Hadronic contributions to the anomalous magnetic moment of the muon

Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

January 13, 2023

ZPW2023: Recent highlights across phenomenology

Introduction

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

Introduction

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

Magnetic moment

relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}} \vec{s}$$

 g_ℓ : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_e = 2$
- anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM

Electron vs. muon magnetic moments

• influence of heavier virtual particles of mass *M* scales as

$$\frac{\Delta a_\ell}{a_\ell} \propto \frac{m_\ell^2}{M^2}$$

- (m_µ/m_e)² ≈ 4 × 10⁴ ⇒ muon is much more sensitive to new physics, but also to EW and hadronic contributions
- *a_τ* experimentally not yet known precisely enough

Introduction

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon q-2 discrepancy

SM theory white paper

Introduction

- \rightarrow T. Aoyama *et al.* (Muon g 2 Theory Initiative), Phys. Rept. 887 (2020) 1-166
- community white paper on status of SM calculation
- new consensus on SM prediction, used for comparison with FNAL 2021 result
- many improvements on hadronic contributions
- since 2020: significant new developments
 ⇒ white-paper update in spring 2023

1 Introduction

$(g-2)_{\mu}$: theory vs. experiment

- discrepancy between SM theory white paper and experiment 4.2σ
- hint of new physics?
- size of discrepancy points at electroweak scale
 ⇒ heavy new physics needs enhancement
- theory error completely dominated by hadronic effects
- tension emerging between lattice QCD and hadronic cross-section data

Introduction

2 Standard Model prediction for the muon g-2

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

QED and electroweak contributions

- full O(α⁵) calculation by Kinoshita et al. 2012 (involves 12672 diagrams)
- EW contributions (EW gauge bosons, Higgs) calculated to two loops (three-loop terms negligible)

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116 584 718.931	0.104
EW	153.6	1.0
theory total	116591810	43

Hadronic contributions

- quantum corrections due to the strong nuclear force
- much smaller than QED, but dominate uncertainty

$$a_{\mu}^{\rm HVP} = 6845(40) \times 10^{-11}$$

• hadronic light-by-light scattering (HLbL)

$$a_{\mu}^{\mathsf{HLbL}} = 92(18) \times 10^{-11}$$

Theory vs. experiment

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116584718.931	0.104
EW	153.6	1.0
HVP	6845	40
HLbL	92	18
SM total (white paper 2020)	116591810	43
experiment (E821+E989)	116592061	41
difference exp-theory	251	59

2

Introduction

2 Standard Model prediction for the muon g-2

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

- at present evaluated via dispersion relations and cross-section input from e⁺e[−] → hadrons
- intriguing discrepancies between e⁺e[−] experiments
 ⇒ treated as additional systematic uncertainty
- lattice QCD making fast progress
- 2.1 σ tension between dispersion relations and BMWc lattice results \rightarrow S. Borsanyi *et al.*, Nature (2021)

Hadronic vacuum polarization (HVP)

photon HVP function:

$$\cdots = i(q^2 g_{\mu\nu} - q_{\mu}q_{\nu})\Pi(q^2)$$

unitarity of the S-matrix implies the optical theorem:

$$\mathrm{Im}\Pi(s) = \frac{s}{e(s)^2}\sigma(e^+e^- \to \mathrm{hadrons})$$

Dispersion relation

causality implies analyticity:

Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{s' - s} ds'$$

deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\text{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'$$

HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\rm HVP} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm thr}}^{\infty} ds \, \frac{\hat{K}(s)}{s} \, \sigma \left(e^+ e^- \to {\rm hadrons}(+\gamma) \right)$$

- basic principles: unitarity and analyticity
- direct relation to data: total hadronic cross section $\sigma(e^+e^- \rightarrow \text{hadrons}(+\gamma))$
- dedicated e⁺e⁻ program (BaBar, Belle, BESIII, CMD3, KLOE, SND)

