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FROM LAGRANGIANS TO CROSS-SECTIONS…

…it’s a very long way

STANDARD MODEL — KNOWABLE UNKNOWNS

�9

This is what you get when you buy one 
of those famous CERN T-shirts

“understanding” = knowledge  ?
“understanding” = assumption ?
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Fig. 3 Left pane: comparison of the exact NLO calculation and the soft-virtual approximation in the gg channel. Right pane:
complete NLO prediction, inclusive of all channels, compared to the corresponding soft-virtual approximation
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Fig. 4 Signal-background interference contribution to the
diphoton invariant mass distribution after Gaussian smearing.
Bands represent the envelope given by the scale variation.

The smallness of the LO imaginary part is indeed seen
in Fig. 5. In our setup, we find

‡LO

S
= 24.21+15%

≠14%
fb, ‡LO

I
= ≠0.11+20%

≠17%
fb. (21)

Here and in the following the quoted uncertainties are
obtained by coherently varying the renormalisation and
factorisation scales by a factor of two around the cen-
tral value µ = m““/2. At LO, we find that more than
80% of the destructive interference quoted above comes
from the imaginary part of the signal interfering with
the real part of the background. This gives us confi-
dence that neglecting mass e�ects in the background
prediction does not significantly impact our result. Fur-
thermore, as far as the signal goes, we note that the
bulk (about 95%) of the imaginary part is generated by
bottom-mass e�ects in the production amplitude. This

is easy to understand just by looking at the relative
importance of the top, bottom and W contributions to
the production and decay amplitudes.

At higher orders however, a larger interference is gen-
erated by the imaginary part of the background, which
no longer requires the presence of bottom quarks (see
the discussion in Sec. 3). Because of this, beyond LO
we only compute radiative corrections in the infinite-
top approximation and drop any mass dependence in
the background amplitudes. At NLO, we obtain

‡NLO

S
= 58.12+20%

≠14%
fb, ‡NLO

I
= ≠0.72+27%

≠21%
fb. (22)

These results are consistent with the analysis in
Ref. [26]. Our best prediction beyond NLO is ob-
tained within the soft-virtual approximation described
in Sec. 3. We find

‡NNLOsv
Õ

S
= 72.21+8%

≠8%
fb, ‡NNLOsv

I
= ≠1.21+7%

≠10%
fb,

(23)

hence the destructive interference reduces the total
rate by 1.7%.5 Given the theoretical [62] (see also
Refs. [63, 64]) and experimental [35, 36] uncertainty on
the Higgs total cross section, this e�ect is actually not
negligible and it can be used to further constrain the
Higgs width [26]. We do not pursue this line of investi-
gation here, but we estimate that, with current uncer-
tainties, one could already constrain the Higgs width to
about 20-30 times the Standard Model.

We can finally present the main result of our study, i.e.
the prediction for the mass-shift at NNLO. As discussed
5We point out that the theory uncertainties for the signal cross
section in Eq. (23) have been computed employing the exact
NNLO QCD scale variations.

signal to bkg interference for gg → H → γγ

[P. Bargiela et al ‘22]



AMPLITUDES FOR PHENOMENOLOGY AT THE LHC

QCD makes modelling of collisions very complicated
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�qq̄!gg =

Z
[dPS] |Mqq̄!gg|2
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Building blocks are 
Scattering Amplitudes

�qq̄!gg =

Z
[dPS] |Mqq̄!gg|2
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WHY ANALYTIC CALCULATIONS?
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ANALYTIC        NUMERICAL CONTROL!

In which sense do we call this an analytic result?
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In which sense do we call this an analytic result? Written in terms of known 
functions!

Functional relations under control:

No hidden zeros!


 log 1/x + log x = 0
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No hidden zeros!
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In which sense do we call this an analytic result? Written in terms of known 
functions!

Functional relations under control:

No hidden zeros!


 log 1/x + log x = 0

Branch cuts under control, 

log(x ± iϵ) = log x ± iπ

Argument transformation and Series 
expansion for numerical evaluation


log(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ O (x5)

ANALYTIC        NUMERICAL CONTROL!



ANALYTIC “STRUCTURES”: THE “DISCOVERY OF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

The “most famous calculation” in pQFT: the g-2 of the electron
QED Mass-independent term: 2-loop contribution
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= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 8
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QED Mass-independent term: 1-loop contribution
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= +0.50000000...

The “most famous calculation” in pQFT: the g-2 of the electron
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The “most famous calculation” in pQFT: the g-2 of the electron
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QED Mass-independent term: 3-loop contribution
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• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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QED Mass-independent term: 2-loop contribution
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obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)
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QED Mass-independent term: 4-loop contribution
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• This extremely high precision of the result was needed to fit analytically a (very complex) analytical ansatz to

the numerical values by using the PSLQ algorithm.
• The successful fit is a strong reliability test of the result.
• 1100 digits is the final total precision; some intermediate fits needed up to 9600 digits of precision
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QED Mass-independent term: 5-loop contribution
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12672 diagrams

C5 = 6.737(159) (Kinoshita et al. 2019)

• Obtained by MonteCarlo numerical integration.

• There is a independent value for the contribution from the subset of all the diagrams without

electron loops (Volkov 2019) which disagrees with the corresponding partial result from

Kinoshita’s group.

• An independent calculation is therefore very desiderable. But it would need an huge

computing power.
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= +0.50000000...

= −0.328478965...

= +1.181241456...

= −1.912245764...

= +6.737(159)

The “most famous calculation” in pQFT: the g-2 of the electron

} Impressive numerical 
calculations by Kinoshita et allots of Feynman diagrams

ANALYTIC “STRUCTURES”: THE “DISCOVERY OF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”
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obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)
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QED Mass-independent term: 3-loop contribution
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• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 9

QED Mass-independent term: 3-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

72 diagrams

C3 = 83

72
π
2
ζ(3) −

215

24
ζ(5) +

100

3

[(

Li4

(

1

2

)

+
ln4 2

24

)

−

π2ln2 2

24

]

−

239

2160
π
4 +

139

18
ζ(3) −

298

9
π
2ln 2 +

17101

810
π
2 +

28259

5184

= 1.181 241 456 587 200 006. . .

• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 9

QED Mass-independent term: 2-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

7 diagrams

C2 =
197

144
+

1

12
π2

−
1

2
π2 ln 2 +

3

4
ζ(3)

= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 8

QED Mass-independent term: 1-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

1 diagram

C1 =
1

2

Obtained by Julian Schwinger in 1948

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 7

As numbers, they don’t say much 
(except that the perturbative series seems to 
converge nicely once multiplied by 1/137 :-))

QED Mass-independent term: 4-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

891 diagrams

C4 =
-1.9122457649264455741526471674398300540608733906587253451713298480060384439806517061427608927000036315

8375584153314732700563785149128545391902804327050273822304345578957045562729309941296699760277782211578

4720339064151908166527097970867438115012155147972274322164273431927975958607405005783738496070187432831

4024838025192249460742298558930463506140492252663431094424000235635688128062064549401322497759430042928

8836761748899236915180878086989705263578533753776964117024536196013497574494361268486175162606832387186

7473038315059627418780153055148794005369777983694642786843269184311758895811597435669504330483490736134

2658649953116387811743475385423488364085584441882237217456706871041823307430517443055739459611715508589

6114899526126606124699407311840392747234002346496953173548258481799822409737371077365740464513521123091

2425281111372153021544537210148111211598489708842232798797204842014451228284515165852365617865945926009

9173303172130286546721234534050034910470072892448720061604426132544906900043191519823004748818149431103

84953782994062967586787538524978194698979313216219797575067670114290489796208505... (S.L. 2017)

• This extremely high precision of the result was needed to fit analytically a (very complex) analytical ansatz to

the numerical values by using the PSLQ algorithm.
• The successful fit is a strong reliability test of the result.
• 1100 digits is the final total precision; some intermediate fits needed up to 9600 digits of precision

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 22
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• Obtained by MonteCarlo numerical integration.
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lots of Feynman diagrams

ANALYTIC “STRUCTURES”: THE “DISCOVERY OF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”



QED Mass-independent term: 2-loop contribution
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obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)
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QED Mass-independent term: 3-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

72 diagrams

C3 = 83

72
π
2
ζ(3) −

215

24
ζ(5) +

100

3

[(

Li4

(

1

2

)

+
ln4 2

24

)

−

π2ln2 2

24

]

−

239

2160
π
4 +

139

18
ζ(3) −

298

9
π
2ln 2 +

17101

810
π
2 +

28259

5184

= 1.181 241 456 587 200 006. . .

• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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But if we look at analytic results, some pattern starts to emerge:


rational numbers, Riemann zeta values, …, in general multiple polylogarithms evaluated at special (rational) points
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QED Mass-independent term: 3-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

72 diagrams

C3 = 83

72
π
2
ζ(3) −

215

24
ζ(5) +

100

3

[(

Li4

(

1

2

)

+
ln4 2

24

)

−

π2ln2 2

24

]

−

239

2160
π
4 +

139

18
ζ(3) −

298

9
π
2ln 2 +

17101

810
π
2 +

28259

5184

= 1.181 241 456 587 200 006. . .

• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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Li4

(

1

2

)

+
ln4 2

24

)

−

π2ln2 2

24

]

−

239

2160
π
4 +

139

18
ζ(3) −

298

9
π
2ln 2 +

17101

810
π
2 +

28259

5184

= 1.181 241 456 587 200 006. . .

• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 9

[Laporta, Remiddi ’97]

[Petermann, Sommerfield ’57]

[Schwinger ’48]

The “most famous calculation” in pQFT: the g-2 of the electron

ANALYTIC “STRUCTURES”: THE “DISCOVERY OF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”
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Iterated integrals of rational functions on the Riemann Sphere

SUCCESS OF THE PAST 20 YEARS: MULTIPLE POLYLOGARITHMS

 Multiple PolyLogarithms (MPLs)
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Iterated integrals of rational functions on the Riemann Sphere

Provided us with the right language to make sense of a lot of the structure in scattering 
amplitudes


- leading singularities and dlog forms (local integrals) 


- differential equations in canonical form


- hint towards generalisations (elliptic multiple polylogs, more general diff forms, 
Calabi-Yau geometries etc)

[Henn ’13]

[Arkani-Hamed et al ’10]

SUCCESS OF THE PAST 20 YEARS: MULTIPLE POLYLOGARITHMS

 Multiple PolyLogarithms (MPLs)



|Mqq̄!gg|2 =
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qq̄!gg

��2 +
⇣↵s

2⇡

⌘ ��MNLO

qq̄!gg

��2 +
⇣↵s

2⇡

⌘2 ��MNNLO

qq̄!gg

��2 + ...
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+ +

Double Virtual Real Virtual Double Real

By understanding analytic structure of amplitudes + how to handle and subtract IR 
divergences, past 2 decades have seen the beginning of a NNLO revolution…

TOWARDS A NNLO REVOLUTION (?)

- complex integrals


- involved IR structure



BEYOND NNLO FOR 2     2 THERE IS STILL A LOT TO LEARN

We are just scratching the surface…!



We are far from being able to do  pheno for generic processes…N3LO

We are just scratching the surface…!
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Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.

Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

Non trivial uncertainty patterns observed going from NNLO to N3LO for W,  Drell-Yanγ

[Duhr, Dulat, Mistlberger ’20 ]

BEYOND NNLO FOR 2     2 THERE IS STILL A LOT TO LEARN



New challenges from pushing methods to 
compute scattering amplitudes from two to 

three loops:


Higher combinatorial complexity, new special 
functions and new geometries, discontinuities 

(bootstrap?)… IR singularities and new sources for 
possible factorisation breaking 


(di-jet /  @ …) tt̄ N3LO

We are far from being able to do  pheno for generic processes…N3LO

We are just scratching the surface…!

BEYOND NNLO FOR 2     2 THERE IS STILL A LOT TO LEARN



New challenges from pushing methods to 
compute scattering amplitudes from two to 

three loops:


Higher combinatorial complexity, new special 
functions and new geometries, discontinuities 

(bootstrap?)… IR singularities and new sources for 
possible factorisation breaking 


(di-jet /  @ …) tt̄ N3LO

We are far from being able to do  pheno for generic processes…N3LO

Particularly interesting


di-jet production @ N3LO!

We are just scratching the surface…!

BEYOND NNLO FOR 2     2 THERE IS STILL A LOT TO LEARN



TOWARDS DI-JET AT N3LO

First step is 3 loop scattering amplitudes:


- Informs on complexity of functions involved

- Informs on IR structure in three-loop QCD: quadrupole correlations!

- Informs on all-order structure of QCD: High Energy limit, Regge factorisation etc



TOWARDS DI-JET AT N3LO

We will focus mainly on the most complicated one: gg → gg

3 main channels: gg → gg , qq̄ → gg , qq̄ → QQ̄

First step is 3 loop scattering amplitudes:


- Informs on complexity of functions involved

- Informs on IR structure in three-loop QCD: quadrupole correlations!

- Informs on all-order structure of QCD: High Energy limit, Regge factorisation etc
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FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes: flashing through standard approach [See Harald Ita’s talk]
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Feynman parameters


Numerical methods …
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with Si ∈ {ki ⋅ kj, . . . , ki ⋅ pj}

IBPs (Finite fields etc)
Some analytic or 

numerical result for the 
amplitudes

Scattering Amplitudes: flashing through standard approach [See Harald Ita’s talk]

[See Gudrun’s and Mao’s 
talks]



FROM AMPLITUDES TO INTEGRALS

~

 more pages+500

(~50000 Feynman diagrams  —  integrals!!)107

In reality, for  @ 3 loopsgg → gg

So we need a way to organise this mess…



FROM AMPLITUDES TO INTEGRALS
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Scattering Amplitudes: flashing through standard approach [See Harald Ita’s talk]

[Harald’s talk (not only)]



FROM AMPLITUDES TO INTEGRALS

𝒜 = ϵμ1
1 ⋯ϵμn

n v̄(q) Γμ1,...,μn
u(p)~

differential equations


Feynman parameters


Numerical methods …

(Scalar) Feynman Integrals

ℐ = ∫
L

∏
l=1

dDkl

(2π)D

Sb1
1 . . . Sbmm

Da1
1 . . . Dan

n

with Si ∈ {ki ⋅ kj, . . . , ki ⋅ pj}

IBPs (Finite fields etc)
Some analytic or 

numerical result for the 
amplitudes

Tensor reduction: projectors - form factors 

Scattering Amplitudes: flashing through standard approach [See Harald Ita’s talk]

[This talk starts here…]



TENSOR DECOMPOSITION

Mgg!Hg ⇠
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First step:


Strip it of Lorentz and Dirac structures  

Scalar Feynman Integrals are 
what we know how to compute

=

= ∫
L

∏
i=1

dDki Ri(k1, . . . , kL, p1, . . . , pE, mj)



➤ Pick your favourite process ( for example  or  )qq̄ → Zg qq̄ → QQ̄

PROJECTOR - FORM FACTOR METHOD IN A NUTSHELL



➤ Pick your favourite process ( for example  or  )qq̄ → Zg qq̄ → QQ̄

➤ Use Lorentz + gauge + any symmetry (parity, Bose etc…) to find minimal set of 
“tensor structures” in d space-time dimensions (vectors in a vector space):
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➤ Derive projectors operators (dual vectors) to single out corresponding form factors:

➤ Use Lorentz + gauge + any symmetry (parity, Bose etc…) to find minimal set of 
“tensor structures” in d space-time dimensions (vectors in a vector space):

PROJECTOR - FORM FACTOR METHOD IN A NUTSHELL
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Fj Tj



➤ Pick your favourite process ( for example  or  )qq̄ → Zg qq̄ → QQ̄

Mij = ∑
pol

T†
i Tj

𝒫j𝒜 = Fj

𝒫j = ∑
k

(M−1)jk
T†

k

➤ Derive projectors operators (dual vectors) to single out corresponding form factors:

➤ Apply these projectors on Feynman diagrams (or any other representation of the 
scattering amplitude) —> obtain combination of scalar integrals

➤ Use Lorentz + gauge + any symmetry (parity, Bose etc…) to find minimal set of 
“tensor structures” in d space-time dimensions (vectors in a vector space):

PROJECTOR - FORM FACTOR METHOD IN A NUTSHELL

𝒜 =
n

∑
j=1

Fj Tj



FROM “TENSORS” TO HELICITY AMPLITUDES
Ultimately, we are interested in helicity amplitudes 


(minimal, physical objects which retain full physical information on final states)



FROM “TENSORS” TO HELICITY AMPLITUDES

𝒜 =
n

∑
i=1

Fj Tj 𝒜(λ1, . . . , λE) =
n

∑
i=1

Fj Tj(λ1, . . . , λE) =
m<n

∑
j=1

F̄j Sj(λ1, . . . , λE)

Helicity amplitudes, spinor 
products, momentum 

twistors…

Combinations of 
original form 

factors

This allows us to have the full structure of the amplitude under control


 True at every number of loops!

Fix helicities (assuming that external states are in  dimensions) d = 4

All “internal” indices are in d dimensions

Ultimately, we are interested in helicity amplitudes 


(minimal, physical objects which retain full physical information on final states)



TENSOR DECOMPOSITION: PROS AND CONS

Problems in d-dimensions:

When applied in standard dimensional regularisation (CDR), it can become intractable for 
complicated problems due to evanescent structures in d=4

it is a powerful and very general method but:
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Di ∼ ū(p1)Γμ1,...,μn u(p2) ū(p3)Γμ1,...,μn
u(p4)

Typical case 4 quark scattering q(p2) + q̄(p1) → Q(p3) + Q̄(p4)

Infinite number of tensor structures in  dimensionsd

where the coefficients AI are vectors in colour space and are functions of s12 and s23 (and implicitly

s13 = −s12 − s23) where sij = (pi + pj)2 and the six Dirac structures are

D1 = ū(p1)γµ1u(p2) ū(p3)γµ1u(p4),

D2 = ū(p1)/p3u(p2) ū(p3)/p1u(p4),

D3 = ū(p1)γµ1γµ2γµ3u(p2) ū(p3)γµ1γµ2γµ3u(p4),

D4 = ū(p1)γµ1/p3γµ3u(p2) ū(p3)γµ1/p1γµ3u(p4),

D5 = ū(p1)γµ1γµ2γµ3γµ4γµ5u(p2) ū(p3)γµ1γµ2γµ3γµ4γµ5u(p4),

D6 = ū(p1)γµ1γµ2/p3γµ4γµ5u(p2) ū(p3)γµ1γµ2/p1γµ4γµ5u(p4). (2.11)

This tensor structure is a priori d-dimensional since the Lorentz indices are d-dimensional and the

dimensionality (and helicity) of the external states has not yet been specified. One can in principle

relate the strings of gamma matrices appearing in D3 to D6 to a standard set involving only D1 and

D2 using four-dimensional tricks. However, because these are the structures that naturally arise in

the parity conserving interactions of QCD, we choose to use this extended set as a d-dimensional basis

that is valid at up to two-loops. We note that the Dirac algebra is infinite dimensional for non-integer

d and that the basis set will extend according to the order that |M〉 is computed. For example, at

tree level, only D1 appears, while D2, D3 and D4 first appear at one-loop. D5 and D6 appear for

the first time at two-loops while at three-loops, we will find terms (represented by + . . .) with seven

gamma matrices sandwiched between the quark spinors. These more complicated structures can also

be related to the simpler ones using four-dimensional tricks (which we choose not to do at the present

time).

