^d}e^{i\mathbf{p}(x_1-x_2)} \left(\right) = \frac{G_N m_1 m_2}{r}$$

Newton Potential

Diagrammatic approach

Just 1 diagram:

$$\mathcal{M}_{0PN} =$$

$$= \frac{im_1 m_2}{2c_d \Lambda^2} \frac{1}{\mathbf{p}^2}$$

▶ Fourier transform: from amplitude to the effective action:

$$\mathcal{L}_{0PN} = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1 - x_2)} \left(\right) = \frac{G_N m_1 m_2}{r}$$

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^2 \ll 1$

Dynamics in Post-Minkowskian perturbative scheme

At nPM order: G_N^n

...Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard, Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators...

Newton Potential

Diagrammatic approach

Just 1 diagram:

$$\mathcal{M}_{0PN} =$$

▶ Fourier transform: from amplitude to the effective action:

$$\mathcal{L}_{0PN} = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1 - x_2)} \left(\right) = \frac{G_N m_1 m_2}{r}$$

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^2 \ll 1$

Virial theorem: $\frac{G_N m}{r} \approx v^2$

▶ Dynamics in Post-Newtonian perturbative scheme

At nPN order: $G_N^{n-\ell}v^{2\ell}$

...Jaranowski, Schaefer, Damour, Blanchet, Faye, Porto, Rothstein, Goldberger, Foffa, Sturani, Bini, Buonanno, Geralico, Sturm, Torres Bobadilla, Bluemlein, Maier, Marquard, Levi, Steinhoff, Vines, Antonelli, Kavanagh, Khalil, Galley, von Hippel, McLeod, Edison, Kim, Morales, Yin, Mandal, Patil, Teng, P.M. ...and collaborators

Post-Newtonian Corrections/EFT Potential

▶ 1PN corrections:

Einstein, Infeld, Hoffman (1938)

Ohta-Okamura-Kimura-Hiida (1974) Gilmore, Ross (2008)

▶ 3PN corrections:

Jaranowski, Schaefer (1997); Damour, Jaranowski, Schaefer (1997); Blachę, Faye (2000); Damour, Jaranowski Schaefer (2001); Foffa Sturani (2011)

▶4PN: corrections:

Damour, Jaranowski, Schaefer (2014);
Bernard, Blanchet, Bohe, Faye, Marsa (2016);
Foffa, Sturani, Sturm & P.M. (2016);
Foffa, Porto, Rothstein, Sturani (2019)
Blumlein, Maier, Marquard, Schaefer (2020)

▶5PN: corrections:

Bini, Damour, Geralico (2019); Foffa, Sturani, Sturm, Torres Bobadilla & P.M. (2019); Blumlein, Maier, Marquard, Schaefer (2020,2021)

A closer look to 4PN anatomy

Loop nr. $0 \le \ell \le n-1$

GREFT Diagrams & 2pt-QFT Integrals / a key observation

Foffa, Sturani, Sturm, & P.M. (2016)

Computational techniques:

- ▶ From Effective diagrams to QFT Amplitudes:
- ▶ World-lines are not propagating
- **EFTGravity Amplitudes of order** G_N^ℓ mapped into $(\ell-1)$ —loop 2-point functions with massless internal lines:
- ▶ Amplitudes evaluation with QFT multi-loop techniques
- ▶ From QFT Amplitudes to Effective Lagrangians:

$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$
 • Integration-by-parts (IBP) decomposition • Master Integrals evaluation

- $^{\circ}$ Dimensional Regularization $d=3+\epsilon$
- Master Integrals evaluation

$$\mathcal{L}_{eff}[x_a] = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p} \cdot \mathbf{r}} \left(\frac{1}{2\pi} \right)^{-1} d\mathbf{p} d\mathbf{r}$$

GREFT Diagrams & 2pt-QFT Integrals / a key observation

Foffa, Sturani, Sturm, & P.M. (2016)

Computational techniques:

- ▶ From Effective diagrams to QFT Amplitudes:
- ▶ World-lines are not propagating
- ▶ EFTGravity Amplitudes of order G_N^{ℓ} mapped into $(\ell-1)$ —loop 2-point functions with massless internal lines:
- ▶ Amplitudes evaluation with QFT multi-loop techniques
- ▶ From QFT Amplitudes to Effective Lagrangians:

4PN static O(G^5): 50 4-loop GREFT diagrams

$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$

- $^{\circ}$ Dimensional Regularization $d=3+\epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

$$\mathcal{L}_{eff}[x_a] = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p} \cdot \mathbf{r}} \left(\right)$$

29 4-loop QFT diagrams

7 4-loop Master Integrals

GREFT Diagrams & 2pt-QFT Integrals / Factorization Th'm

Foffa, Sturani, Sturm, Torres-Bobadilla & P.M. (2019)

$$\int_{p} e^{ip \cdot r} \bigoplus \equiv \bigoplus \rightarrow \bigoplus$$

Newton Potential (reloaded):

$$\int d^d p \, e^{ip \cdot r} \, \left| \, \right| = \int d^d p \, \frac{e^{ip \cdot r}}{p^2} \quad = \quad \int d^d p \, e^{ip \cdot r} \, - \cdots \, \right| = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

GREFT Diagrams & 21

orizat

Foffa, Sturani, Sturm, Torres-Bobadilla & P.M. (2019)

$$\int d^d p \ e^{ip\cdot r}$$

25

 $\mathcal{V}_{N^6} =$

$$\mathcal{V}_{N^3 imes 2\mathrm{PN}} \; = \; \left(\begin{array}{c} \overline{} \\ \hline \end{array} \right)^3 imes$$

$$\mathcal{V}_{N imes4 ext{PN}} \; = \;$$

$$\int d^d p \ e^{ip \cdot r} \qquad \begin{array}{c} \text{n1} \\ \text{n2} \end{array}$$

 $\overline{\mathcal{V}_{ ext{static}}^{(5 ext{PN})}} \equiv \mathcal{V}_{N^6} + \overline{\mathcal{V}_{N^3 imes2 ext{PN}}^{283}} + \overline{\mathcal{V}_{N imes4 ext{PN}}^{29}} + \overline{\mathcal{V}_{(2 ext{PN})^2}}$

31 5PN O(G^5 v^2): 1220 4-loop GREF₃T diagrams

Foffa, Sturani,, Torres-Bobadilla (2020) 49

▶ static (2n+1)-PN Potential as product of lower-PN Potential terms

- Factorization Th'm: NO 5-loop diagram explicitly computed
- ▶ Results confirmed and completed by explicit evaluation of 2pt-QFT 5-loop Integrals 42 Blümelein, Maier, Marquard, Schäfer (2019-21)

Conservative Dynamics:: Far Zone Spinless

Far Zone/EFT Diagrammatic Approach

$$S_{rad}[g, \{Q_i\}] = S_{GR}[g] + S_{mult}[g, \{Q_i\}]$$

Goldberger, Rothstein (2005)
Goldberger, Ross (2009)
Galley, Tiglio (2009,2012)
Foffa, Sturani (2012); Ross (2012)
Galley, Leibovich, Porto, Ross (2015)
Leibovich, Maia, Rothstein, Yang (2019)
Blanchet et al.(2021)

iet et ai.(202

Thorne (1980)

Far zone contributions to the conservative dynamics are needed, starting at 4PN order

 $\{Q_i\}$

Multipole source emitting gravitons

Long-wavelength EFT:

EFT matching

Multipole Action:

Binary system as a linear source $T_{\mu\nu}$ of size r emitting $\bar{h}_{\mu\nu}$:

$$S_{mult} = -\frac{1}{2} \int d^4x T^{\mu\nu} \bar{h}_{\mu\nu} \qquad \qquad \underbrace{=}_{T_{\mu\nu}}$$

$$S_{mult}[\bar{h}, \{Q_i\}] = \int dt \left[\frac{1}{2} E \bar{h}_{00} - \frac{1}{2} \epsilon_{ijk} L^i \bar{h}_{0j,k} - \frac{1}{2} Q^{ij} \mathcal{E}_{ij} - \frac{1}{6} O^{ijk} \mathcal{E}_{ij,k} - \frac{2}{3} J^{ij} B_{ij} + \dots \right]$$