Hadronic vacuum polarization

• final white-paper number: data-driven evaluation

$$a_{\mu}^{\rm LO\;HVP,\;pheno} = 6\,931(40)\times 10^{-11}$$

white-paper 2020 average of published lattice results

$$a_{\mu}^{\rm LO\ HVP,\ lattice\ average}=7\,116(184)\times10^{-11}$$

newest complete lattice-QCD result by BMWc

→ S. Borsanyi *et al.*, Nature (2021)

$$a_{\mu}^{\rm LO\,HVP,\,BMWc} = 7\,075(55)\times10^{-11}$$

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty
- can be expressed in terms of pion vector form factor ⇒ constraints from analyticity and unitarity

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006 Colangelo, Hoferichter, Kubis, Stoffer, JHEP **10** (2022) 032

Tension between *R*-ratio and lattice

- 2.1σ tension between *R*-ratio and BMWc lattice-QCD for HVP
- increases to 3.7σ for intermediate Euclidean window
- recent results from ETMC, Mainz, RBC/UKQCD confirm BMWc intermediate window
- motivates ongoing scrutiny of *R*-ratio results

Tension with lattice QCD

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073

- implications of changing HVP?
- modifications at high energies affect hadronic running of $\alpha_{\rm QED}^{\rm eff}$ \Rightarrow clash with global EW fits

 \rightarrow Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020), Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)

- lattice studies point at region < 2 GeV
- ππ channel dominates
- relative changes in other channels would need to be huge

Result for $a_{\mu}^{\text{HVP},\pi\pi}$ below 1 GeV

Assumption: suppose all changes occur in $\pi\pi$ channel < 1 GeV $\Rightarrow a_{\mu}^{\text{total}}[\text{WP20}] - a_{\mu}^{2\pi,<1 \text{ GeV}}[\text{WP20}] = 197.7 \times 10^{-10}$ Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1\,{\rm GeV}}$

Euclidean window quantities

smooth window weight functions in Euclidean time

→ Blum et al. [RBC/UKQCD], PRL 121 (2018) 022003

total discrepancy:

 $a_{\mu}[\mathsf{BMWc}] - a_{\mu}[\mathsf{WP20}] = 14.4(6.8) \times 10^{-10}$

• intermediate window: \rightarrow Colangelo et al., PLB 833 (2022) 137313 $a_{\mu}^{\text{int}}[\text{BMWc}] - a_{\mu}^{\text{int}}[e^+e^-] = 7.3(2.0) \times 10^{-10}$

Euclidean window quantities

 using form of weight functions: at least ~ 40% from above 1 GeV

- assumptions:
 - rather uniform shifts in low-energy $\pi\pi$ region
 - no significant negative shifts

Results for intermediate window

R-ratio result: \rightarrow Colangelo et al., PLB 833 (2022) 137313

Introduction

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

Hadronic light-by-light (HLbL)

- previously based only on hadronic models
- our work: **dispersive framework** based on unitarity and analyticity, replacing hadronic models step by step
- hadronic models only for subdominant contributions
- matching to asymptotic constraints

4 Hadronic light-by-light scattering

BTT Lorentz decomposition

 \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP **09** (2015) 074

Lorentz decomposition of the HLbL tensor:

 \rightarrow Bardeen, Tung (1968) and Tarrach (1975)

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- Lorentz structures manifestly gauge invariant
- scalar functions ∏_i free of kinematic singularities
 ⇒ dispersion relation in the Mandelstam variables
- asymptotic behavior of scalar functions that avoids subtractions

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^{0}\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \dots$$
one-pion intermediate state

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pm}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

ł

Dispersive representation

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \cdots$$
higher intermediate states

Hadronic light-by-light scattering

dispersion relations + hadronic models (LO, without charm)

$$a_{\mu}^{\rm HLbL, \, pheno} = 89(19) \times 10^{-11}$$

first lattice-QCD results

$$\begin{split} a_{\mu}^{\text{HLbL, lattice}} &= 79(35) \times 10^{-11} \rightarrow \text{T. Blum et al., PRL 124} \ \text{(2020) 132002} \\ a_{\mu}^{\text{HLbL, lattice}} &= 106.8(15.9) \times 10^{-11} \rightarrow \text{E.-H. Chao et al., EPJC 81} \ \text{(2021) 651} \end{split}$$