When the quarks are identical, the general structure of the amplitude is modified,

|M〉 = |M〉 − δqQ|M〉, (2.12)

where

|M〉 = |M〉(p2 ↔ p4). (2.13)

The minus sign is due to the exchange of identical fermions, while the momentum swap corresponds

to exchanging s12 and s23 in the coefficents AI . All appropriate colour indices are also exchanged. In

general we will multiply these additional identical fermion terms with a δqQ which is unity when the

quarks are identical and zero otherwise.

2.2 Projectors for the tensor coefficients

The six coefficients AI may be easily extracted from a Feynman diagram calculation with two distinct

quark flavours using projectors that act on the general tensor of Eq. (2.10) such that

∑

spins

P(AI) |M〉 = AI(s12, s23). (2.14)

The explicit forms for the projectors in d space-time dimensions are,

P(A1) =
1

480s13s223s
2
12(d− 5)(d − 6)(d − 7)(d − 3)(d − 4)

×

(
(2.15)

– 4 –

up to 2 loops!

it is a powerful and very general method but:Problems in d-dimensions:

When applied in standard dimensional regularisation (CDR), it can become intractable for 
complicated problems due to evanescent structures in d=4



TENSOR DECOMPOSITION: UPGRADE IN THV

Improvements in ’t Hooft - Veltman (tHV) scheme

2 independent helicity configurations: q(p2) + q̄(p1) → Q(p3) + Q̄(p4)

[Peraro, Tancredi ’19,’20]

 —> only two “tensors” are linearly independent if external states are in d = 4
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TENSOR DECOMPOSITION: UPGRADE IN THV

4 dimensional tensors alone are enough to obtain full result in ’t Hooft-Veltman scheme


and also the finite remainder in CDR!


Used successfully for  @ 3 loopspp → pp [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21,’22]

And first full colour calculation for a  amplitude:  at 2 loops in QCD2 → 3 qq̄ → γγj
[Agarwal, Buccioni, Manteuffel, Tancredi ’21]
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q(p2) + q̄(p1) → Q(p3) + Q̄(p4)

Improvements in ’t Hooft - Veltman (tHV) scheme

2 independent helicity configurations:

[Peraro, Tancredi ’19,’20]

 —> only two “tensors” are linearly independent if external states are in d = 4



TENSOR DECOMPOSITION: CHIRAL THEORIES

Let’s see how this works for chiral theories


Consider the decay of a Z-boson and to three jet

Z(p4) → q(p1) + q̄(p2) + g(p3)



Status:


Pheno @ NNLO including only vector-like couplings of singlet type

 — axial coupling neglected in singlet contributions —


Need to include top+bottom to get consistent result (anomaly!)

γμγ5

Z

Amplitudes [Garland, Gerhmann et al ’02]
Pheno [Gehrmann-De Ridder et al ’17, ’18] etc etc

Let’s see how this works for chiral theories


Consider the decay of a Z-boson and to three jet

Z(p4) → q(p1) + q̄(p2) + g(p3)

TENSOR DECOMPOSITION: CHIRAL THEORIES



Z

One issue for axial couplings is 
evanescent structures in chiral tensor

TENSOR DECOMPOSITION: CHIRAL THEORIES



In our approach, only tensors in  are relevant,  we can span amplitude with a basis 
of vectors in :  , plus the fourth parity-odd one

d = 4
d = 4 pμ

1 , pμ
2 , pμ

3

2 Vector + Axial tensor structure

In the parity odd case, we have one more vector to build our tensor structures, namely the axial vector

✏⌫⇢�µp
⌫
1p

⇢
2p

�
3 = ✏p1p2p3µ = vµA.

To get all tensor structures this time, we need to consider this vector as well. Since we are in d = 4 space-
time dimensions, we can make a choice and use as independent vectors pµi , i = 1, 2, 3 and vµA. This implies
also that we do not need to use objects like ✏pipjµ⌫ for the decomposition, since they can all be written as
combinations of the four independent vectors pµi and vµA . Note also that

pi · vA = 0 , vA · vA = ✏p1p2p3µ✏p1p2p3µ =
d� 3

4
s12s13s23 . (5)

We can start from eq. (2) and try to add the corresponding axial part. One has to pay attention here
because, since we have an extra independent vector at disposal, the counting of degrees of freedom has to
be made in a consistent way. It turns out that, having the extra vector vµA actually helps with making the
procedure very transparent, as it happens for 2 ! 3 scattering and it allows to rephrase in a clearer way also
the purely vector part of the tensor structure. In fact, let us use qµi = {pµ1 , p

µ
2 , p

µ
3 , v

µ
A} as vectors to span the

four dimensional space and express all other tensors through them. In this way we can write

�µ =
4X

i=1

âiq
µ
i , gµ⌫ =

4X

i,j=1

cijq
µ
i q

µ
j

where âi must be linear combinations of /qi and their exact form, as that of the coe�cients cij does not
matter for what follows. Using this basis, we can therefore decompose the amplitude as

AAV = ✏4,µ✏3,⌫A
µ,⌫
AV

= ✏4,µ✏3,⌫
h
ū(p2)/p3u(p1) (F1p

µ
1p

⌫
1 + F2p

µ
2p

⌫
1 + F3v

µ
Av

⌫
A +G1p

µ
1v

⌫
A +G2p

µ
2v

⌫
A +G3v

µ
Ap

⌫
1)

+ū(p2)/vAu(p1) (F4p
µ
1v

⌫
A + F5p

µ
2v

⌫
A + F6v

µ
Ap

⌫
1 +G4p

µ
1p

⌫
1 +G5p

µ
2p

⌫
1 +G6v

µ
Av

⌫
A)
⇤
. (6)

We use throughout the letter Fi for the form factors that are parity even, and Gi for those that are parity
odd. Note that the Fi used here are di↵erent from the ones in eq. (2), but it should always be possible to
write them as linear combinations of those.

Let us define the vector of the 12 form factors Fi = {F1, .., F6, G1, ..., G6} and write the amplitude as

AAV =
12X

i=1

FiT i

The projectors can then be defined starting from the matrix

Mij =
X

pol

T
†
iT j , i, j = 1, ..., 12,

and computing its inverse. For the latter, we get

(M)�1
ij =

0

BBBBBBBBBBB@

X2⇥2 0 0 0 0 0 0 0
0 Y1⇥1 0 0 0 0 0 0
0 0 16

(d�3)2s2u2X2⇥2 0 0 0 0 0

0 0 0 u2

s2
Y1⇥1 0 0 0 0

0 0 0 0 � 4
(d�3)u2X2⇥2 0 0 0

0 0 0 0 0 � 1
4 (d� 3)u2Y1⇥1 0 0

0 0 0 0 0 0 � 4
(d�3)s2

X2⇥2 0

0 0 0 0 0 0 0 � 4
(d�3)s2

Y1⇥1

1

CCCCCCCCCCCA

(7)

where

X2⇥2 =

 
(s+u)2

2s2t3u
s2+s(t+u)�tu

2s2t3u
s2+s(t+u)�tu

2s2t3u
(s+t)2

2s2t3u

!
, Y1⇥1 =

8

(d� 3)2s2t3u3

2

With these, a possible basis can be written as: (could be further optimised for singlet contributions)

Z

One issue for axial couplings is 
evanescent structures in chiral tensor

[Gehrmann, Peraro, Tancredi ’22]

where ↵̄s is the bare strong coupling and Ta

ij
are the SU(3) color fundamental generators.

The external vector or axial-vector vertex does not carry a coupling constant. The rank-two

tensor can be decomposed as

Aµ⌫ = ū(p2)/p3u(p1)
h
F̃1p

µ

1p
⌫

1 + F̃2p
µ

2p
⌫

1 + F̃3v
µ

A
v⌫A + G̃1p

µ

1v
⌫

A + G̃2p
µ

2v
⌫

A + G̃3v
µ

A
p⌫1

i

+ ū(p2)/vAu(p1)
h
F̃4p

µ

1v
⌫

A + F̃5p
µ

2v
⌫

A + F̃6v
µ

A
p⌫1 + G̃4p

µ

1p
⌫

1 + G̃5p
µ

2p
⌫

1 + G̃6v
µ

A
v⌫A

i
, (2.6)

where F̃i and G̃i are scalar form factors. In order to obtain (2.6), we also used the transver-

sality condition for the external gluon

✏3 · p3 = 0

together with the following gauce choices for the gluon and the o↵-shell vector boson

✏3 · p2 = 0 , ✏4 · p4 = 0 (Lorentz Gauge) .

We stress that this gauge choice implies the following polarisation sums rules

X

pol

✏µ⇤3 ✏⌫3 = �gµ⌫ +
pµ3p

⌫
2 + p⌫3p

µ

2

p2 · p3
,

X

pol

✏µ⇤4 ✏⌫4 = �gµ⌫ +
pµ4p

⌫
4

m2
. (2.7)

While fixing the gauge is not necessary in principle, it provides a clear way to enumerate

all independent structures.

Looking again at (2.6), we see that by using the vector vµ
A
, we generate exactly 12

independent tensors in d = 4 dimensions, which conveniently separate into 6 parity-even

(F̃i) and 6 parity-odd (G̃i) structures. We stress once more that this simple separation is

only possible for the scattering of up to 4 particles.

