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...it’s a very long way
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[P. Bargiela et al ‘22]
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QCD makes modelling of collisions very complicated

Uqg—gg9 — /[dPS] |Mq<j—>gg‘2

p f\\ Np

Building blocks are %95

Scattering Amplitudes X




WHY ANALYTIC CALCULATIONS?



ANALYTIC <= NUMERICAL CONTROL!
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ANALYTIC <= NUMERICAL CONTROL!

n s —4m? + /s
8—4m2 Vs —4m?2 — /s

In which sense do we call this an analytic result?

-‘//
T




ANALYTIC <= NUMERICAL CONTROL!

n Vs —4m?2 + /s
(s — 4m2 Vs —4m?2 — /s
In which sense do we call this an analytic result? -

- |
T




ANALYTIC “STRUCTURES™: tE “DiScoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

The “most famous calculation” in pQFT: the g-2 of the electron
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The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s (s s

O, = A = +0.50000000...
Cy = AAA = —(0.328478965...

Cs = QAA = +1.181241456...

O, = —1.912245764...

lots of Feynman diagrams }
Cs = = +6.737(159)

Impressive numerical
calculations by Kinoshita et al



ANALYTIC “STRUCTURES™: tE “DiScoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s (s s

Ci = A = +0.50000000...
Cy = AAA = —(0.328478965...

Cs = QAA = +1.181241456...

0, — = —1.912245764...
As numbers, they don’t say much
(except that the perturbative series seems to

Cs = = +6.737(159) converge nicely once multiplied by 1/137 :-))

lots of Feynman diagrams



ANALYTIC “STRUCTURES™: tE “DiScoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”
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The “most famous calculation” in pQFT: the g-2 of the electron
o) a2 A a4 Q) °
0P =C(2)+Cof2) +G(5) +a(3) +0s(5) o

s s

1
Cr = = 5 [Schwinger ’48]

197 1 1 3
CyH = — 24 22 2422124+ Z¢(3) [Petermann, Sommerfield ’57]
2 AAA a1 e g™ 2 )
B 83 , 215 100 ! In* 2 7%In? 2
o QA\A = g | () < 5)
239 139 208 | 17101 28259

4 2
_ 22 27 03) — 222 1210 9
60" T 15 @) g mn24 —m

[Laporta, Remiddi ’97]

But if we look at analytic results, some pattern starts to emerge:

rational numbers, Riemann zeta values, ..., in general multiple polylogarithms evaluated at special (rational) points



SUCCESS OF THE PAST 20 YEARS: mutmipLe poLvLocaRiTHMS

Multiple PolyLogarithms (MPLs)
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SUCCESS OF THE PAST 20 YEARS: mutmipLe poLvLocaRiTHMS

Multiple PolyLogarithms (MPLs)

Toodt
G(cl,CQ,...,cn,x):/ ! G(ca, ..., Cnyt1)
0

i1 — 1

B /‘“ di /tl dts /tnl dt,
0 tl—Cl 0 tQ_CQ.“ 0 tn—Cn

Provided us with the right language to make sense of a lot of the structure in scattering
amplitudes

leading singularities and dlog forms (local integrals)  [Arkani-Hamed et al "10]
differential equations in canonical form [Henn ’13]

hint towards generalisations (elliptic multiple polylogs, more general diff forms,
Calabi-Yau geometries etc)



TOWARDS A NNLO REVOLUTION (?)

2 g 2
|chj—>gg|2 — |MLO + (_) ‘MNLO |

qq3—3gg qq—9gg

By understanding analytic structure of amplitudes + how to handle and subtract IR
divergences, past 2 decades have seen the beginning of a NNLO revolution...

Double Virtual Real Virtual Double Real
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We are just scratching the surface...!
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[Duhr, Dulat, Mistlberger 20 ]

Non trivial uncertainty patterns observed going from NNLO to N3LO for W,y Drell-Yan

We are far from being able to do N°LO pheno for generic processes...
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BEYOND NNLO FOR 2 — 2 theRe 15 STILL A LOT T0 LEARN

We are just scratching the surface...!

We are far from being able to do N°LO pheno for generic processes...

N

New challenges from pushing methods to
compute scattering amplitudes from two to
three loops:

Higher combinatorial complexity, new special
functions and new geometries, discontinuities
(bootstrap?)...