HLbL overview → T. Aoyama *et al.*, Phys. Rept. 887 (2020) 1-166

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
π^0 , η , η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S-wave $\pi\pi$ rescattering	-8	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

HLbL: recent progress

• asymptotic constraints: OPE and two-loop QCD corrections to symmetric limit $Q_{1,2,3} \gg \Lambda_{\rm QCD}$

→ Bijnens et al., JHEP 10 (2020) 203; JHEP 04 (2021) 240

• scalar contributions: $\pi\pi/\bar{K}K$ *S*-wave rescattering up to 1.3 GeV plus $a_0(980)$ in NWA:

 $a_{\mu}^{\mathsf{HLbL}}[\mathsf{scalars}] = -9(1) \times 10^{-11}$

→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

- first steps towards including axials in dispersive framework: → Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106, Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 81 (2021) 702
- holographic-QCD models point to rather large axial contribution → Cappiello et al., PRD 102 (2020) 016009, Leutgeb, Rebhan, PRD 101 (2020) 114015; arXiv:2108.12345 [hep-ph]

Introduction

3 Hadronic vacuum polarization

4 Hadronic light-by-light scattering

Summary

- FNAL 2021 result increased tension with white-paper SM value to 4.2σ
- tension emerging between lattice HVP and *R*-ratio
- white-paper update to appear in spring 2023, before FNAL run-2+3 release
- final FNAL precision goal calls for further improvement in HLbL and HVP

Summary: HLbL

- precise dispersive evaluations of dominant contributions
- models reduced to sub-dominant contributions, but dominate uncertainty
- consistent with lattice-QCD evaluations
- recent progress on scalar contributions, ongoing work on axial-vector and tensor resonances and asymptotic matching

Summary: HVP

- long-standing discrepancy between BaBar/KLOE \Rightarrow wait for new e^+e^- data
- intriguing tension with lattice-QCD
- Euclidean windows useful tools for detailed scrutiny
- unitarity/analyticity enable independent checks via pion VFF and $\langle r_{\pi}^2 \rangle$, in addition to further direct lattice results on HVP

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- **1** $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- $\odot \pi\pi$ scattering— $\pi\pi$ scattering

analyticity \Rightarrow dispersion relation for HVP contribution

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1) $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- **2** pion VFF— $\pi\pi$ scattering

3 $\pi\pi$ scattering— $\pi\pi$ scattering

$$\cdots = \cdots = F_{\pi}^{V}(s) = |F_{\pi}^{V}(s)|e^{i\delta_{1}^{1}(s) + \dots}$$

analyticity \Rightarrow dispersion relation for pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1) $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- **3** $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity, crossing, PW expansion \Rightarrow Roy equations

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

 Omnès function with elastic ππ-scattering *P*-wave phase shift δ₁¹(s) as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

 isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ-ω interference effect)

$$G_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\mathrm{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}}\right)^4,$$
$$g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s}$$

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar{K}K$, ...
- described in terms of a conformal polynomial with cut starting at $\pi^0 \omega$ threshold

$$G_{\rm in}^N(s) = 1 + \sum_{k=1}^N c_k(z^k(s) - z^k(0))$$

• correct *P*-wave threshold behavior imposed

HVP

Contribution to $(g-2)_{\mu}$

Backup

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

• low-energy $\pi\pi$ contribution:

$$a_{\mu}^{\rm HVP,\pi\pi}|_{\leq 0.63\,{\rm GeV}} = 132.8(0.4)(1.0)\times 10^{-10}$$

• $\pi\pi$ contribution up to 1 GeV:

$$a_{\mu}^{\rm HVP,\pi\pi}|_{\leq 1\,{\rm GeV}} = 495.0(1.5)(2.1)\times 10^{-10}$$

 enters the white-paper value in a conservative merging with direct cross-section integration

Tension with lattice QCD

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073

- force a different HVP contribution in VFF fits by including "lattice" datum with tiny uncertainty
- three different scenarios:
 - "low-energy" physics: $\pi\pi$ phase shifts
 - "high-energy" physics: inelastic effects, ck
 - all parameters free
- study effects on pion charge radius, hadronic running of $\alpha_{\rm QED}^{\rm eff}$, phase shifts, cross sections