° \mathcal{E}_{ij} , B_{ij} are the electric and magnetic components of the Riemann tensor

$$\mathcal{E}_{ij} = R_{0i0j} \approx -\frac{1}{2} \left(\bar{h}_{00,ij} + \ddot{\bar{h}}_{ij} - \dot{\bar{h}}_{0i,j} - \dot{\bar{h}}_{0j,i} + \mathcal{O}(\bar{h}^2) \right)$$

 $\circ \{Q_i\}$: multipole moments $E, L^i, Q^{ij}, O^{ijk}, J^{ij}$

$$B_{ij} = \frac{1}{2} \epsilon_{ikl} R_{0jkl} \approx \frac{1}{4} \epsilon_{ikl} \left(\dot{\bar{h}}_{jk,l} - \dot{\bar{h}}_{jl,k} + \bar{h}_{0l,jk} - \bar{h}_{0k,jl} + \mathcal{O}(\bar{h}^2) \right)$$

Far Zone/EFT Diagrammatic Approach

Hereditary Effects

▶ Contributions to the conservative dynamics by integrating out radiation gravitons:

$$S_{eff}[\{Q_i\}] = -i \lim_{d \to 3}$$

Thorne (1980) Goldberger, Rothstein (2005)

Goldberger, Ross (2009)

Galley, Tiglio (2009,2012)

Foffa, Sturani (2012); Ross (2012)

Galley, Leibovich, Porto, Ross (2015)

Leibovich, Maia, Rothstein, Yang (2019)

Blanchet et al.(2021)

Almeida, Foffa, Sturani (2021,2022)

Blumlein, Maier, Marquard, Schaefer (2021)

Edison, Levi (2022)

Brunello, Mandal, Patil & P.M. in progress

▶ Hereditary Effects: GWs emitted by the source and then back-scattered into the system:

▶EFTGravity Amplitude mapped into multi-loop 1-point functions with massive internal lines:

Non propagating sources
$$\frac{1}{\mathbf{k}^2 - k_0^2} = \int \prod_{i=1}^n \left[\frac{dk_0^i}{2\pi} \right] \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)$$
 Radiation gravitons propagator:
$$\frac{1}{\mathbf{k}^2 - k_0^2}$$

$$\mathcal{M} = \sum_i c_i \ I_i^{MI}$$

- $^{\circ}$ Dimensional Regularization $d=3+\epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

Far Zone/EFT Diagrammatic Approach

Foffa, Sturani Blumlein, Maier, Marquard, Schaefer Almeida, Foffa, Sturani Brunello, Mandal, Patil & P.M. in progress

Memory Effect (5PN) within the *In-Out (causal)* formalism

Foffa, Sturani (2019)

- Tensor **Decomposition:**
- $\mathcal{M}^{Q^3} = Tr[Q(k_0)Q(p_0)Q(q_0)] \tilde{\mathcal{M}}^{Q^3}$
- IBP Decomposition:

in agreement with Foffa, Sturani (2019)

Memory Effect (5PN) within the *In-In* **formalism**

Blumlein, Maier, Marquard, Schaefer (2021) Almeida, Foffa, Sturani (2022)

Sample diagram:

$$= \langle (V_{Qh})^{(+)}(V_{Qh})^{(-)}(V_{Qh})^{(+)}V_{h^3} \rangle = 3$$

Tensor Decomposition:

$$= Tr[Q^{(a)}Q^{(b)}Q^{(c)}] \tilde{\mathcal{M}}^{Q^3}(G_1, G_2, G_3)$$

• IBP Decomposition:

Total result:

$$S_{eff\ 5PN}^{Q_{+}Q_{+}Q_{-}} = -i\lim_{d\to 3} \frac{1}{35} \int dt \ Tr \left[8 \left(\ddot{Q}_{+} \right)^{2} \ddot{Q}_{-} + 7 \left(\ddot{Q}_{+} \right)^{2} Q_{-} - 12 \ddot{Q}_{+} \ddot{Q}_{+} \ddot{Q}_{-} - 14 \dddot{Q}_{+} Q_{+} \dddot{Q}_{-} \right]$$

agreement with:

Almeida Foffa, Sturani (2022)

Bluemlein, Maier, Marquard, Schaefer (2022)

[credit: Brunello]

- [credit: Brunello]
- known known FarZone-GREFT with causal propagators not adequate to describe Radiation/Hereditary effects
- known unknown: FarZone-GREFT within Keldysh-Schwinger "in-in" formalism under scrutiny

Scattering Angle

$$\chi = -2 \int_{r_{\min}}^{\infty} dr \frac{\partial p_r}{\partial L} - \pi$$

[credit: Antornelli et al.]

$$M = m_1 + m_2$$
 $\mu = \frac{m_1 m_2}{m_1 + m_2}$ $\nu = \frac{\mu}{M}$

$$p_r = p_r(r, E, L, S_{(a)}) = p_r(r, v, b, S_{(a)})$$

$$\mathbf{p}^{2} = p_{r}^{2} + \frac{L^{2}}{r^{2}} = p_{\infty}^{2} - V_{eff} , \qquad V_{eff}(r) = -\sum_{n \geq 1} f_{n}(E) \left(\frac{G_{N}}{r}\right)^{n} , \qquad p_{r} = \sqrt{p_{\infty}^{2} - \frac{L^{2}}{r} - V_{eff}(r)} , \qquad V_{eff}(r \to \infty) \to 0 .$$

$$H^{cons.} = H^{loc} + H^{nonloc.,cons.}$$

$$\chi = \chi^{loc} + \chi^{nonloc}.$$

▶PM-expansion:

$$\frac{1}{2}\chi(b,E) = \sum_{n} \chi_{b}^{(n)}(E) \left(\frac{GM}{b}\right)^{n} = \sum_{n} \chi_{j}^{(n)}(E) \frac{1}{j^{n}},$$

▶ PN-expansion:

$$\chi_b^{(n)} = \sum_{k \ge 0} \chi_b^{(n,k)} \left(\frac{\mathbf{v}^2}{c^2}\right)^k$$

$$\chi_j^{(n)} = \hat{p}_{\infty}^n \chi_b^{(n)}, \qquad \hat{p}_{\infty} = p_{\infty}/\mu. \qquad j = \frac{L}{G_N M \mu}$$

$$\hat{p}_{\infty} = p_{\infty}/\mu.$$

$$j = \frac{L}{G_N M u}$$

$$E = M \Gamma$$

$$\Gamma = \sqrt{1 + 2\nu(\gamma - 1)}$$

$$\gamma = \frac{1}{\sqrt{1 - v_{\infty}^2}}$$

$$E = M \Gamma \qquad \Gamma = \sqrt{1 + 2\nu(\gamma - 1)} \qquad \gamma = \frac{1}{\sqrt{1 - v_{\infty}^2}} \qquad p_{\infty} = \frac{m_1 m_2}{E} \sqrt{\gamma^2 - 1} = \mu^2 \frac{\gamma^2 - 1}{\Gamma^2}$$

Scattering Angle / far zone (no spin): 6PN & 7PN

Bini Damour Geralico (2020)

Bini Damour Geralico Laporta & P.M.(2020)

analytically known

$$\chi^{nonloc.} = \frac{\partial}{\partial L} \int_{-\infty}^{\infty} dt \ H^{nonloc.}(t)$$

▶ PM-expansion:

$$\frac{1}{2}\chi^{nonloc.} = \nu p_{\infty}^4 \left(\frac{A_0}{j^4} + \frac{A_1}{p_{\infty} j^5} + \frac{A_2}{p_{\infty}^2 j^6} + \dots \right)$$

Multipole Radiation Formula

Quadrupole moment

$$H^{nonloc.}(t) \propto \ddot{Q}_{ij}(t) \, \mathrm{PF}_T \! \int_{-\infty}^{\infty} \frac{d\tau}{|\tau|} \ddot{Q}_{ij}(t+\tau) + \mathrm{higher-multipole \ terms}$$
 time scale $T \equiv 2r_{12}/c$