Starting from (2.6), we can obtain an alternative decomposition, that has the advantage

of involving at most one occurrence of the parity-odd vector vµ
A
, only in those tensors that

are parity-violating. This is particularly useful to get rid of the possible ambiguity in

the order of contraction of pairs of Levi-Civita tensors when we define the corresponding

projectors and apply them on the amplitude using Larin scheme [28]. Starting from the

fact that gµ⌫ is parity-even (and can thus contain only products of an even number of vµ
A
),

we can write

gµ⌫ =
3X

i,j=1

bijp
µ

i
p⌫j + b vµ

A
v⌫A ,

and we easily see that we can e↵ectively substitute vµ
A
v⌫
A
⇠ gµ⌫ everywhere in the tensor

decomposition, still spanning the same vector space. This provides the alternative tensor

structure

Aµ⌫ = ū(p2)/p3u(p1)
h
F1p

µ

1p
⌫

1 + F2p
µ

2p
⌫

1 + F3g
µ⌫ +G1p

µ

1v
⌫

A +G2p
µ

2v
⌫

A +G3v
µ

A
p⌫1

i

+ ū(p2)�
⌫u(p1)

h
F4p

µ

1 + F5p
µ

2

i
+ ū(p2)�

µu(p1)F6p
⌫

1

+ ū(p2)/vAu(p1)
h
G4p

µ

1p
⌫

1 +G5p
µ

2p
⌫

1

i
+G6

h
ū(p2)�

µu(p1)v
⌫

A + ū(p2)�
⌫u(p1)v

µ

A

i
, (2.8)
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âiq
µ
i , gµ⌫ =

4X

i,j=1

cijq
µ
i q

µ
j
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The projectors can then be defined starting from the matrix

Mij =
X

pol

T
†
iT j , i, j = 1, ..., 12,

and computing its inverse. For the latter, we get

(M)�1
ij =

0

BBBBBBBBBBB@

X2⇥2 0 0 0 0 0 0 0
0 Y1⇥1 0 0 0 0 0 0
0 0 16

(d�3)2s2u2X2⇥2 0 0 0 0 0

0 0 0 u2

s2
Y1⇥1 0 0 0 0

0 0 0 0 � 4
(d�3)u2X2⇥2 0 0 0

0 0 0 0 0 � 1
4 (d� 3)u2Y1⇥1 0 0

0 0 0 0 0 0 � 4
(d�3)s2

X2⇥2 0

0 0 0 0 0 0 0 � 4
(d�3)s2

Y1⇥1

1

CCCCCCCCCCCA

(7)

where

X2⇥2 =

 
(s+u)2

2s2t3u
s2+s(t+u)�tu

2s2t3u
s2+s(t+u)�tu

2s2t3u
(s+t)2

2s2t3u

!
, Y1⇥1 =

8

(d� 3)2s2t3u3

2

The counting is straightforward: 


➤ 2 helicities for the  line (massless)


➤ 2 helicities for the (physical) gluon


➤ 3 helicities for the (physical) Z boson

qq̄
Gives a total of = 12 
helicity amplitudes


matched by the number of 
tensors and form factors}

Note that manipulations are done in tHV / Larin scheme

where ↵̄s is the bare strong coupling and Ta

ij
are the SU(3) color fundamental generators.

The external vector or axial-vector vertex does not carry a coupling constant. The rank-two

tensor can be decomposed as

Aµ⌫ = ū(p2)/p3u(p1)
h
F̃1p

µ

1p
⌫

1 + F̃2p
µ

2p
⌫

1 + F̃3v
µ

A
v⌫A + G̃1p

µ

1v
⌫

A + G̃2p
µ

2v
⌫

A + G̃3v
µ

A
p⌫1

i

+ ū(p2)/vAu(p1)
h
F̃4p

µ

1v
⌫

A + F̃5p
µ

2v
⌫

A + F̃6v
µ

A
p⌫1 + G̃4p

µ

1p
⌫

1 + G̃5p
µ

2p
⌫

1 + G̃6v
µ

A
v⌫A

i
, (2.6)

where F̃i and G̃i are scalar form factors. In order to obtain (2.6), we also used the transver-

sality condition for the external gluon

✏3 · p3 = 0

together with the following gauce choices for the gluon and the o↵-shell vector boson

✏3 · p2 = 0 , ✏4 · p4 = 0 (Lorentz Gauge) .

We stress that this gauge choice implies the following polarisation sums rules

X

pol

✏µ⇤3 ✏⌫3 = �gµ⌫ +
pµ3p

⌫
2 + p⌫3p

µ

2

p2 · p3
,

X

pol

✏µ⇤4 ✏⌫4 = �gµ⌫ +
pµ4p

⌫
4

m2
. (2.7)

While fixing the gauge is not necessary in principle, it provides a clear way to enumerate

all independent structures.

Looking again at (2.6), we see that by using the vector vµ
A
, we generate exactly 12

independent tensors in d = 4 dimensions, which conveniently separate into 6 parity-even

(F̃i) and 6 parity-odd (G̃i) structures. We stress once more that this simple separation is

only possible for the scattering of up to 4 particles.

Starting from (2.6), we can obtain an alternative decomposition, that has the advantage

of involving at most one occurrence of the parity-odd vector vµ
A
, only in those tensors that

are parity-violating. This is particularly useful to get rid of the possible ambiguity in

the order of contraction of pairs of Levi-Civita tensors when we define the corresponding

projectors and apply them on the amplitude using Larin scheme [28]. Starting from the

fact that gµ⌫ is parity-even (and can thus contain only products of an even number of vµ
A
),

we can write

gµ⌫ =
3X

i,j=1

bijp
µ

i
p⌫j + b vµ

A
v⌫A ,

and we easily see that we can e↵ectively substitute vµ
A
v⌫
A
⇠ gµ⌫ everywhere in the tensor

decomposition, still spanning the same vector space. This provides the alternative tensor

structure

Aµ⌫ = ū(p2)/p3u(p1)
h
F1p

µ

1p
⌫

1 + F2p
µ

2p
⌫

1 + F3g
µ⌫ +G1p

µ

1v
⌫

A +G2p
µ

2v
⌫

A +G3v
µ

A
p⌫1

i

+ ū(p2)�
⌫u(p1)

h
F4p

µ

1 + F5p
µ

2

i
+ ū(p2)�

µu(p1)F6p
⌫

1

+ ū(p2)/vAu(p1)
h
G4p

µ

1p
⌫

1 +G5p
µ

2p
⌫

1

i
+G6

h
ū(p2)�

µu(p1)v
⌫

A + ū(p2)�
⌫u(p1)v

µ

A

i
, (2.8)
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TENSOR DECOMPOSITION: CHIRAL THEORIES



THE CASE OF 4-GLUON SCATTERING

Applied all these ideas to 


8 helicity amplitudes ~ 8 form factors for each colour ordered amplitude

gg → gg

2

where all momenta are taken to be incoming and massless

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0. (2)

The scattering process above can be parametrised in
terms of the usual set of Mandelstam invariants

s=(p1+p2)
2, t=(p1+p3)

2, u=(p2+p3)
2, (3)

which satisfy the relation u = �t� s. We work in di-
mensional regularization to regulate all ultraviolet and
infrared divergences. More precisely, we adopt the ’t
Hooft-Veltman scheme (tHV) [21], where loop momenta
are taken to be d = 4 � 2✏ dimensional, while momenta
and polarizations associated with external particles are
kept in four dimensions.
The physical scattering process gg ! gg (relevant for
di-jet production) can be obtained from (1) by crossing
p3,4!�p3,4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x = �t/s, (4)

so that in the physical region p1 + p2 ! p3 + p4 we have

s > 0, t < 0, u < 0; 0 < x < 1. (5)

COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b

6X

i=1

A[i]Ci , (6)

where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],

C2 = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ],

C3 = Tr[T a1T a3T a2T a4 ] + Tr[T a1T a4T a2T a3 ],

C4 = Tr[T a1T a2 ]Tr[T a3T a4 ],

C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],

C6 = Tr[T a1T a4 ]Tr[T a2T a3 ]. (7)

Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)

𝒜 =
8

∑
j=1

ℱi Ti

2

where all momenta are taken to be incoming and massless

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0. (2)

The scattering process above can be parametrised in
terms of the usual set of Mandelstam invariants

s=(p1+p2)
2, t=(p1+p3)

2, u=(p2+p3)
2, (3)

which satisfy the relation u = �t� s. We work in di-
mensional regularization to regulate all ultraviolet and
infrared divergences. More precisely, we adopt the ’t
Hooft-Veltman scheme (tHV) [21], where loop momenta
are taken to be d = 4 � 2✏ dimensional, while momenta
and polarizations associated with external particles are
kept in four dimensions.
The physical scattering process gg ! gg (relevant for
di-jet production) can be obtained from (1) by crossing
p3,4!�p3,4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x = �t/s, (4)

so that in the physical region p1 + p2 ! p3 + p4 we have

s > 0, t < 0, u < 0; 0 < x < 1. (5)

COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b

6X

i=1

A[i]Ci , (6)

where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],

C2 = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ],

C3 = Tr[T a1T a3T a2T a4 ] + Tr[T a1T a4T a2T a3 ],

C4 = Tr[T a1T a2 ]Tr[T a3T a4 ],

C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],

C6 = Tr[T a1T a4 ]Tr[T a2T a3 ]. (7)

Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)

etc…

[Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21]



2

where all momenta are taken to be incoming and massless

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0. (2)

The scattering process above can be parametrised in
terms of the usual set of Mandelstam invariants

s=(p1+p2)
2, t=(p1+p3)

2, u=(p2+p3)
2, (3)

which satisfy the relation u = �t� s. We work in di-
mensional regularization to regulate all ultraviolet and
infrared divergences. More precisely, we adopt the ’t
Hooft-Veltman scheme (tHV) [21], where loop momenta
are taken to be d = 4 � 2✏ dimensional, while momenta
and polarizations associated with external particles are
kept in four dimensions.
The physical scattering process gg ! gg (relevant for
di-jet production) can be obtained from (1) by crossing
p3,4!�p3,4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x = �t/s, (4)

so that in the physical region p1 + p2 ! p3 + p4 we have

s > 0, t < 0, u < 0; 0 < x < 1. (5)

COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b

6X

i=1

A[i]Ci , (6)

where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],

C2 = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ],

C3 = Tr[T a1T a3T a2T a4 ] + Tr[T a1T a4T a2T a3 ],

C4 = Tr[T a1T a2 ]Tr[T a3T a4 ],

C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],

C6 = Tr[T a1T a4 ]Tr[T a2T a3 ]. (7)

Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)

3

where the little group invariant amplitudes H[i]
� only de-

pend on the Mandelstam invariants and s� is a phase that
carries all the spinor weight. The decomposition (11) is
not unique. Here we follow [25] and choose

s++++ =
h12ih34i
[12][34]

, s�+++ =
h12ih14i[24]
h34ih23ih24i ,

s+�++ =
h21ih24i[14]
h34ih13ih14i , s++�+ =

h32ih34i[24]
h14ih21ih24i ,

s+++� =
h42ih14i[12]
h13ih23ih12i , s++�� =

h12i[34]
[12]h34i ,

s+�+� =
h13i[24]
[13]h24i , s+��+ =

h14i[23]
[14]h23i . (12)

A useful feature of this choice is that it preserves the
correct symmetries under permutation.