IR singularities and new sources for
possible factorisation breaking

(di-jet / tf @ N°LO...)

Particularly interesting
\/ di-jet production @ N3LO!




TOWARDS DI-JET AT N3LO

First step is 3 loop scattering amplitudes:

Informs on complexity of functions involved
Informs on IR structure in three-loop QCD: quadrupole correlations!
Informs on all-order structure of QCD: High Energy limit, Regge factorisation etc



TOWARDS DI-JET AT N3LO

First step is 3 loop scattering amplitudes:

Informs on complexity of functions involved
Informs on IR structure in three-loop QCD: quadrupole correlations!
Informs on all-order structure of QCD: High Energy limit, Regge factorisation etc

3 main channels: gg — g2, qq — g¢., qq — QQ

We will focus mainly on the most complicated one: gg — gg

op) sy

e85y Lo



FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes: flashing through standard approach  [See Harald Ita’s talk]
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FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes: flashing through standard approach  [See Harald Ita’s talk]

(Scalar) Feynman Integrals —
y 8
Some analytic or
L gDf Sb1 §bn IBPs (Finite fields etc) numerical result for the
[ 1 ***“m .
F = : : : amplitudes
JH @2mP D ... D% differential equations

=1
Feynman parameters
[See Gudrun’s and Mao’s

with §; € {k; - k;, ..., k; - p;} Numerical methods ... talks]



FROM AMPLITUDES TO INTEGRALS

In reality, for gg — gg @ 3 loops
+500 more pages

N
/

PN MG LTERN g, BE D
ghibe Pl fech, TAEY
% M%%% A s B0

!

/
N

So we need a way to organise this mess...

(~50000 Feynman diagrams — 10’ integrals!!)



FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes: flashing through standard approach  [See Harald Ita’s talk]

- - -

(Scalar) Feynman Integrals
o “é[ dPk, SUr...Sbn
P (2m)P Di"...Dy"

with S; € {k; - k;,..., k; - ;)

Some analytic or

numerical result for the
amplitudes

[Harald’s talk (not only)]



FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes: flashing through standard approach  [See Harald Ita’s talk]

~ A =¢€ey (@, ulp)

[This talk starts here...]

(Scalar) Feynman Integrals —
Some analytic or
L gD b gb, IBPs (Finite fields etc) numerical result for the
[ ~1 *~m .
F = : : : amplitudes
JH (27)P th ..D% differential equations

=1
Feynman parameters

with §; € {k;- k;, ..., k; - p;} Numerical methods ...



TENSOR DECOMPOSITION
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L
> - = JH del Ri(kl ..... kL’ pl ----- pE9 m])
i=1

First step:

Strip it of Lorentz and Dirac structures

N / dk 1 _
(2m)4 k2(k — p2)2(k — pa — p3)2(k — p1 — p2 — p3)?

Scalar Feynman Integrals are
what we know how to compute
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PROJECTOR - FORM FACTOR METHOD v a nutsheLL

» Pick your favourite process ( for example gg — Zg or gg — QQ)

» Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of
“tensor structures” in d space-time dimensions (vectors in a vector space):

n
4= ) ET,
j=1
» Derive projectors operators (dual vectors) to single out corresponding form factors:
_ ¥ _ -1 T
=X o= Y ), T
pol k

> Apply these projectors on Feynman diagrams (or any other representation of the
scattering amplitude) —> obtain combination of scalar integrals



FROM “TENSORS™ TO HELICITY AMPLITUDES

Ultimately, we are interested in helicity amplitudes

(minimal, physical objects which retain full physical information on final states)



FROM “TENSORS™ TO HELICITY AMPLITUDES
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Ultimately, we are interested in helicity amplitudes

(minimal, physical objects which retain full physical information on final states)

Fix helicities (assuming that external states are in d = 4 dimensions)

m<n

A=Y FT, —p d0p....00 =Y FT,.... ) = ) FS,.... )
i=1 =1 .

All “internal” indices are in d dimensions

Combinations of

original form
factors Helicity amplitudes, spinor

products, momentum
twistors...

This allows us to have the full structure of the amplitude under control

True at every number of loops!