Hadamard Partie Finie

$$Q_{ij} \equiv \sum m_a \left(x_a^i x_a^j - \frac{1}{3} \delta^{ij} \mathbf{x}_a^2 \right) + \text{PN corrections} \qquad \text{Pf}_T \int_0^{+\infty} \frac{\mathrm{d}v}{v} g(v) \equiv \int_0^T \frac{\mathrm{d}v}{v} [g(v) - g(0)] + \int_T^{+\infty} \frac{\mathrm{d}v}{v} g(v)$$

(... similar to the plus-distribution formula)

$$\frac{1}{2}\chi^{nonloc.} = \nu p_{\infty}^4 \left(\frac{A_0}{j^4} + \frac{A_1}{p_{\infty} j^5} + \frac{A_2}{p_{\infty}^2 j^6} + \dots \right)$$

$p_{\infty} \equiv \sqrt{\gamma^2 - 1}$, and $j = \frac{L}{G_N M \mu}$

PN-expansion:

$$A_m = \sum_{n\geq 0} \left(A_{mn} + A_{mn}^{\ln} \log(p_{\infty}/2) \right) p_{\infty}^n , \qquad A_{mn} = \sum_{k\geq 0} A_{mnk} \nu^k$$

$$A_{mnk} = \int_{-1}^{+1} \int_{-1}^{+1} \frac{dTdT'}{|T - T'|} a_{mnk}(T, T')$$

O(G^6) Coefficients

O(200) coefficients:

4 of them coefficients only numerically

[Bini Damour Geralico]

Analytic evaluation

 $A_{220}, A_{240}, A_{241}, A_{242}$ [Bini Damour Geralico Laporta & P.M.]

Extended to O(G^7) Coefficients

Q_{20}	524.7672921802125843427359557031017584761419995573690119377287112384988398300977120939070371581123849883983009771209390703715811123849883983009771209390703715811111111111111111111111111111111111
	960608317062389952056770520679467837449664751347301110104558831841701708293472120711241061131651201111111111111111111111111111111111
	8613485679
Q_{40}	544.4939915701706772258458158548215701355843583332648304959367083415682948158610574285653029862123123123123123123123123123123123123123
	8708425211592342333936498152472263380790503376943211969171787474314428267704148469493999269144711211111111111111111111111111111111
	2804761699
Q_{41}	-1029.528875374038496846264209062889513113498910449676867454201338934155133394086571099160008091000000000000000000000000000
	600270006833111792420815144840143345012667124339258875382660056039521310075062073051406462130061266712433925887538266005603952131007506207305140646213006126671243392588753826600560395213100750620730514064621300612667124339258875382660056039521310075062073051406462130061266712433925887538266005603952131007506207305140646213006126671243392588753826600560395213100750620730514064621300612667124339258875382660056039521310075062073051406462130061266712433925887538266005603952131007506207305140646213006126671243392588753826600560395213100750620730514064621300612667124339258875382660056039521310075062073051406462130061266712433925887538266005603952131007506207305140646213006126671243392588753826600560395213100750620730514064621300612667124339258875382660056039521310075062073051406462130061266712433925887538266005600560056000000000000000000000000
	5024513617
Q_{42}	-802.885057050786642755886295069034459970736865058430654964178895902426423211047940727300850918664275586642755886295069034459970736865058430654964178895902426423211047940727300850918664275586642755886295069034459970736865058430654964178895902426423211047940727300850918666666666666666666666666666666666666
	742678716230784351105139654447667985252511824683509405317671631976450608758027815375931918602871623078435110513965444766798525251182468350940531767163197645060875802781537593191860287162000000000000000000000000000000000000
	0.49901.466.4

TABLE II: PSLQ reconstruction of the various integrals

$egin{array}{c} Q_{20} \ d_{20} \end{array}$	$\frac{25883}{1800} + \frac{22333}{140} K - \frac{625463}{3360} \pi - \frac{361911}{560} \pi \ln 2 + \frac{99837}{160} \pi \zeta(3) - \frac{32981}{112} - \frac{9216}{7} \ln 2 + \frac{99837}{64} \zeta(3)$
$egin{array}{c} Q_{40} \ d_{40} \end{array}$	$\frac{\frac{750674317}{1905120} + \frac{442237}{5040}K - \frac{571787}{103680}\pi \frac{7207043}{6720}\pi \ln 2 - \frac{190489}{320}\pi\zeta(3)}{\frac{725051}{1296} + \frac{19920}{7}\ln 2 - \frac{190489}{128}\zeta(3)}$
$egin{array}{c} Q_{41} \ d_{41} \end{array}$	$ \frac{-\frac{703435949}{1587600} - \frac{5747}{24}K + \frac{1154149}{17280}\pi + \frac{1897771}{3360}\pi \ln 2 - \frac{306219}{640}\pi\zeta(3)}{\frac{607867}{8064} + \frac{20224}{21}\ln 2 - \frac{306219}{2566}\zeta(3)} $
$egin{array}{c} Q_{42} \ d_{42} \end{array}$	$-\frac{\frac{59610947}{793800} - \frac{1499}{20}K - \frac{402163}{2520}\pi + \frac{4497}{80}\pi \ln 2 - \frac{11871}{160}\pi\zeta(3) - \frac{186743}{864} - \frac{11871}{64}\zeta(3)$