From now on we will focus on the calculation of H[j]
� ,

which we will refer to as helicity amplitudes, with a slight

abuse of notation. The H[j]
� can be expanded in terms of

the bare QCD coupling in the usual way:

H� =
3X

k=0

↵̄k
s,bH

(k)
� +O(↵̄4

s,b), (13)

where we have omitted the color structure index [j] for
ease of reading and defined ↵̄s,b = ↵s,b/(4⇡). Here we
focus on the computation of the three-loop amplitude

H(3)
� . As a byproduct we also re-computed the tree level,

one- and two-loop amplitudes as a check of our framework
and found prefect agreement with previous results in the
literature [26, 27] .

We use QGRAF [28] to produce the relevant Feyn-
man diagrams: there are 4 di↵erent diagrams at tree
level, 81 at one loop, 1771 at two loops and 48723
at three loops. We then use FORM [29] to apply the
projection operators Pi to suitable combinations of
the Feynman diagrams and in this way write the

helicity amplitudes H[1]
� , H[4]

� as linear combination
of scalar Feynman integrals. The integrals appearing
in the computation of these amplitudes can be written as

Itop
n1,...,nN

= µ2L✏
0 eL✏�E

Z LY

i=1

✓
ddki

i⇡
d
2

◆
1

Dn1
1 . . . DnN

N

(14)

where L stands for the number of loops, ki are the
loop momenta, �E ⇡ 0.5772 is the Euler constant, µ0 is
the dimensional regularization scale and ✏ = (4 � d)/2
is the dimensional regulator. Here “top” can be any
of the planar or non-planar integral families which are
given explicitly in ref. [19]. At three loops we find that
a staggering number of ⇠ O(107) apparently di↵erent
scalar integrals contribute to the amplitude. However,
these integrals are not linearly independent and can be

related using symmetry relations and integration by parts
identities [30, 31]. We performed this reduction with
Reduze 2 [32, 33] and Finred, an in-house implemen-
tation based on Laporta’s algorithm, finite field tech-
niques [34–37] and syzygy algorithms [38–43]. In this way
we were able to express the helicity amplitudes in terms
of the 486 master integrals (MIs), which were first com-
puted in ref. [44] and more recently in ref. [20] in terms
of simple harmonic polylogarithms (HPLs) [2]. After in-
serting the analytic expressions for the master integrals,

we obtain the bare helicity amplitudes H(j)
� as a Laurent

series in ✏ up to O(✏0) in terms of HPLs up to transcen-
dental weight six.

UV RENORMALIZATION AND IR BEHAVIOR

The bare helicity amplitudes contain both ultravio-
let (UV) and infrared (IR) divergencies that manifest as
poles in the series expansions of the dimensional regu-
lator ✏. UV divergences can be removed by expressing
the amplitudes in terms of the MS renormalized strong
coupling ↵s(µ) using

↵̄s,bµ
2✏
0 S✏ = ↵̄s(µ)µ

2✏Z [↵̄s(µ)] , (15)

where ↵̄s(µ) = ↵s(µ)/(4⇡), µ is the renormalization scale
and

Z[↵̄s] = 1� ↵̄s
�0
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�3
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� 7

6

�0�1
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+

�2

3✏

◆
+O(↵̄4

s) . (16)

The explicit form of the �-function coe�cients �i is im-
material for our discussion; for the reader’s convenience,
we provide them in the Supplemental Material. The UV-
renormalized helicity amplitudes H�, ren are obtained by

expanding eq. (6) in ↵̄s(µ). In particular, H(k)
�, ren is the

(color- and helicity-stripped) coe�cient of the ↵̄k
s term.

The renormalized amplitudes still contain poles of IR
origin, whose structure is universal. The infrared struc-
ture of QCD scattering amplitudes was first studied at
two loops in [45] and later extended to general processes
and three loops in [46–54]. Up to three loop order, one
can write [49, 50]

H�, ren = ZIR H�, fin , (17)

where H�, fin are finite remainders and ZIR is a color
matrix that acts on the {Ci} basis (7). It can be written
in terms of the so-called soft anomalous dimension � as

ZIR = P exp

Z 1

µ

dµ0

µ0 �({p}, µ
0)

�
, (18)

where the path ordering operator P reorganizes color
operators in increasing values of µ0 from left to right

Helicity amplitudes

H−+−+ = t2 ( ℱ8

su
−

ℱ3

2s
+

ℱ6

2u
−

ℱ1

4 )

        where 𝒜λ = sλ Hλ λ = { + + + + , − + + + , + − + + , etc}

𝒜 =
8

∑
j=1

ℱi Ti

For example:

2

where all momenta are taken to be incoming and massless

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0. (2)

The scattering process above can be parametrised in
terms of the usual set of Mandelstam invariants

s=(p1+p2)
2, t=(p1+p3)

2, u=(p2+p3)
2, (3)

which satisfy the relation u = �t� s. We work in di-
mensional regularization to regulate all ultraviolet and
infrared divergences. More precisely, we adopt the ’t
Hooft-Veltman scheme (tHV) [21], where loop momenta
are taken to be d = 4 � 2✏ dimensional, while momenta
and polarizations associated with external particles are
kept in four dimensions.
The physical scattering process gg ! gg (relevant for
di-jet production) can be obtained from (1) by crossing
p3,4!�p3,4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x = �t/s, (4)

so that in the physical region p1 + p2 ! p3 + p4 we have

s > 0, t < 0, u < 0; 0 < x < 1. (5)

COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b

6X

i=1

A[i]Ci , (6)

where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],

C2 = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ],

C3 = Tr[T a1T a3T a2T a4 ] + Tr[T a1T a4T a2T a3 ],

C4 = Tr[T a1T a2 ]Tr[T a3T a4 ],

C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],

C6 = Tr[T a1T a4 ]Tr[T a2T a3 ]. (7)

Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)

etc…

Applied all these ideas to 


8 helicity amplitudes ~ 8 form factors for each colour ordered amplitude

gg → gg [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21]

THE CASE OF 4-GLUON SCATTERING



= ∫
L

∏
i=1

dDki Ri(k1, . . . , kL, p1, . . . , pE, mj)

=
N

∑
i=1

Ri(x1, . . . , xr) ℐi(x1, . . . , xn)

REDUCTION TO MASTER INTEGRALS

[Boehm, et al’20]

Numerical methods (Finite Fields), avoid complexity in 
intermediate steps, reconstruct final result

[Manteuffel, Schabinger ’14]

[Peraro ’16, ’19]

alternative representation for rational functions: 
multivariate partial-fractioning

[Heller, Manteuffel ’21]

[Abreu et al ’18][Remiddi,…, ’99…]

Path to get there extremely complicated, became possible thanks to new mathematical tools

[Klappert, Lange ’19]

[See Harald’s talk]



Result can be written in terms of simple functions: (harmonic) multiple polylogarithms 


G(a1, . . . , an; x) = ∫
x

0

dt1
t1 − a1

G(a2, . . . , an; t1) , aj = {0,1} , G(0,...,0,x) =
1
n!

logn x

- Many master integrals (~ but only 500 vs  integrals before reduction!)


    Approached by differential equations method [Kotikov ’97; Remiddi ’99; Gehrmann Remiddi ’00]


- Finding a so-called “canonical basis” is very non-trivial [Henn, Mistlberger, Smirnov, Wasser, 2020]
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[Arkani-Hamed ’10; Kotikov ’07 ‘10; Henn ’13, Lee ‘15]

Three-loop calculation is very non-trivial, it took “20 more years”!

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. The nine integral families needed to describe all master integrals for three-loop massless
four-particle scattering. The external legs are associated with the momenta p1, p3, p4 and p2 in
clockwise order starting with the top left corner.

2 Conventions, notation for integrands

In this section we introduce the notation and set-up for our computation of Feynman

integrals contributing to four-particle scattering. We denote the momenta of the four

particles by p1 . . . p4 and consider all of them to be in-going such that the momentum

conservation identity

pµ1 + pµ2 + pµ3 + pµ4 = 0 (2.1)

is satisfied. The external particles we consider are massless and on-shell such that p2i = 0.

Furthermore, we define the Lorentz invariant scalar products

sij = (pi + pj)
2 . (2.2)

Due to the specific kinematic scenario the following identity is satisfied:

s12 + s13 + s23 = 0 . (2.3)

– 5 –

d ⃗I = ϵA(x) ⃗I

[Remiddi, Vermaseren ’99]

THE CASE OF 4-GLUON SCATTERING



INFRA-RED STRUCTURE
IR singularities are known to factorise in gauge theories
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Figure 24: CN and power-counting analysis for the quark form factor. Panel (a) displays soft,
jet and hard subgraphs, connected by an arbitrary number of lines. Panel (b) shows the subset
of pinch surfaces contributing to IR divergences in Feynman gauge: double curly lines linking Ji

and H denote scalar-polarised gluons. Panel (c) displays singular surfaces in a physical gauge:
in contrast with panel (b), only a single line can connect Ji and H.