TENSOR DECOMPOQSITION: pros anp cons

Problems in d-dimensions: it is a powerful and very general method but:

When applied in standard dimensional regularisation (CDR), it can become intractable for
complicated problems due to evanescent structures in d=4
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Problems in d-dimensions: it is a powerful and very general method but:

When applied in standard dimensional regularisation (CDR), it can become intractable for
complicated problems due to evanescent structures in d=4

Typical case 4 quark scattering g(p,) + g(p;) — O(p;) + O(py)

~ u(p)UHu(py) w(p)ly, |, w(py)

.....

Infinite number of tensor structures in d dimensions

Dy = u(p1)yu u(p2) w(ps)vu, u(ps),

Dy = u(p1)p3u(p2) u(ps)pru(ps),

D3 = u(p1) Vs Yuo YusW(D2) W(P3) V1 Vpso Vs w(Pa),

Dy = u(p1) Vs P3Vusw(p2) WP3) Vi P1Vpsu(Pa), —% upto2loops!
D5 = u(p1)Vp Vo Vs Vira Vs WP2) WD3)Vpay Vpso Vpss Vs Vs W(D4)

De = u(p1)Vp Vo P3Vpa Vs W(D2) W(D3) V12 Va1V 104 Yis W(P2)-



TENSOR DECOMPQOSITION: uperape in av

Improvements in 't Hooft - Veltman (tHV) scheme [Peraro, Tancredi ’19,’20]

2 independent helicity configurations: g(p,) + g(p;) = O(p;) + O(p,)

—> only two “tensors” are linearly independent if external states are in d = 4

Dy = ﬂ(p1)7u1u(p2) ﬂ(p?))%uu(pél)a
Dy = u(p1)p3u(p2) u(p3)pru(pa),



TENSOR DECOMPQOSITION: uperape in av

Improvements in 't Hooft - Veltman (tHV) scheme [Peraro, Tancredi ’19,’20]

2 independent helicity configurations:  g(p,) + g(p;) = Q(p3) + O(p,)

—> only two “tensors” are linearly independent if external states are in d = 4

Dy = ﬂ(pl)/Yulu(pQ) ﬂ(pS)/Y,ulu(pél)a
Dy = u(p1)p3u(p2) u(p3)pru(pa),

4 dimensional tensors alone are enough to obtain full result in 't Hooft-Veltman scheme

and also the finite remainder in CDR!

Used successfully for pp — pp @ 3 loops [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi *21,’22]

And first full colour calculation for a 2 — 3 amplitude: gg — yyj at 2 loops in QCD

[Agarwal, Buccioni, Manteuffel, Tancredi ’21]
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Let’s see how this works for chiral theories

Consider the decay of a Z-boson and to three jet

Z(py) = q(py) + q(py) + g(ps3)



TENSOR DECOMPQOSITION: cirar theories

Let’s see how this works for chiral theories

Consider the decay of a Z-boson and to three jet

Z(py) = q(py) + q(py) + g(ps3)

Status:

Pheno @ NNLO including only vector-like couplings of singlet type

Amplitudes [Garland, Gerhmann et al ’02]
Pheno [Gehrmann-De Ridder et al ’17, ’18] etc etc

Z -

y#y> — axial coupling neglected in singlet contributions —

Need to include top+bottom to get consistent result (anomaly!)
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evanescent structures in chiral tensor




TENSOR DECOMPQOSITION: cirar theories

One issue for axial couplings is
evanescent structures in chiral tensor

In our approach, only tensors in d = 4 are relevant, we can span amplitude with a basis
of vectors ind = 4: pi', pi', p, plus the fourth parity-odd one

v, PO __ _pPip2psi __ M
CvpouP1PoP3 = € — Uhp

With these, a possible basis can be written as: (could be further optimised for singlet contributions)

Ar

U(p2)poulpr) | Fipypl + Fapypl + F3g"” + Gip|vl + Gaphviy + Gavlypy }

u(p2)y u(pr) | Fupf + F5p’§‘] + w(p2) v u(p1) Fepy

+ 4

u(p2)¥ 4u(p1) [G4p’fp’f + G5p§bpﬂ + G [ﬂ(pz)v“u(pl)vfix + ﬂ(pz)WVU(Pl)Uffx]

[Gehrmann, Peraro, Tancredi ’22]