1. Numerica reconstruction w/200 digits

	TABLE III: Independent sets of HPLs, at the point $x = i$, up to weight four.
$H_{-1}(i)$	$\frac{\ln 2}{2} + i \frac{\pi}{4}$
$H_0(i)$	$i^{rac{\pi}{2}}$
$H_1(i)$	$\frac{-\frac{\ln 2}{2} + i\frac{\pi}{4}}{\frac{\pi^2}{48} + iK}$
$H_{0,-1}(i)$	$\frac{\pi^2}{48} + iK$
$H_{0,1}(i)$	$-\frac{\pi^2}{48} + iK$
$H_{-1,-1}(i)$	$ \frac{\frac{3}{48} + iK}{-\frac{\pi^2}{48} + iK} -\frac{\pi^2}{48} + iK -\frac{\pi^2}{32} + \frac{\ln^2 2}{8} + \frac{1}{8}i\pi \ln 2 -\frac{\pi^2}{32} - \frac{\ln^2 2}{8} - \frac{3}{8}i\pi \ln 2 + iK -\frac{\pi^2}{32} - \frac{\ln^2 2}{\frac{3}{8}} + \frac{3}{8}i\pi \ln 2 - iK $
$H_{-1,1}(i)$	$-\frac{\pi^2}{32} - \frac{\ln^2 2}{8} - \frac{3}{8} i\pi \ln 2 + iK$
$H_{1,-1}(i)$	$-\frac{\pi^2}{32} - \frac{\ln^2 2}{8} + \frac{3}{8} i \pi \ln 2 - i K$
$H_{1,1}(i)$	$-\frac{32}{32} + \frac{\ln^2 2}{8} - \frac{1}{8}i\pi \ln 2$
$H_{0,-1,-1}(i)$	$\frac{29}{64}\zeta(3) - \frac{1}{4}K\pi - iQ_3$
$H_{0,-1,1}(i)$	$\frac{27}{64}\zeta(3) - \frac{1}{4}K\pi + i\frac{\pi^3}{32} - 3iQ_3 - 2iK \ln 2$
$H_{0,1,-1}(i)$	$\frac{27}{64}\zeta(3) - \frac{1}{4}K\pi - i\frac{\pi^3}{32} + 3iQ_3 + 2iK\ln 2$
$H_{0,1,1}(i)$	$\frac{\frac{29}{64}\zeta(3) - \frac{1}{4}K\pi + iQ_3}{\frac{61}{15369}\pi^4 - \frac{35}{328}\zeta(3)\ln 2 + \frac{5}{384}\pi^2\ln^2 2 - \frac{5}{384}\ln^4 2 - \frac{5}{16}a_4 + \frac{\pi Q_3}{4} + iQ_4}$
$H_{0,-1,-1,-1}(i)$	$\frac{15360}{15360}\pi - \frac{1}{128}\zeta(3) \ln 2 + \frac{3}{384}\pi \ln 2 - \frac{3}{384} \ln 2 - \frac{3}{16}a_4 + \frac{3}{4} + iQ_4$ $\pi^4 + K^2 + \pi Q_3 + 29 \sin(2) - 7 \sin(2)$
$H_{0,-1,-1,0}(i)$	$-\frac{\pi^4}{4608} + \frac{K^2}{2} + \frac{\pi Q_3}{2} + \frac{29}{128} i\pi \zeta(3) - \frac{7}{48} iK\pi^2 - \frac{97}{9216} \pi^4 + \frac{91}{128} \zeta(3) \ln 2 - \frac{13}{384} \pi^2 \ln^2 2 + \frac{13}{16} a_4 - \frac{13}{384} \ln^4 2 + \frac{3}{4} \pi Q_3 + \frac{K^2}{2} - \frac{7}{8} i\pi \zeta(3) + \frac{1}{16} i\pi^3 \ln 2 - 2iK \ln^2$
$H_{0,-1,1,-1}(i)$	$-\frac{1}{9216}\pi + \frac{1}{128}\zeta(3) \ln 2 - \frac{3}{384}\pi \ln 2 + \frac{1}{16}t4 - \frac{3}{384}\ln 2 + \frac{1}{4}\pi Q_3 + \frac{1}{2} - \frac{1}{8}t\pi\zeta(3) + \frac{1}{16}t\pi \ln 2 - 2tK \ln 2 - \frac{1}{16}tK\pi^2 + 5i\beta(4) - 6iQ_3 \ln 2 - 9iQ_4$
$H_{0,-1,1,0}(i)$	$-\frac{71}{16}iK\pi + 6i\beta(4) - 6iQ_3 iK 2 - 3iQ_4$ $-\frac{71}{16}\pi^4 + \frac{3}{16}\pi O_2 + K\pi \ln 2 + \frac{K^2}{16} + \frac{27}{16}i\pi^2(3) + \frac{1}{16}i\pi^3 \ln 2 - \frac{5}{16}iK\pi^2 - 3i\beta(4)$
$H_{0,1,-1,-1}(i)$	$-\frac{71}{4608}\pi^4 + \frac{3}{2}\pi Q_3 + K\pi \ln 2 + \frac{K^2}{2} + \frac{27}{128}i\pi\zeta(3) + \frac{1}{8}i\pi^3 \ln 2 - \frac{5}{48}iK\pi^2 - 3i\beta(4)$ $\frac{169}{9216}\pi^4 - \frac{77}{128}\zeta(3) \ln 2 + \frac{9}{128}\pi^2 \ln^2 2 - \frac{27}{16}a_4 - \frac{9}{128}\ln^4 2 - \frac{3}{4}\pi Q_3 - \frac{1}{2}K\pi \ln 2 - \frac{21}{128}i\pi\zeta(3) - \frac{1}{32}i\pi^3 \ln 2$
0,1, 1, 1(*)	$_{128}^{9216}$ $_{128}^{9216$
$H_{0,1,-1,0}(i)$	$\frac{73}{4608}\pi^4 + \frac{K^2}{2} - K\pi \ln 2 - \frac{3}{2}\pi Q_3 + \frac{27}{128}i\pi\zeta(3) - \frac{1}{8}i\pi^3 \ln 2 - \frac{7}{48}iK\pi^2 + 3i\beta(4)$
$H_{0,1,1,-1}(i)$	$\frac{^{4000}}{^{61}}\pi^4 + \frac{^{21}}{^{128}}\zeta(3)\ln 2 + \frac{^{13}}{^{384}}\pi^2\ln^2 2 - \frac{^{13}}{^{384}}\ln^4 2 - \frac{^{13}}{^{16}}a_4 - \frac{^{148}}{^{2}}\mathrm{K}\pi\ln 2 + \frac{^{K^2}}{^2} - \frac{^{1}}{^{4}}\pi\mathrm{Q}_3 + \frac{^{133}}{^{128}}i\pi\zeta(3) - \frac{^{1}}{^{32}}i\pi^3\ln^2 2 - \frac{^{13}}{^{32}}\pi^3\ln^2 2 - \frac{^{13}}{^{128}}i\pi^3\ln^2 2 - \frac{^{13}}{^{128}}$
	$+iK \ln^2 2 + \frac{3}{16}iK\pi^2 - 5i\beta(4) + 4iQ_3 \ln 2 + 7iQ_4$
$H_{0,1,1,0}(i)$	$-\frac{\pi^4}{4608} + \frac{K^2}{2} - \frac{1}{2}\pi Q_3 - \frac{5}{48}iK\pi^2 + \frac{29}{128}i\pi\zeta(3)$
$H_{-1,-1,-1,0}(i)$	$-\frac{31}{15360}\pi^4 + \frac{1}{2}\zeta(3)\ln 2 - \frac{1}{32}\pi^2\ln^2 2 + \frac{5}{384}\ln^4 2 + \frac{5}{16}a_4 + \frac{29}{256}i\pi\zeta(3) + \frac{1}{96}i\pi\ln^3 2 - \frac{1}{96}i\pi^3\ln 2 - \frac{1}{32}iK\pi^2$
	$-\frac{1}{8}i\mathrm{K}\ln^2 2 - \frac{1}{2}i\mathrm{Q}_3\ln 2 - i\mathrm{Q}_4$
$H_{-1,-1,1,0}(i)$	$-\frac{115}{9216}\pi^4 + \frac{13}{16}\zeta(3)\ln 2 - \frac{1}{12}\pi^2\ln^2 2 + \frac{9}{128}\ln^4 2 + \frac{27}{16}a_4 + \frac{1}{4}K\pi\ln 2 + \frac{1}{2}\pi Q_3 + \frac{27}{256}i\pi\zeta(3) - \frac{1}{96}i\pi\ln^3 2$
	$+\frac{1}{24}i\pi^{3}\ln 2 - \frac{1}{32}iK\pi^{2} - \frac{1}{8}iK\ln^{2} 2 - i\beta(4) - \frac{1}{2}iQ_{3}\ln 2 - iQ_{4}$
$H_{-1,1,-1,0}(i)$	$\frac{91}{9216}\pi^4 - \frac{1}{2}\zeta(3)\ln 2 + \frac{17}{96}\pi^2\ln^2 2 - \frac{13}{384}\ln^4 2 - \frac{13}{16}a_4 - \pi Q_3 + \frac{K^2}{2} - \frac{3}{4}K\pi\ln 2 + \frac{335}{256}i\pi\zeta(3) - \frac{1}{96}i\pi\ln^3 2$
TT (2)	$-\frac{3}{64}i\pi^{3}\ln 2 + \frac{13}{96}iK\pi^{2} + \frac{9}{9}iK\ln^{2} 2 - 5i\beta(4) + \frac{9}{2}iQ_{3}\ln 2 + 9iQ_{4}$
$H_{-1,1,1,0}(i)$	$-\frac{79}{9216}\pi^4 + \frac{1}{16}\zeta(3)\ln 2 - \frac{7}{48}\pi^2\ln^2 2 + \frac{13}{384}\ln^4 2 + \frac{13}{16}a_4 + \frac{K^2}{2} + \frac{1}{2}\pi Q_3 + \frac{1}{2}K\pi \ln 2 - \frac{195}{256}i\pi\zeta(3) + \frac{1}{96}i\pi \ln^3 + \frac{3}{3}\ln^3 3 + \frac{3}{2}\ln^3 3 + \frac$
II (:)	$ + \frac{3}{64}i\pi^{3}\ln 2 - \frac{31}{96}iK\pi^{2} - \frac{7}{8}iK\ln^{2} 2 + 5i\beta(4) - \frac{7}{2}iQ_{3}\ln 2 - 7iQ_{4} $ $ + \frac{3}{6216}\pi^{4} - \frac{7}{96}\pi^{2}\ln^{2} 2 - \frac{1}{16}\zeta(3)\ln 2 - \frac{13}{384}\ln^{4} 2 - \frac{13}{16}a_{4} + \frac{1}{2}K\pi\ln 2 + \frac{1}{2}\pi Q_{3} - \frac{K^{2}}{2} - \frac{279}{256}i\pi\zeta(3) - \frac{1}{96}i\pi\ln^{3} 2 $
$H_{1,-1,-1,0}(i)$	$\frac{38}{9216}\pi^{2} - \frac{1}{96}\pi^{2} \ln^{2} 2 - \frac{2}{16}\zeta(3) \ln 2 - \frac{38}{364} \ln^{4} 2 - \frac{1}{2}K\pi \ln 2 + \frac{1}{2}\pi Q_{3} - \frac{K}{2} - \frac{275}{256}i\pi\zeta(3) - \frac{1}{96}i\pi \ln^{3} 2 - \frac{7}{66}iK\pi^{2} - \frac{7}{8}iK \ln^{2} 2 + 5i\beta(4) - \frac{7}{2}iQ_{3} \ln 2 - 7iQ_{4}$
$H_{1,-1,1,0}(i)$	$-\frac{2}{96}i\mathrm{K}\pi - \frac{1}{8}i\mathrm{K}\ln 2 + 5i\beta(4) - \frac{1}{2}i\mathrm{Q}_3\ln 2 - ti\mathrm{Q}_4$ $-\frac{29}{9216}\pi^4 + \frac{1}{2}\zeta(3)\ln 2 + \frac{5}{48}\pi^2\ln^2 2 + \frac{13}{384}\ln^4 2 + \frac{13}{16}a_4 - \frac{3}{4}\mathrm{K}\pi\ln 2 - \frac{\mathrm{K}^2}{2} - \pi\mathrm{Q}_3 + \frac{167}{256}i\pi\zeta(3) + \frac{1}{96}i\pi\ln^3 2$
111,-1,1,0(t)	$\frac{9216}{9216}\pi + \frac{1}{2}\zeta(3) \ln 2 + \frac{37}{48}\pi \ln 2 + \frac{384}{384} \ln 2 + \frac{1}{16}u_4 - \frac{1}{4}K\pi \ln 2 - \frac{1}{2} - \pi Q_3 + \frac{37}{256}i\pi\zeta(3) + \frac{9}{96}i\pi \ln 2 - \frac{1}{2}i\pi^3 \ln 2 + \frac{37}{96}iK\pi^2 + \frac{9}{9}iK \ln^2 2 - 5i\beta(4) + \frac{9}{2}iQ_3 \ln 2 + 9iQ_4$
$H_{1,1,-1,0}(i)$	$-\frac{32}{32}iK \ln 2 + \frac{13}{96}iK K + \frac{1}{8}iK \ln 2 - 3i\beta(4) + \frac{1}{2}iQ_3 \ln 2 + 9iQ_4$ $\frac{91}{9216}\pi^4 - \frac{13}{16}\zeta(3) \ln 2 + \frac{5}{96}\pi^2 \ln^2 2 - \frac{9}{128}\ln^4 2 - \frac{27}{16}a_4 + \frac{1}{4}K\pi \ln 2 + \frac{1}{2}\pi Q_3 + \frac{111}{256}i\pi\zeta(3) - \frac{1}{192}i\pi^3 \ln 2$
11,1,-1,0(0)	$\begin{array}{l} {}_{9216}{}^{16}{}^{16} - {}_{16}\zeta(3) \ln 2 + {}_{96}{}^{16} \ln 2 - {}_{128} \ln 2 - {}_{16}u_4 + {}_{4}K\kappa \ln 2 + {}_{2}\kappa 23 + {}_{256}\epsilon\kappa \zeta(3) - {}_{192}\epsilon\kappa \ln 2 \\ + \frac{1}{96}i\pi \ln^3 2 - \frac{1}{8}iK \ln^2 2 - \frac{1}{32}iK\pi^2 - i\beta(4) - \frac{1}{2}iQ_3 \ln 2 - iQ_4 \end{array}$
$H_{1,1,1,0}(i)$	$\frac{71}{15360}\pi^4 - \frac{1}{2}\zeta(3)\ln 2 - \frac{5}{384}\ln^4 2 - \frac{5}{16}a_4 + \frac{29}{256}i\pi\zeta(3) + \frac{1}{192}i\pi^3\ln 2 - \frac{1}{32}iK\pi^2 - \frac{1}{8}iK\ln^2 2 - \frac{1}{96}i\pi\ln^3 2$
-,+,+,~(*/	$\frac{15360}{2}$ $\frac{2}{32}$ $\frac{16}{32}$ $\frac{1}{32}$ $\frac{1}{$
$\text{Li}_4(1/2)$	a_4
$\operatorname{ImLi}_2(i)$	K
$\mathrm{ImLi}_4(i)$	eta(4)
$Im H_{0,1,1}(i)$	Q_3
$Im H_{0,1,1,1}(i)$	Q_4