• with at most two incoming coloured particles, only one hard subgraph appears in the re-
duced diagram, and gives the meeting point of incoming and outgoing jets23;

• particles belonging to different jets may interact only through soft mediators, which can
be merged in a single soft subgraph.

In order to proceed to the power counting, it is important to devise a consistent treatment of the
lines connecting the various subgraphs, in order to avoid double counting. One possibility [165]
is to assign to the soft subgraph all loops containing at least one zero-momentum line, and to
assign to jet subgraphs all loops containing only collinear lines with non-vanishing momentum.
According to this criterion, for example, the loop in the reduced graph in Fig. 22(a) belongs
entirely to the soft subgraph, and there are no collinear subgraphs, while the reduced diagram
in the second panel of Fig 22(b) has only a jet subgraph and no soft subgraph. With these
assignments, one can proceed to define soft and collinear superficial degrees of divergence, in
terms of the numbers of loops and legs of each subgraph in Fig. 24(a). Let Ls be the number
of soft loops, and Lc, i with i = 1, 2 the number of collinear loops in the i-th jet; similarly,
let N b

r and Nf
r be the numbers of bosonic and fermionic lines, respectively, in subgraph r, with

r = {s, j1, j2}. According to the scaling rules introduced in Section 3.2.2, in the soft limit bosonic
propagators scale as 1/�2, while fermion propagators scale as 1/�. In the collinear limit, both
boson and fermions provide a factor of 1/� (which may be corrected by numerator factors, as we
will see below). Considering also the integration volume, that involves two normal coordinates
for each collinear loop and four normal coordinates for each soft loop, we can define

!s = 4Ls � 2N b

s �Nf

s + ns ,

!c, i = 2Lc, i �N b

c, i �Nf

c, i
+ nc, i , (3.43)

where ns and nc, i count positive powers of � arising from numerator factors. With our assign-
ments, one readily verifies that !s = 0 for the reduced graph in Fig. 22(a), and !c = 0 for
the reduced graph in the second panel of Fig. 22(b). In general, provided the lines connecting

23In cases in which it is necessary to consider multiple incoming lines, for example for hard exclusive ampli-
tudes [275, 276], or when studying double parton scattering [277], multiple hard subgraphs may occur. These
cases typically involve exceptional momentum configurations, where some of the external momenta are parallel,
or there are non-trivial vanishing partial sums of external momenta. For fixed-angle scattering amplitudes, the
coordinate-space analysis in Ref. [224] shows that graphs with multiple hard components are power-suppressed.
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[Becher, Neubert, Dixon, Magnea, Sterman, 
Tejeda-Yeomans, Mert Aybat, Almelid, Duhr, 
Gardi, Ferroglia, Czakon, Mitov, … many 
others …]
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• with at most two incoming coloured particles, only one hard subgraph appears in the re-
duced diagram, and gives the meeting point of incoming and outgoing jets23;

• particles belonging to different jets may interact only through soft mediators, which can
be merged in a single soft subgraph.

In order to proceed to the power counting, it is important to devise a consistent treatment of the
lines connecting the various subgraphs, in order to avoid double counting. One possibility [165]
is to assign to the soft subgraph all loops containing at least one zero-momentum line, and to
assign to jet subgraphs all loops containing only collinear lines with non-vanishing momentum.
According to this criterion, for example, the loop in the reduced graph in Fig. 22(a) belongs
entirely to the soft subgraph, and there are no collinear subgraphs, while the reduced diagram
in the second panel of Fig 22(b) has only a jet subgraph and no soft subgraph. With these
assignments, one can proceed to define soft and collinear superficial degrees of divergence, in
terms of the numbers of loops and legs of each subgraph in Fig. 24(a). Let Ls be the number
of soft loops, and Lc, i with i = 1, 2 the number of collinear loops in the i-th jet; similarly,
let N b

r and Nf
r be the numbers of bosonic and fermionic lines, respectively, in subgraph r, with

r = {s, j1, j2}. According to the scaling rules introduced in Section 3.2.2, in the soft limit bosonic
propagators scale as 1/�2, while fermion propagators scale as 1/�. In the collinear limit, both
boson and fermions provide a factor of 1/� (which may be corrected by numerator factors, as we
will see below). Considering also the integration volume, that involves two normal coordinates
for each collinear loop and four normal coordinates for each soft loop, we can define

!s = 4Ls � 2N b

s �Nf

s + ns ,

!c, i = 2Lc, i �N b

c, i �Nf

c, i
+ nc, i , (3.43)

where ns and nc, i count positive powers of � arising from numerator factors. With our assign-
ments, one readily verifies that !s = 0 for the reduced graph in Fig. 22(a), and !c = 0 for
the reduced graph in the second panel of Fig. 22(b). In general, provided the lines connecting

23In cases in which it is necessary to consider multiple incoming lines, for example for hard exclusive ampli-
tudes [275, 276], or when studying double parton scattering [277], multiple hard subgraphs may occur. These
cases typically involve exceptional momentum configurations, where some of the external momenta are parallel,
or there are non-trivial vanishing partial sums of external momenta. For fixed-angle scattering amplitudes, the
coordinate-space analysis in Ref. [224] shows that graphs with multiple hard components are power-suppressed.
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with respect to one of the hard parton directions. For fixed-angle amplitudes, such gluons essen-
tially have vanishing longitudinal components, and are usually called Glauber gluons. Glauber
gluons are known to give important contributions at cross-section level, and the cancellation of
the corresponding divergences is a crucial step in the proof of collinear factorisation for collider
processes [205,206]; furthermore, they can contribute to infrared poles of scattering amplitudes
when the external particles are allowed to become collinear, while some of the Mandelstam in-
variants become space-like [207]. For fixed-angle scattering amplitudes, however, Glauber gluons
do not contribute at leading power [276].

With these premises, it is easy to propose a generalisation of Eq. (4.12) for multi-particle
amplitudes. First of all, we expect that collinear dynamics will be captured by jet functions,
which are essentially single-particle quantities, and thus cannot change the colour content of the
outgoing state; soft gluons, on the other hand, can connect any pair of hard particles, and they
will change the colour of those particles even if they carry a vanishing energy. We expect then
that the soft function in Eq. (4.12) will need to be promoted to a colour operator acting on
the colour indices of all external particles. The emergent form of soft-collinear factorisation for
fixed-angle multi-particle scattering amplitudes in massless gauge theories is then

An
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!
, (5.5)

where we introduced a jet function, and its eikonal counterpart, for each external hard particle,
with the definitions given in Eq. (4.9) and Eq. (4.11), and we defined the n-particle soft function
as the natural generalisation of Eq. (4.8),

S
�
�i · �j ,↵s(µ

2), ✏
�
⌘ h0|T

 nY

k=1

��k
(1, 0)

�
|0i . (5.6)

The factorisation in Eq. (5.5) is supported by the exhaustive diagrammatic analysis carried out
in Ref. [381], which leads to a BPHZ-like forest formula for soft and collinear singularities in
fixed-angle scattering amplitudes. This analysis makes use of the coordinate-space formalism
developed in Ref. [224], and generalises the early results of [66,330]. An independent derivation
of an analogous factorisation in the context of SCET was given in [95].

In order to proceed to a more detailed analysis of the factorisation, we first need to be much
more concrete concerning the treatment of colour flow in Eq. (5.5), clarifying the action of the
soft colour operator S on the hard part of the amplitude, H: this was trivial for form factors,
where particles with opposite colour charges annihilate into a colour-singlet state, but can be
very intricate for general scattering amplitudes. With this in mind, before proceeding to discuss
the dynamical aspects of the soft-collinear factorisation in Eq. (5.5), we briefly digress to describe
the two main methods commonly used to handle colour in this general case.

context of SCET, such gluons are referred to as soft, while the scaling in Eq. (5.2) is called ultrasoft. The version
of SCET that distinguishes the two scalings is called SCETI , and it can mapped to the theory with a single soft
scaling (SCETII) by a suitable matching procedure. One may also consider Coulomb gluons, whose (soft) spatial
momentum components dominate their energy in a selected frame. These scalings will not be needed in what
follows.
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The can be “multiplicatively renormalised away” similarly to UV divergences 

where S✏ = (4⇡)�✏e��E✏, µ is the renormalisation scale (for the rest of the paper we set

µ0 = µ) and

Z[↵s] = 1�
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(5.2)

The �-function coe�cients are defined through

d↵s

d logµ
= �(↵s, ✏) = �(↵s)� 2✏↵s , �(↵s) = �2↵s

1X

n=0

�n
⇣↵s

4⇡

⌘n+1
, (5.3)

where in this equation ↵s ⌘ ↵s(µ). To the relevant order, they read

�0 =
11

3
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3
nf ,
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34 C2
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� 2 CF nf , (5.4)
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9
.

By inserting eq. (5.1) in the ↵s expansion for the helicity amplitudes (3.14), we obtain the

renormalised helicity amplitudes

H
(0)
i,ren = H

(0)
i (5.5)
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(1)
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i (5.6)
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6✏3
H

(0)
i . (5.8)

These are free from UV poles, but they still contain poles in ✏ of IR origin. We discuss

how to subtract them in the next subsection.