TENSOR DECOMPQOSITION: cirar theories

AR = w(po)p,u(pr) | Fipy Pl + Fapypl + F3g" + Gipi vy + Gaphvy + Gsvffxp’f}

u(p2)y u(pr) | Fupf + Fsp’z‘] + u(p2) v u(p1) Fepy

u(p2)y 4u(p1) {Gw’fp’f + Gw’%ﬁﬂ + Ge {ﬂ(PZ)V“ u(p1)via + @(mhyu(pl)”ﬂ

The counting is straightforward:
Gives a total of = 12

» 2 helicities for the gg line (massless) helicity amplitudes

> 2 helicities for the (physical) gluon matched by the number of

> 3 helicities for the (physical) Z boson tensors and form factors

Note that manipulations are done in tHV / Larin scheme

d—3
4

Di VA = 07 VA Vg = ¢P1P2P3 1 [P1P2P3 K — $125135923

[Gehrmann, Peraro, Tancredi ’22]



THE CASE OF 4-GLUON SCATTERING

Applied all these ideas to g¢ — g€ [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21]

8 helicity amplitudes ~ 8 form factors for each colour ordered amplitude

6 8
Aa1azazas _ 477—045,1) ZA[z]Cz —_— of = Z Loflel

i=1 j=1

Cy = Te[TYT2T3T*] + T[T T“T*T*?]  etc...
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Applied all these ideas to g¢ — g€ [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21]

8 helicity amplitudes ~ 8 form factors for each colour ordered amplitude

6 8
20384 = drag ZAMC@ —_— A= Z F. T,
i=1 =1

Cy = Te[TYT2T3T*] + T[T T“T*T*?]  etc...

Helicity amplitudes A, =s,H, whereA={++++,—-+++,+—++,eic}
(12)(34) (12)(14)[24]

Sttt = 12][34] S—ppt = (34 (23) (24) For example:
(21)(24)[14] (32)(34)[24]

T T Baas)a4) T T 14y (21)(24)
(42)(14)[12] (12)[34] _o(Ts T3 Fe 9’”1>

S T Ty eyae) Tt T 12](34) —> =t ( w25 2w 4
(13)[24] (14)[23]

T T 13](24) SHTE T [14](23)




REDUCTION TO MASTER INTEGRALS

P

“““ — Z Ri(Xl, .o 9xr) ji(xl’ C ’Xn)

Path to get there extremely complicated, became possible thanks to new mathematical tools

[See Harald’s talk]

Numerical methods (Finite Fields), avoid complexity in alternative representation for rational functions:
intermediate steps, reconstruct final result : multivariate partial-fractioning

[Manteuffel, Schabinger ’14] [Remiddi,..., ’99...] [Abreu et al ’18] [Boehm, et al’20]
[Peraro ’16, ’19] . [Heller, Manteuffel *21]

[Klappert, Lange *19]



THE CASE OF 4-GLUON SCATTERING

Three-loop calculation is very non-trivial, it took “20 more years”!

- Many master integrals (~ but only 500 vs 10 integrals before reduction!)

/

Approached by differential equations method [Kotikov ’97; Remiddi ’99; Gehrmann Remiddi ’00]

- -
d] — GA(X)I [Arkani-Hamed ’10; Kotikov ’07 ‘10; Henn ’13, Lee ‘15]

- Finding a so-called “canonical basis” is very non-trivial [Henn, Mistlberger, Smirnov, Wasser, 2020]

Result can be written in terms of simple functions: (harmonic) multiple polylogarithms

*odt 1
Gay,...,a,;x) =J —G(ay,...,a:t), a;=1{0,1},  G(0,..,0,x) = —log"x
0 tl — ay n'

[Remiddi, Vermaseren ’99]



INFRA-RED STRUCTURE

IR singularities are known to factorise in gauge theories

[Becher, Neubert, Dixon, Magnea, Sterman,
Tejeda-Yeomans, Mert Aybat, Almelid, Duhr,
Gardi, Ferroglia, Czakon, Mitov, ... many
others ...]