2. Analytic integration w/ HPL's

Far-Zone GREFT / validation

Mass polynomiality of the scattering angle:

$$\chi_4^{cons,tot} = \chi_4^{Schw} + \nu \chi_4^{\nu}$$

$$\nu = \frac{\mu}{M}$$

▶ Compatible with "Tutti Frutti" method and PM-Amplitudes-based calculations

[Damour]

[Bern et al.]

[Damour, Bini, Geralico]

▶GREFT calculations point at possible quadratic behaviour:

$$\chi_4^{cons,tot} = \chi_4^{Schw} + \nu \chi_4^{\nu} + \nu^2 \chi_4^{\nu^2}, \qquad \chi_4^{\nu^2} \neq 0$$

[Bluemlein et al.]

[Almeida et al.]

[Brunello et al.]

- known unknown: FarZone-GREFT is an challenging theoretical puzzle:
 - ► Which effects do the GREFT diagrams contain?
 - Interplay between conservative and dissipative effects?
 - ► Double counting or missing contribution?
 - ► FarZone/Radiation and proper choice of Green-Functions

Conservative Dynamics:: Near Zone with Spin

Near Zone with Spin/PN Corrections

Porto (2013)

Levi, Steinhoff (2015)

Vin (2022

Kim, Levi, Yin (2022) Mandal, Patil, Steinhoff & P.M. (2022)

Levi, Morales, Yin (2022)

Levi, Yin (2022)

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = \sum_{a=1,2} \int d\tau \left(-m_{(a)}c\sqrt{u_{(a)}^2} - \frac{1}{2}S_{(a)\mu\nu}\Omega_{(a)}^{\mu\nu} - \frac{S_{(a)\mu\nu}u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}_{(a)}^{(R)} + \mathcal{L}_{(a)}^{(R^2)} + \dots \right)$$

$$u_{(a)}^{\mu} \equiv \dot{x}_a^{\mu}$$

Wilson coefficients that describe the internal structure

$$\mathcal{L}_{(a)}^{(R)} = -\frac{1}{2m_{(a)}c} \left(C_{\text{ES}^2}^{(0)} \right)_{(a)} \frac{E_{\mu\nu}}{u_{(a)}} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\text{STF}} + \dots$$

$$\mathcal{L}_{(a)}^{(R^2,S^0)} = \frac{1}{2} \left(C_{E^2}^{(2)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\nu} E^{\mu\nu}}{u_{(a)}^3} S_{(a)}^2 + \dots$$

$$\mathcal{L}_{(a)}^{(R^2,S^2)} = \frac{1}{2} \left(C_{E^2S^2}^{(0)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\alpha} E_{\nu}^{\alpha}}{u_{(a)}^3} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{STF} + \dots$$

Electric and Magnetic components of Riemann tensor

$$E_{\mu\nu} \equiv R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta}$$

$$B_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\alpha\beta\gamma\mu} R^{\alpha\beta}{}_{\delta\nu} u^{\gamma} u^{\delta}$$

STF = Symmetrized Trace-Free

Near Zone with Spin/EFT Diagrammatic Approach Kim, Levi, Yin (2022)

Mandal, Patil, Steinhoff & P.M. (2022)

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$
spin dependence

▶ Kaluza-Klein parametrization:

[Kol Smolkin]

$$g_{\mu\nu} = e^{2\phi/\Lambda} \begin{pmatrix} -1 & A_j/\Lambda \\ A_i/\Lambda & e^{-c_d \frac{\phi}{\Lambda}} \gamma_{ij} - A_i A_j/\Lambda^2 \end{pmatrix}$$