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

- \rightarrow Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073
- "low-energy" scenario requires large local changes in the cross section in the ρ region
- "high-energy" scenario has an impact on pion charge radius and the space-like VFF ⇒ chance for independent lattice-QCD checks

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1\,{\rm GeV}}$

Data-driven evaluation of window quantities

→ Colangelo et al., PLB 833 (2022) 137313

Backup

• standard windows: $[0,0.4]\,{\rm fm},\,[0.4,1.0]\,{\rm fm},\,[1.0,\infty)\,{\rm fm}$ with $\Delta=0.15\,{\rm fm}$

HVP

- additional windows: cuts at $\{0.1, 0.4, 0.7, 1.0, 1.3, 1.6\}$ fm
- data-driven evaluation based on merging of KNT and CHHKS
- systematic effect due to BaBar vs. KLOE tension close to the WP estimate
- full covariance matrices for windows provided

Additional Euclidean-time windows

 \rightarrow Colangelo et al., PLB 833 (2022) 137313

Localization in time-like region possible?

 better localization in time-like region could be achieved by taking linear combinations of Euclidean-time windows HVP

- typically leads to large cancellations in Euclidean-time integral
- reflecting ill-posed inverse Laplace transform
- assessing usefulness requires knowledge of full covariances
- combinations dominated by exclusive hadronic channels suffer from similar problems

Localization in time-like region possible?

→ Colangelo et al., PLB 833 (2022) 137313

Backup

6

Pion pole

- input: doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$
- dispersive analysis of transition form factor: $a_{\mu}^{\pi^{0}\text{-pole}}=62.6^{+3.0}_{-2.5}\times10^{-11}$

 \rightarrow Hoferichter et al., PRL 121 (2018) 112002, JHEP 10 (2018) 141

Pion-box contribution

 \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161

- simultaneous two-pion cuts in two channels
- Mandelstam representation
 explicitly constructed
- q^2 -dependence: pion VFF $F_{\pi}^V(q_i^2)$ for each off-shell photon factor out
- Wick rotation: integrate over space-like momenta
- dominated by low energies \leq 1 GeV

• result:
$$a_{\mu}^{\pi\text{-box}} = -15.9(2) \times 10^{-11}$$

Rescattering contribution

Backup

- expansion into partial waves
- unitarity gives imaginary parts in terms of helicity amplitudes for γ^{*}γ^(*) → ππ:

$$\mathrm{Im}_{\pi\pi}h^{J}_{\lambda_{1}\lambda_{2},\lambda_{3}\lambda_{4}}(s) \propto \sigma_{\pi}(s)h_{J,\lambda_{1}\lambda_{2}}(s)h^{*}_{J,\lambda_{3}\lambda_{4}}(s)$$

 resummation of PW expansion reproduces full result: checked for pion box

Topologies in the rescattering contribution

our *S*-wave solution for $\gamma^*\gamma^* \to \pi\pi$:

HLbL

two-pion contributions to HLbL:

S-wave rescattering contribution

- \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- pion-pole approximation to left-hand cut $\Rightarrow q^2$ -dependence given by F_{π}^V
- phase shifts based on modified inverse-amplitude method ($f_0(500)$ parameters accurately reproduced)
- result for *S*-waves:

$$a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1) \times 10^{-11}$$

S-wave rescattering and scalar contributions

HI bI

- → Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- extension to $f_0(980)$

1

Backup

• using coupled-channel input for $\gamma^* \gamma^* \to \pi \pi/\bar{K}K$

→ Danilkin, Deineka, Vanderhaeghen, PRD 101 (2020) 054008

dispersive definition compared to narrow resonance:

$$a_{\mu}^{\mathsf{HLbL}}[f_0(980)] = -0.2(2) \times 10^{-11}$$

• *S*-wave rescattering up to 1.3 GeV including *a*₀(980) in NWA:

$$a_{\mu}^{\mathsf{HLbL}}[\mathsf{scalars}] = -9(1) \times 10^{-11}$$

Extension to *D*-waves

- → Hoferichter, Stoffer, JHEP 07 (2019) 073
- inclusion of resonance LHC
- unitarization with Omnès methods