5.2 Infrared Subtraction

While the structure of IR singularities of scattering amplitudes in massless QCD up to two-

loop order has been known for a long time [119], its generalisation to three- and higher-loop

order has been understood only more recently, in particular in the case where four or more

coloured partons participate to the scattering process [80, 84, 86]. In particular, it has been

shown that IR singularities are in one-to-one correspondence to the UV poles of operator

matrix elements in SCET [84, 86]. Therefore, UV renormalisation in SCET corresponds to

IR subtraction in QCD and one can write the finite remainder of the scattering amplitude

by means of a multiplicative colour-space operator Z as

Hi, fin(✏, {p}) = lim
✏!0

Z
�1(✏, {p}, µ) Hi, ren(✏, {p}) , (5.9)

– 10 –

where {p} stands for the dependence on the external kinematics. We point out that, since

we are working with vectors in colour-space as defined in Section 3, the Z colour operator

can be represented as a 2 by 2 matrix which mixes the colour structures defined in eq. (3.2).

Solving a renormalisation group equation one finds that Z can be rewritten as

Z(✏, {p}, µ) = P exp

Z 1

µ

dµ0

µ0 �({p}, µ
0)

�
=

1X

n=0

⇣↵s

4⇡

⌘n
Zn , (5.10)

with P the path-ordering symbol, i.e. operators are ordered from left to right with decreasing

values of µ0. Following the notation of [80], where � was first computed up to three loops,

the anomalous dimension operator for 4 coloured external particles is written as

�({p}, µ) = �dipole({p}, µ) +�4({p}) . (5.11)

Above, �dipole represents the well known dipole colour correlations between two coloured

external legs, namely

�dipole({p}, µ) =
X
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a
i T

a
j

2
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✓
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◆
+

4X

i=1

�i(↵s) , (5.12)

with T
a
i the i-th particle SU(Nc) generator and from now on we use the shorthand ↵s =

↵s(µ) to indicate the renormalised coupling at scale µ. The constants �cusp and �i are

given in Appendix B. It is also useful to define the expansions
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1X
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These are free from UV poles, but they still contain poles in ✏ of IR origin. We discuss

how to subtract them in the next subsection.
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coloured partons participate to the scattering process [80, 84, 86]. In particular, it has been
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 acts on the amplitude as a matrix in colour space, non-trivial correlations among partonsZ

The anomalous dimension  is fully known up to three loopsΓ

Dipole-like correlations among at most 
2 partons are enough up to two loops

+ …

Three-Loop Four-Point Scattering Amplitudes in Massless Gauge Theories Giulio Gambuti

Figure 1: Sample diagram contributing to the dipole matrix �dip for the process 66 ! 66. The gluon in red
is to be thought of as a soft gluon being exchanged by the hard legs (in black).

5. The IR structure

After renormalization, the helicity amplitudes contain only IR divergencies, which appear as
poles in the series expansions of the dimensional regulator n , and depend on the renormlization scale
`. Up to three loops, one can factorize the IR physics from the hard scattering and write [12–20]

H,, ren = Z� ' H,, fin , (16)

where Z� ' is a color matrix that acts on the color basis {C-
8 } (6) and can be written in exponential

form in terms of the soft anomalous dimension � = �dip + �4 as

Z� ' = exp
π 1

`

d`0

`0 �({?}, `
0)
�
. (17)

Above, the dipole term �dip is associated to a long-range pairwise exchange of color charge between
external legs (see Figure 1) and explicitly reads

�dip =
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0
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�B8 9 � 8X
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+
’
8

W8 , (18)

where B8 9 = 2?8 · ? 9 , WK is the cusp anomalous dimension [21–27] and W8=6,@ is the gluon(quark)
anomalous dimension [28–31].

The quadrupole matrix �4 is instead due to exchanges of color charge among (up to) four
external legs (see Figure 2) and it starts playing a role at three loops, where we only need the first
order in its perturbative expansion �4 =

Õ1
==3 Ū

=
B�

(=)
4 . This reads [20]
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, (19)

with ⇠ = Z5 + 2Z2Z3 and the functions ⇡1(G) and ⇡2(G) can be found in [3–5].
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At three loops we see for the first time quadrupole correlations
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Figure 2: Sample diagrams contributing to the quadrupole matrix �(3)
4 for the process 66 ! 66. Gluons in

red are to be thought of as soft gluons being exchanged by the hard legs (in black).

In the formulas above, T
0
8 represents the color generator of the 8-th parton in the scattering

amplitude:

(T0
8 )UV = C0UV for a final(initial)-state quark (anti-quark),

(T0
8 )UV = �C0VU for a final(initial)-state anti-quark (quark),

(T0
8 )12 = �8 5 012 for a gluon. (20)

The computations presented here and in [3–5] allowed us to verify up to three loops the structure
of IR singularities in QCD predicted by the equations above. This provides a highly non-trivial
check of our results and of the techniques described here.

6. High Energy Limit and the Gluon Regge trajectory

Analytic results for the processes (1) up to three loops allow us to directly compute the high-
energy limit of their amplitudes and peak into the all-orders structure of QCD. Employing the
analytic continuation procedure described in [5], we can obtain the scattering amplitudes for the
processes

6(?1) + 6(?2) ! 6(?3) + 6(?4),
@(?1) + 6(?2) ! @(?3) + 6(?4),
@(?1) +&(?2) ! @̄(?3) +&(?4), (21)

from the ones described in the previous Sections. At tree level, the processes in (21) are mediated
by a gluon exchange and exhibit interesting factorization properties in the limit |B | ⇡ |D | � |C |, or
equivalently G ! 0. This is the so called Regge limit. To describe the physics in this kinematical
region, it is convenient to introduce amplitudes which have definite signature under B $ D exchange:

Hren,± =
1
2
[Hren(B, D) ± Hren(D, B)] . (22)

It is also practical to write the logarithmic components of the Regge-limit amplitudes in terms of
the signature-even combination of logarithms

! = � ln(G) � 8c

2
⇡ 1

2

✓
ln

✓
�B � 8X

�C

◆
+ ln

✓
�D � 8X

�C

◆◆
. (23)
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Figure 1: Sample diagram contributing to the dipole matrix �dip for the process 66 ! 66. The gluon in red
is to be thought of as a soft gluon being exchanged by the hard legs (in black).

5. The IR structure

After renormalization, the helicity amplitudes contain only IR divergencies, which appear as
poles in the series expansions of the dimensional regulator n , and depend on the renormlization scale
`. Up to three loops, one can factorize the IR physics from the hard scattering and write [12–20]

H,, ren = Z� ' H,, fin , (16)

where Z� ' is a color matrix that acts on the color basis {C-
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form in terms of the soft anomalous dimension � = �dip + �4 as
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Above, the dipole term �dip is associated to a long-range pairwise exchange of color charge between
external legs (see Figure 1) and explicitly reads
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where B8 9 = 2?8 · ? 9 , WK is the cusp anomalous dimension [21–27] and W8=6,@ is the gluon(quark)
anomalous dimension [28–31].

The quadrupole matrix �4 is instead due to exchanges of color charge among (up to) four
external legs (see Figure 2) and it starts playing a role at three loops, where we only need the first
order in its perturbative expansion �4 =
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4 . This reads [20]
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with ⇠ = Z5 + 2Z2Z3 and the functions ⇡1(G) and ⇡2(G) can be found in [3–5].
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Verified all-order structures in Regge kinematics 

4

and is immaterial up to three loops since to this order
[�(µ),�(µ0)] = 0. The soft anomalous dimension can be
written as

� = �dip +�4 . (19)

The dipole term �dip is due to the pairwise exchange of
color charge between external legs and reads

�dip =
X

1i<j4

Ta
i Ta

j �K ln
⇣

µ2

�sij�i�

⌘
+ 4�g , (20)

where sij = 2pi ·pj , �K is the cusp anomalous dimension
[55–61] and �g is the gluon anomalous dimension [62–65].
Their explicit form up to the order ↵̄3

s required here is re-
produced in the Supplemental Material for convenience.
In eq. (20) we have also introduced the standard color
insertion operators Ta

i , which only act on the i-th exter-
nal color index. In particular, in our case their action on
{Ci} is defined as Ta

i T
bi = �ifabiciT ci = [T bi , T a].
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We verified that the IR singularities of our three-loop
amplitudes match perfectly those generated by eqs. (17)-
(21), which provides a highly non-trivial check of our
results. Our results for the finite remainder H�, fin are
relatively compact, but still too long to be presented
here. They are included in computer-readable format
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interference with the tree level, defined as

hH(0)|H(L)i ⌘ N
6X

i,j=1

C†
i Cj

X

�

H[i],(0)⇤

� H[j],(L)
�,fin , (22)

where N = 1/[2(N2
c � 1)]2 is the initial-state color and

helicity averaging factor and the polarization sum runs
over all the 16 helicity configurations. Further, we have
set µ2 = s, ↵s = 0.118, Nc = 3 and nf = 5.