Graviton = Scalar + Vector + Sym. Tensor
$$10 1 + 3 + 6$$

$$\gamma_{ij} = \delta_{ij} + \frac{\sigma_{ij}}{\Lambda} \qquad c_d = 2\frac{d-1}{d-2}$$

Feynman rules for: ϕ A^i σ^{ij} χ_{α}

Static / non-propagating source:

Propagators:

Source couplings:

Self-interactions:

GREFT Diagrams & 2pt-QFT Integrals

Kim, Levi, Yin (2022) Mandal, Patil, Steinhoff & P.M. (2022)

 S^0

S^1	

	Order	Diagrams	Loops	Diagrams
	0PN	1	0	1
	1PN	4	1	1
	11 11		0	3
			2	5
	2PN	21	1	10
			0	6
ſ			3	8
ı	3PN	130	2	75
ı	51 10		1	38
L			0	9
	() 37			

Order	Diagrams	Loops	Diagrams
LO	2	0	2
NLO	13	1	8
NLO		0	5
		2	56
N^2LO	100	1	36
		0	8
		3	288
N^3LO	894	2	495
IV LO		1	100
		0	11

(a) Non-spinning sector

(b) Spin-orbit sector

▶ Mapping to 2-point Functions

$$\mathcal{L}_{eff}[x_a, \dot{x}_a, \ddot{x}_a, \dots, S_a, \dot{S}_a, \dots] = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p} \cdot \mathbf{r}} \left(\frac{1}{2\pi} \right)^{-1} d^d \mathbf{p}$$

S²

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	7	1	3
NLO	1	0	4
		2	27
N^2LO	58	1	24
		0	7
		3	125
N^3LO	O 553	2	342
IV LO		1	76
		0	10

Order	Loops	Diagrams
LO	1	1

(c) E² sector

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	1	1	1
NLO	4	0	3
		2	7
N^2LO	25	1	12
		0	6
		3	15
$ m N^3LO$	168	2	101
		1	43
		0	9

(b) ES² sector

Order	Loops	Diagrams
LO	1	1

(d) E^2S^2 sector

$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$

- O Dimensional Regularization $d = 3 + \epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

Conservative Dynamics:: Near Zone with Spin Kim, Levi, Yin (2022)

Mandal, Patil, Steinhoff & P.M. (2022)

▶ Elimination of higher-order time derivatives / equation of motion

borrowed from: Damour, Schafer, Barker, O'Connell

$$\begin{split} \mathbf{x}_{(a)} &\rightarrow \mathbf{x}_{(a)} + \delta \mathbf{x}_{(a)} \\ \delta \mathcal{L} &= \left(\frac{\delta \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i}}\right) \delta \mathbf{x}_{(a)}^{i} + \frac{1}{2} \left(\frac{\delta^{2} \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j}}\right) \delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j} + \mathcal{O}\left(\delta \mathbf{x}_{(a)}^{3}\right) \\ \mathbf{\Lambda}_{(a)}^{ij} &\rightarrow \mathbf{\Lambda}_{(a)}^{ij} + \delta \mathbf{\Lambda}_{(a)}^{ij} \qquad \mathbf{S}_{(a)}^{ij} \rightarrow \mathbf{S}_{(a)}^{ij} + \delta \mathbf{S}_{(a)}^{ij} \qquad \delta \mathbf{\Lambda}_{(a)}^{ij} = \mathbf{\Lambda}_{(a)}^{ik} \boldsymbol{\omega}_{(a)}^{kj} + \mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{2}\right) \qquad \delta \mathbf{S}_{(a)}^{ij} = 2\mathbf{S}_{(a)}^{k[i} \boldsymbol{\omega}_{(a)}^{j]k} + \mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{2}\right) \\ \delta \mathcal{L}' &= -\left(\frac{1}{c}\right) \frac{1}{2} \dot{\mathbf{S}}_{(a)}^{ij} \boldsymbol{\omega}_{(a)}^{ij} - \left(\frac{1}{c}\right) \frac{1}{2} \mathbf{S}_{(a)}^{ij} \dot{\boldsymbol{\omega}}_{(a)}^{ik} \boldsymbol{\omega}_{(a)}^{kj} - \left(\frac{\delta V}{\delta \mathbf{S}_{(a)}^{ij}}\right) \delta \mathbf{S}_{(a)}^{ij} + \mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{3}, \delta \mathbf{S}_{(a)}^{2}\right) \end{split}$$

$$\mathcal{L}'' = \mathcal{L} + \delta \mathcal{L} + \delta \mathcal{L}' \quad \text{free of higher-order time derivatives}$$

▶Elimination of 1/(d-3) divergences and spurious Logarithmic terms / canonical transformations

$$\mathcal{H}(\mathbf{x},\mathbf{p},\mathbf{S}) = \sum_{\mathbf{1}} \mathbf{p}^i_{(a)} \dot{\mathbf{x}}^i_{(a)} - \mathcal{L}''(\mathbf{x},\dot{\mathbf{x}},\mathbf{S})$$
 may contain divergences and spurious logarithmic term

$$\mathcal{H}' = \mathcal{H} + \{\mathcal{H}, \mathcal{G}\}$$
 educated guess

Effective Hamiltionian free of unphysical terms

Scattering Angle:: Near Zone with Spin

▶ Aligned spins

$$\chi = -2 \int_{r_{\min}}^{\infty} dr \frac{\partial p_r}{\partial L} - \pi$$

$$\chi = \chi^{loc}$$

$$\chi(v, b, S_{(a)}) = \chi_{pp}(v, b) + \chi_{SO}(v, b, S_{(a)}) + \chi_{SS}(v, b, S_{(a)})$$

$$\chi_{SS}(v, b, S_{(a)}) = \chi_{S1S2}(v, b, S_{(a)}) + \chi_{S^2}(v, b, S_{(a)}) + \chi_{ES^2}(v, b, S_{(a)}) + \chi_{E^2S^2}(v, b, S_{(a)}) + \chi_{E^2S^2}(v, b, S_{(a)}) + \chi_{E^2S^2}(v, b, S_{(a)}) + \chi_{E^2S^2}(v, b, S_{(a)})$$

▶PM-expansion:

$$\frac{1}{2}\chi(b,E) = \sum_{n} \chi_b^{(n)}(E) \left(\frac{GM}{b}\right)^n$$

PN-expansion:

$$\chi_b^{(n)} = \sum_{k \ge 0} \chi_b^{(n,k)} \left(\frac{\mathbf{v}^2}{c^2}\right)^k$$

In agreement with: Antonelli et al. (2020) Kim et al. (2022) Mandal, Patil, Steinhoff & P.M. (2022)

$$\frac{\chi_{\text{pp}}}{\Gamma} = \left(\frac{G_N M}{v^2 b}\right) \left\{2 + 2\left(\frac{v^2}{c^2}\right) + \mathcal{O}\left(\frac{v^8}{c^8}\right)\right\} \\
+ \pi \left(\frac{G_N M}{v^2 b}\right)^2 \left\{3\left(\frac{v^2}{c^2}\right) + \frac{3}{4}\left(\frac{v^4}{c^4}\right) + \mathcal{O}\left(\frac{v^8}{c^8}\right)\right\} \\
+ \left(\frac{G_N M}{v^2 b}\right)^3 \left\{-\frac{2}{3} + 2\frac{15 - \nu}{3}\left(\frac{v^2}{c^2}\right) + \frac{60 - 13\nu}{2}\left(\frac{v^4}{c^4}\right) + \frac{40 - 277\nu}{12}\left(\frac{v^6}{c^6}\right) + \mathcal{O}\left(\frac{v^8}{c^8}\right)\right\} \\
+ \pi \left(\frac{G_N M}{v^2 b}\right)^4 \left\{15\frac{7 - 2\nu}{3}\left(\frac{v^4}{c^4}\right) + \left(\frac{105}{4} - \frac{437}{8}\nu + \frac{123}{128}\pi^2\nu\right)\left(\frac{v^6}{c^6}\right) + \mathcal{O}\left(\frac{v^8}{c^8}\right)\right\}$$