Picture from Agarwal, Magnea, Signorile-Signorile, Tripathi ’21
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INFRA-RED STRUCTURE

The can be “multiplicatively renormalised away” similarly to UV divergences
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Z acts on the amplitude as a matrix in colour space, non-trivial correlations among partons
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The can be “multiplicatively renormalised away” similarly to UV divergences

Hi, ﬁn(€7 {p}) — ll_% Z_l(ev {p}v :u) Hi, l‘en(€7 {p})

2. {p)on) = Pexp | / Vor(eh )

Z acts on the amplitude as a matrix in colour space, non-trivial correlations among partons

The anomalous dimension I' is fully known up to three loops

quark and

gluon
C({p}, 1) = Laipole({P}, 1) + ... cusp anomalous dimension anomalous
T soft-collinear double poles dimensions

Dipole-like correlations among at most Caip = Z T¢ T? 7/K In ( ) Z Y

2 partons are enough up to two loops 1<i<j<4



INFRA-RED STRUCTURE

[Dixon, Gardi, Magnea ’11]
At three loops we see for the first time quadrupole correlations [Becher, Neubert *13]
[Almelid, Duhr, Gardi ’15]

L({p}. 1) = Capote( (P} 1) + Aa({p}) A(rh) =3 (52)" AP

4
Af):fabefcde[—mcz Z {T¢, T} TOTS

i=1 1<j<k<4
J.k#i

+ 128 [TYTSTETID ) (x) — T{TYTSTY Do (x) | ]



HIGH ENERGY LIMIT (REGGE FACTORIZATION)

Calculation elucidates general structures in QCD

Verified all-order structures in Regge kinematics |3| ~ |u| > |t‘ (orx=1t/ls—>0)

Define even and odd amplitude under (s < u) And the even “large logarithm”

(I (=54) +1n (52))

1 .
Hren,:l: — 5 [Hren(87 ’LL) T Hren(uy 3)] L=—In(x)— %T ~

DO | =



HIGH ENERGY LIMIT (REGGE FACTORIZATION)

Calculation elucidates general structures in QCD

Verified all-order structures in Regge kinematics |3| ~ |u| > |t‘ (orx=1t/ls—>0)

Define even and odd amplitude under (s < u) And the even “large logarithm”
1 : 1
Hren,:l: — 5 [Hren(87 ’LL) + Hren(uy 3)] L=—In(x)— %T ~ 5 (ln (___ti‘s) + In (_“__tifs))

At leading power in x and up to next-to-leading logarithmic accuracy (NLL) for even part and NNLL
for the odd part, the amplitude factorises in a well understood way (LO BFKL) in terms of
exchanges of “Reggeons” (multiple exchanges give rise to Regge cut contributions)

3 n
Heont = 22 PT@Y " an S ko)
T n=0 k=0

Regge trajectory



HIGH ENERGY LIMIT (REGGE FACTORIZATION)

Calculation elucidates general structures in QCD

Verified all-order structures in Regge kinematics |3| ~ |u| > |t‘ (orx=1t/ls—>0)

Define even and odd amplitude under (s < u) And the even “large logarithm”
1 : 1
Hren,:l: — 5 [Hren(sa ’LL) + Hren(uy S)] L=—In(x)— %T ~ 5 (ln (_S__tifs) + In (_“__tw))

At leading power in x and up to next-to-leading logarithmic accuracy (NLL) for even part and NNLL
for the odd part, the amplitude factorises in a well understood way (LO BFKL) in terms of
exchanges of “Reggeons” (multiple exchanges give rise to Regge cut contributions)

To test Regge factorisation at this order last needed ingredient was the gluon Regge trajectory at
3 loops, can be extracted from any three-loop process. We found agreement between gg — gg and
qq — QQ: this allows us to predict gg — gg 3loop amplitude to NNLL accuracy!

We verified this prediction to be correct by comparing to a successive explicit calculation



CONCLUSIONS

Multiloop amplitudes are essential for pheno, but they are also a lot of fun!

Recent developments have allowed us to push investigations up to 3 loops for
complete QCD 2 — 2 amplitudes — and beyond for simpler building blocks —

Exploring QCD amplitudes at high loops we learn about physics and mathematics
1. All-order results in high-energy / Regge kinematics (beyond basic BFKL)

. Structure of IR singularities in non-abelian QFTs

. New ways to organise amplitudes in dim-regularisation

2
3
4. New geometries in pQFT (CY and higher genus) (didn’t talk about this here)
5

. ... and much more ...

Exciting times ahead!



THANK YOU VERY MUCH!