HIGH ENERGY LIMIT AND THE GLUON
REGGE TRAJECTORY

QFT scattering amplitudes exhibit interesting factori-
sation properties in the high energy (Regge) limit. In

Figure 1: Tree level amplitude squared and interferences of
tree level with L = 1, 2, 3 loop amplitudes in dependence of
x = �t/s.

terms of the variables introduced in this letter, this limit
corresponds to |s| ⇡ |u| � |t|, or equivalently x ! 0.
For studying this region it is convenient to split scatter-
ing amplitudes into parts of definite signature under the
s $ u exchange:

Hren,± =
1

2
[Hren(s, u)±Hren(u, s)] . (23)

It is then useful to define the signature-even combination

L = � ln(x)� i⇡

2
⇡ 1

2

�
ln
�
�s�i�
�t

�
+ ln

�
�u�i�

�t

��
(24)

and the color operators

T2
s = (T1+T2)a(T1+T2)a, T2

t = (T1+T3)a(T1+T3)a,

T2
u = (T1+T4)a(T1+T4)a, T2

s�u = 1
2 (T

2
s �T2

u). (25)

At leading power in x and up to the next-to-leading
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can be thought of as the amplitude for the exchange
of a single “reggeized” t-channel gluon, whose interac-
tion with the external high-energy gluons is described
by so-called impact factors [12, 66–69]. In the language
of complex angular momentum [70], this single-particle
exchange is usually referred to as the “Regge-pole” con-
tribution.
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count for multiple Reggeons exchanges [16, 69, 71–76].
These are usually referred to as the “Regge-cut” contri-
butions. For the signature-even amplitude, the Regge cut
contribution already enters at the first non-trivial loga-
rithmic order (NLL). The presence of Regge cuts greatly
increases the complexity of an all-order analysis. How-
ever, if one restricts oneself to fixed order and only con-
siders the first non-trivial cut contribution (i.e. one works
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We verified that the IR singularities of our three-loop
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logarithmic (NLL) accuracy, i.e. up to terms of the form
↵̄i
sL

i�1, the odd amplitude has a simple factorized struc-
ture. Indeed, to all orders in the strong coupling, Hren,�
can be thought of as the amplitude for the exchange
of a single “reggeized” t-channel gluon, whose interac-
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by so-called impact factors [12, 66–69]. In the language
of complex angular momentum [70], this single-particle
exchange is usually referred to as the “Regge-pole” con-
tribution.
Starting from next-to-next-to-leading logarithmic

(NNLL) accuracy (i.e. from terms of the form ↵̄i
sL

i�2),
this simple factorisation is broken and one needs to ac-
count for multiple Reggeons exchanges [16, 69, 71–76].
These are usually referred to as the “Regge-cut” contri-
butions. For the signature-even amplitude, the Regge cut
contribution already enters at the first non-trivial loga-
rithmic order (NLL). The presence of Regge cuts greatly
increases the complexity of an all-order analysis. How-
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at NLL/NNLL for the even/odd amplitude), the problem
simplifies dramatically. Indeed, this case can be dealt
with using LO BFKL theory [69, 73–76].
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In these equations, the coe�cients C±,(L) describe the
Regge cut contribution and are known [73, 74]. Ig

j are
the perturbative expansion coe�cients of the gluon im-
pact factor and can be extracted from a one- and two-loop
calculation [27]. For convenience, we report both C±,(L)
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1,2 in the Supplemental Material. As we noted ear-
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1 In this section, we set the renormalization scale to µ2 = �t.

Material. The expansion coe�cients of the gluon Regge
trajectory ⌧i can then be written as
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where the higher orders in ✏ can be found in the Supple-
mental material. As expected, the nf -independent part
of the trajectory agrees with ref. [17]. Also, the highest
transcendental-weight terms of our result agree with the
N = 4 SYM result [14, 16], as predicted by the maxi-
mal transcendentality principle [77–80]. On its own, the
result (30) is not particularly illuminating. However, we
have found the same trajectory using both the calcula-
tion outlined in this letter and our previous qq0 ! qq0

three-loop calculation [19]. This provides an impor-
tant test of QCD Regge factorisation at the three-loop
level. We also stress that now all the ingredients for
a NLL/NNLL analysis of the signature-even/odd elastic
amplitudes are known. In particular, we can now fully
predict the yet unknown qg ! qg three-loop amplitude
to NNLL accuracy. Explicitly checking these predictions
against a full calculation will provide a highly non-trivial
test of the universality of Regge factorisation in QCD.

CONCLUSION

In this letter we have presented the first computation
of the helicity amplitudes for the scattering of four glu-
ons up to three loops in full QCD. We obtained compact
results for the finite part of all independent helicity
configurations in terms of harmonic polylogarithms up
to weight six and we verified that the IR poles of our an-
alytic amplitudes follow the predicted universal pattern
up to three loops, which includes dipole and quadruple
correlations. We also considered the high-energy (Regge)
limit of our amplitudes, and extracted the full three-loop
QCD gluon Regge trajectory. This was the last missing
building block to describe single-Reggeon exchanges at
NNLL accuracy.
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and is immaterial up to three loops since to this order
[�(µ),�(µ0)] = 0. The soft anomalous dimension can be
written as
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The dipole term �dip is due to the pairwise exchange of
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where sij = 2pi ·pj , �K is the cusp anomalous dimension
[55–61] and �g is the gluon anomalous dimension [62–65].
Their explicit form up to the order ↵̄3

s required here is re-
produced in the Supplemental Material for convenience.
In eq. (20) we have also introduced the standard color
insertion operators Ta

i , which only act on the i-th exter-
nal color index. In particular, in our case their action on
{Ci} is defined as Ta

i T
bi = �ifabiciT ci = [T bi , T a].

The quadrupole contribution �4 in eq. (19) accounts
instead for the exchange of color charge among (up to)
four external legs. It becomes relevant for the first time

at three loops, �4 =
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with C = ⇣5 + 2⇣2⇣3. The functions D1(x) and D2(x) in
our notation are reported in the Supplemental Material.

We verified that the IR singularities of our three-loop
amplitudes match perfectly those generated by eqs. (17)-
(21), which provides a highly non-trivial check of our
results. Our results for the finite remainder H�, fin are
relatively compact, but still too long to be presented
here. They are included in computer-readable format
in the ancillary files accompanying the arXiv submission
of this manuscript. In fig. 1, we plot our results for the
interference with the tree level, defined as

hH(0)|H(L)i ⌘ N
6X

i,j=1

C†
i Cj

X

�

H[i],(0)⇤

� H[j],(L)
�,fin , (22)

where N = 1/[2(N2
c � 1)]2 is the initial-state color and

helicity averaging factor and the polarization sum runs
over all the 16 helicity configurations. Further, we have
set µ2 = s, ↵s = 0.118, Nc = 3 and nf = 5.

HIGH ENERGY LIMIT AND THE GLUON
REGGE TRAJECTORY

QFT scattering amplitudes exhibit interesting factori-
sation properties in the high energy (Regge) limit. In

Figure 1: Tree level amplitude squared and interferences of
tree level with L = 1, 2, 3 loop amplitudes in dependence of
x = �t/s.

terms of the variables introduced in this letter, this limit
corresponds to |s| ⇡ |u| � |t|, or equivalently x ! 0.
For studying this region it is convenient to split scatter-
ing amplitudes into parts of definite signature under the
s $ u exchange:

Hren,± =
1

2
[Hren(s, u)±Hren(u, s)] . (23)

It is then useful to define the signature-even combination
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and the color operators

T2
s = (T1+T2)a(T1+T2)a, T2

t = (T1+T3)a(T1+T3)a,

T2
u = (T1+T4)a(T1+T4)a, T2

s�u = 1
2 (T

2
s �T2

u). (25)

At leading power in x and up to the next-to-leading
logarithmic (NLL) accuracy, i.e. up to terms of the form
↵̄i
sL

i�1, the odd amplitude has a simple factorized struc-
ture. Indeed, to all orders in the strong coupling, Hren,�
can be thought of as the amplitude for the exchange
of a single “reggeized” t-channel gluon, whose interac-
tion with the external high-energy gluons is described
by so-called impact factors [12, 66–69]. In the language
of complex angular momentum [70], this single-particle
exchange is usually referred to as the “Regge-pole” con-
tribution.
Starting from next-to-next-to-leading logarithmic

(NNLL) accuracy (i.e. from terms of the form ↵̄i
sL

i�2),
this simple factorisation is broken and one needs to ac-
count for multiple Reggeons exchanges [16, 69, 71–76].
These are usually referred to as the “Regge-cut” contri-
butions. For the signature-even amplitude, the Regge cut
contribution already enters at the first non-trivial loga-
rithmic order (NLL). The presence of Regge cuts greatly
increases the complexity of an all-order analysis. How-
ever, if one restricts oneself to fixed order and only con-
siders the first non-trivial cut contribution (i.e. one works

( or  )x = t/s → 0
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Verified all-order structures in Regge kinematics 

HIGH ENERGY LIMIT (REGGE FACTORIZATION)

To test Regge factorisation at this order last needed ingredient was the gluon Regge trajectory at 
3 loops, can be extracted from any three-loop process. We found agreement between  and 

: this allows us to predict  3loop amplitude to NNLL accuracy! 


We verified this prediction to be correct by comparing to a successive explicit calculation
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At leading power in x and up to the next-to-leading
logarithmic (NLL) accuracy, i.e. up to terms of the form
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i�1, the odd amplitude has a simple factorized struc-
ture. Indeed, to all orders in the strong coupling, Hren,�
can be thought of as the amplitude for the exchange
of a single “reggeized” t-channel gluon, whose interac-
tion with the external high-energy gluons is described
by so-called impact factors [12, 66–69]. In the language
of complex angular momentum [70], this single-particle
exchange is usually referred to as the “Regge-pole” con-
tribution.
Starting from next-to-next-to-leading logarithmic

(NNLL) accuracy (i.e. from terms of the form ↵̄i
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i�2),
this simple factorisation is broken and one needs to ac-
count for multiple Reggeons exchanges [16, 69, 71–76].
These are usually referred to as the “Regge-cut” contri-
butions. For the signature-even amplitude, the Regge cut
contribution already enters at the first non-trivial loga-
rithmic order (NLL). The presence of Regge cuts greatly
increases the complexity of an all-order analysis. How-
ever, if one restricts oneself to fixed order and only con-
siders the first non-trivial cut contribution (i.e. one works
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exchanges of “Reggeons” (multiple exchanges give rise to Regge cut contributions)
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CONCLUSIONS

Exploring QCD amplitudes at high loops we learn about physics and mathematics


1. All-order results in high-energy / Regge kinematics (beyond basic BFKL)


2. Structure of IR singularities in non-abelian QFTs


3. New ways to organise amplitudes in dim-regularisation


4. New geometries in pQFT (CY and higher genus) (didn’t talk about this here)


5. … and much more …

Recent developments have allowed us to push investigations up to 3 loops for 
complete QCD  amplitudes — and beyond for simpler building blocks —2 → 2

Multiloop amplitudes are essential for pheno, but they are also a lot of fun!

Exciting times ahead!
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