$$\chi_{\text{SO}} = \frac{v}{5} \left[1 - \left(\frac{G_N M}{v^2 b}\right) \left(\frac{-4}{c^4}\right) + \mathcal{O}\left(\frac{v^8}{v^8}\right)\right]$$

$$\frac{\chi_{SO}}{\Gamma} = \frac{v}{bc} \left[a_{(+)} \ \delta a_{(-)} \right] \cdot \left(\left(\frac{G_N M}{v^2 b} \right) \left\{ \begin{bmatrix} -4 \\ 0 \end{bmatrix} + \mathcal{O} \left(\frac{v^8}{c^8} \right) \right\} \right. \\ \left. + \pi \left(\frac{G_N M}{v^2 b} \right)^2 \left\{ -\frac{1}{2} \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 7 \\ 1 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \mathcal{O} \left(\frac{v^8}{c^8} \right) \right\} \right. \\ \left. + \left(\frac{G_N M}{v^2 b} \right)^3 \left\{ -2 \begin{bmatrix} 5 \\ 1 \end{bmatrix} - 20 \begin{bmatrix} 5 - \nu/2 \\ 1 \end{bmatrix} \left(\frac{v^2}{c^2} \right) - 10 \begin{bmatrix} 5 - 77\nu/20 \\ 1 \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right. \\ \left. + \frac{1}{4} \begin{bmatrix} 177\nu \\ 0 \end{bmatrix} \left(\frac{v^6}{c^6} \right) + \mathcal{O} \left(\frac{v^8}{c^8} \right) \right\} \\ \left. + \pi \left(\frac{G_N M}{v^2 b} \right)^4 \left\{ \frac{3}{4} \begin{bmatrix} -91 + 13\nu \\ -21 + \nu \end{bmatrix} \left(\frac{v^2}{c^2} \right) - \frac{1}{8} \begin{bmatrix} 1365 - 777\nu \\ 315 - 45\nu \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right. \\ \left. - \frac{1}{32} \left[\frac{1365 - \left(\frac{23717}{3} - \frac{733}{8} \pi^2 \right) \nu}{315 - \left(\frac{257}{3} + \frac{251}{8} \pi^2 \right) \nu} \right] \left(\frac{v^6}{c^6} \right) + \mathcal{O} \left(\frac{v^8}{c^8} \right) \right\} \right)$$

$$\begin{split} \frac{\chi_{\text{S1S2}} + \chi_{\text{S}^2}}{\Gamma} &= \frac{1}{b^2 c^2} \left[a_{(+)}^2 \quad \delta a_{(+)} a_{(-)} \quad a_{(-)}^2 \right] \cdot \left(\left(\frac{G_N M}{v^2 b} \right) \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \left(\frac{v^2}{c^2} \right) \right\} \\ &+ \pi \left(\frac{G_N M}{v^2 b} \right)^2 \left\{ \frac{3}{4} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{3}{16} \begin{bmatrix} 41 \\ 10 \\ -19 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{3}{128} \begin{bmatrix} 55 \\ -10 \\ -41 \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right\} \\ &+ \left(\frac{G_N M}{v^2 b} \right)^3 \left\{ 2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 102 - 2\nu \\ 32 \\ -38 - 6\nu \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{1}{14} \begin{bmatrix} 2332 - 499\nu \\ 688 \\ -748 - 37\nu \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right. \\ &+ \frac{1}{140} \begin{bmatrix} 1704 - 9925\nu \\ -288 \\ -1096 + 5377\nu \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} \\ &+ \pi \left(\frac{G_N M}{v^2 b} \right)^4 \left\{ \frac{15}{16} \begin{bmatrix} 63 - 2\nu \\ 22 \\ -21 - 6\nu \end{bmatrix} \left(\frac{v^2}{c^2} \right) - \frac{15}{448} \begin{bmatrix} -11063 + 2638\nu \\ -4206 + 308\nu \\ 2657 + 790\nu \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right. \\ &- \frac{3}{29376} \begin{bmatrix} 19102720 + (-29293696 + 135555\pi^2) \\ -256(-24640 + 11507\nu) \\ -4730880 + (8911744 - 139965\pi^2)\nu \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} \end{split}$$

$$\begin{split} \frac{\chi_{\mathrm{ES}^2}}{\Gamma} &= \frac{1}{b^2 c^2} \left[a_{\mathrm{ES}^2(+)}^2 \ \delta a_{\mathrm{ES}^2(-)}^2 \right] \cdot \left\{ \left(\frac{G_N M}{v^2 b} \right) \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} \left(\frac{v^2}{c^2} \right) \right\} \right. \\ &+ \pi \left(\frac{G_N M}{v^2 b} \right)^2 \left\{ \frac{1}{2} \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 27 \\ 3 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{1}{64} \begin{bmatrix} 117 \\ 57 \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right\} \\ &+ \left(\frac{G_N M}{v^2 b} \right)^3 \left\{ \begin{bmatrix} 4 \\ 0 \end{bmatrix} + \begin{bmatrix} 76 - 4\nu \\ 8 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{1}{7} \begin{bmatrix} 748 - 131\nu \\ 216 \end{bmatrix} \left(\frac{v^4}{c^4} \right) + \frac{1}{70} \begin{bmatrix} 1096 - 5013\nu \\ 704 \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} \\ &+ \pi \left(\frac{G_N M}{v^2 b} \right)^4 \left\{ \frac{15}{4} \begin{bmatrix} 11 - \nu \\ 1 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{15}{224} \begin{bmatrix} 2867 - 708\nu \\ 627 - 28\nu \end{bmatrix} \left(\frac{v^4}{c^4} \right) \\ &+ \frac{15}{114688} \begin{bmatrix} 1026816 - (2184832 + 27111\pi^2)\nu \\ 128(3262 - 395\nu) \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} \right\} \end{split}$$

$$\frac{\chi_{\rm E^2S^2}}{\Gamma} = \frac{1}{b^2c^2} \left[a_{\rm E^2S^2(+)}^2 \ \delta a_{\rm E^2S^2(-)}^2 \right] \cdot \left\{ \pi \left(\frac{G_N M}{v^2 b} \right)^4 \frac{15}{32} \nu \begin{bmatrix} 1 \\ 1 \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} + \mathcal{O}\left(G_N^5, \frac{v^8}{c^8} \right)$$

$$\frac{\chi_{\mathrm{E}^2}}{\Gamma} = \frac{1}{b^2 c^2} \left[a_{\mathrm{E}^2(+)}^2 \ \delta a_{\mathrm{E}^2(-)}^2 \right] \cdot \left\{ \pi \left(\frac{G_N M}{v^2 b} \right)^4 \frac{45}{16} \nu \begin{bmatrix} 1 \\ 1 \end{bmatrix} \left(\frac{v^6}{c^6} \right) \right\} + \mathcal{O}\left(G_N^5, \frac{v^8}{c^8} \right)$$

Binding Energy:: Near Zone with Spin

Mandal, Patil, Steinhoff & P.M. (2022)

Circular Orbit and aligned spins

$$E_{pp}(x) = -x\frac{1}{2} + x^2 \left\{ \frac{3}{8} + \frac{\nu}{24} \right\} + x^3 \left\{ \frac{27}{16} - \frac{19}{16}\nu + \frac{1}{48}\nu^2 \right\}$$
$$+ x^4 \left\{ \frac{675}{128} + \left(-\frac{34445}{1152} + \frac{205\pi^2}{192} \right)\nu + \frac{155}{192}\nu^2 + \frac{35}{10368}\nu^3 \right\}$$

$$E_{SO}(x,\tilde{S}) = x^{5/2} \left\{ S^* \left(-\nu \right) + S \left(-\frac{4}{3}\nu \right) \right\}$$

$$+ x^{7/2} \left\{ S^* \left(-\frac{3}{2}\nu + \frac{5}{3}\nu^2 \right) + S \left(-4\nu + \frac{31}{18}\nu^2 \right) \right\}$$

$$+ x^{9/2} \left\{ S^* \left(-\frac{27}{8}\nu + \frac{39}{2}\nu^2 - \frac{5}{8}\nu^3 \right) + S \left(-\frac{27}{2}\nu + \frac{211}{8}\nu^2 - \frac{7}{12}\nu^3 \right) \right\}$$

$$+ x^{11/2} \left\{ S^* \left(-\frac{135}{16}\nu + \frac{565}{8}\nu^2 - \frac{1109}{24}\nu^3 - \frac{25}{324}\nu^4 \right)$$

$$+ S \left(-45\nu + \left(\frac{19679}{144} + \frac{29\pi^2}{24} \right) \nu^2 - \frac{1979}{36}\nu^3 - \frac{265}{3888}\nu^4 \right) \right\},$$

$$E_{\text{S1S2}}(x, \widetilde{S}) = \widetilde{S}_{(1)}\widetilde{S}_{(2)} \left\{ x^3 \left\{ \nu \right\} + x^4 \left\{ \frac{5}{6}\nu + \frac{5}{18}\nu^2 \right\} + x^5 \left\{ \frac{35}{8}\nu - \frac{1001}{72}\nu^2 - \frac{371}{216}\nu^3 \right\} + x^6 \left\{ \frac{243}{16}\nu - \left(\frac{2107}{16} - \frac{123}{32}\pi^2 \right)\nu^2 + \frac{147}{8}\nu^3 + \frac{13}{16}\nu^4 \right\} \right\},$$

$$\begin{split} E_{\mathrm{S}^2}(x,\widetilde{S}) &= \widetilde{S}_{(1)}^2 \left\{ x^4 \left\{ \frac{25}{18} \nu^2 + \frac{1}{q} \left(-\frac{5}{2} \nu + \frac{5}{6} \nu^2 \right) \right\} \right. \\ &+ x^5 \left\{ \frac{10}{3} \nu^2 - \frac{749}{108} \nu^3 + \frac{1}{q} \left(-\frac{21}{4} \nu - \frac{7}{6} \nu^2 - \frac{217}{36} \nu^3 \right) \right\} \\ &+ x^6 \left\{ \frac{1947}{112} \nu^2 - \frac{48357}{560} \nu^3 + \frac{159}{16} \nu^4 \right. \\ &+ \left. \frac{1}{q} \left(-\frac{243}{16} \nu + \left(\frac{747}{16} - \frac{189\pi^2}{2048} \right) \nu^2 - \frac{13731}{280} \nu^3 + \frac{153}{16} \nu^4 \right) \right\} \right\} \\ &+ (1 \leftrightarrow 2) \,, \end{split}$$

$$E_{\text{ES}^2}(x,\tilde{S}) = \left(C_{\text{ES}^2}^{(0)}\right)_{(1)} \tilde{S}_{(1)}^2 \left\{ x^3 \left\{ \frac{1}{q} \frac{\nu}{2} \right\} + x^4 \left\{ \frac{5}{3} \nu^2 + \frac{1}{q} \left(\frac{5}{4} \nu + \frac{5}{4} \nu^2 \right) \right\} \right.$$

$$\left. + x^5 \left\{ \frac{31}{4} \nu^2 - \frac{35}{18} \nu^3 + \frac{1}{q} \left(\frac{63}{16} \nu + \frac{77}{48} \nu^2 - \frac{91}{48} \nu^3 \right) \right\} \right.$$

$$\left. + x^6 \left\{ \frac{789}{28} \nu^2 - \frac{156}{7} \nu^3 + \frac{5}{8} \nu^4 \right.$$

$$\left. + \frac{1}{q} \left(\frac{405}{32} \nu + \left(\frac{3747 \pi^2}{2048} - \frac{2389}{32} \right) \nu^2 - \frac{555}{56} \nu^3 + \frac{21}{32} \nu^4 \right) \right\} \right\}$$

$$\left. + (1 \leftrightarrow 2),$$

$$E_{E^{2}}(x, \widetilde{S}) = \left(C_{E^{2}}^{(2)}\right)_{(1)} \widetilde{S}_{(1)}^{2} x^{6} \left\{9\nu^{3} \left(1 + \frac{1}{q}\right)\right\} + (1 \leftrightarrow 2),$$

$$E_{E^{2}S^{2}}(x, \widetilde{S}) = \left(C_{E^{2}S^{2}}^{(0)}\right)_{(1)} \widetilde{S}_{(1)}^{2} x^{6} \left\{\frac{3\nu^{3}}{2} \left(1 + \frac{1}{q}\right)\right\} + (1 \leftrightarrow 2).$$

$$E_{\mathrm{E}^{2}\mathrm{S}^{2}}(x,\widetilde{S}) = \left(C_{\mathrm{E}^{2}\mathrm{S}^{2}}^{(0)}\right)_{(1)}\widetilde{S}_{(1)}^{2}x^{6}\left\{\frac{3\nu^{3}}{2}\left(1+\frac{1}{q}\right)\right\} + (1\leftrightarrow 2)$$

$$E(x, \widetilde{S}_{(a)}) = E_{pp}(x) + E_{SO}(x, \widetilde{S}_{(a)}) + E_{SS}(x, \widetilde{S}_{(a)})$$

$$E_{SS}(x, \widetilde{S}_{(a)}) = E_{S1S2}(x, \widetilde{S}_{(a)}) + E_{S^2}(x, \widetilde{S}_{(a)}) + E_{E^2S^2}(x, \widetilde{S}_{(a)}) + E_{E^2S^2}(x, \widetilde{S}_{(a)}) + E_{E^2S^2}(x, \widetilde{S}_{(a)}) + E_{E^2S^2}(x, \widetilde{S}_{(a)})$$

[credit: Patil]

In agreement with: Antonelli et al. (2020) Kim et al. (2022)

Conclusion

- GW Astronomomy: a growing research field, where accuracy is not an option
- Compact objects evolution can benefit of the interplay between Cosmology, Astrophysics, and High-Energy Theoretical Physics
- Remarkable combination of traditional methods developed for the GR two-body problem and methods developed for elementary particle scattering to improve the GW waveforms modelling
- Under a diagrammatic viewpoint, Gravity is not so different from the other Fundamental Interactions

Conclusion

GW Astronomomy: a growing research field, where accuracy is not an option **EFT - NRGR** Compact objects evolution can benefit of the armitery between Cosmology, Astrophysics, and High-Energy Theoretical Physics

Remarkable combination of traditional methods developed for the GR two-body problem and methods developed for elementary particle scattering to improve the GW waveforms modelling Self-Force • EOB

In-in formalism

Under a diagrammatic viewpoint, Gravity is not so different and the control of th

- Unitarity-based methods
- Double-copy & BCJ relations
- Higher-spin
- Classical Scattering

Multiloop Techniques

- IBPs
- Difference & Differential Equations
- Theory of Special Functions
- High Precision arithmetics and Finite Fields
- Numerical Integration
- Asymptotic expansions

GR-Techniques

- Numerical Relativity
- Tutti Frutti

Observable-based methods

- Eikonal approach
- Inclusive & differential formalisms
- Radial action
- S-matrix

Schwarz, Shapiro (2018)

Definition. Physics is a part of mathematics devoted to the calculation of integrals of the form $\int g(x)e^{f(x)}dx$. Different branches of physics are distinguished by the range of the variable x and by the names used for f(x), g(x) and for the integral. [...]

Of course this is a joke, physics is not a part of mathematics. However, it is true that the main mathematical problem of physics is the calculation of integrals of the form

$$I(g) = \int g(x)e^{-f(x)}dx$$

[...] If f can be represented as $f_0 + \lambda V$ where f_0 is a negative quadratic form, then the integral $\int g(x)e^{f(x)} dx$ can be calculated in the framework of perturbation theory with respect to the formal parameter λ . We will fix f and consider the integral as a functional I(g) taking values in $\mathbb{R}[[\lambda]]$. It is easy to derive from the relation

$$\int \partial_a(h(x)e^{f(x)})dx = 0$$

that the functional I(g) vanishes in the case when g has the form

$$g = \partial_a h + (\partial_a f) h.$$

Addressing a common math problem might be useful to make progress in different disciplines