EFT Matching with Functional Methods

Anders Eller Thomsen

Based on work with J. Fuentes-Martín, M. König, J. Pagès, and F. Wilsch

b

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS Zurich Phenomenology Workshop 11–13 January 2023

Matching EFTs

The why and the how of it

EFT matching

EFTs are used to interpret experiments and quantify observations

$$\mathcal{L}_{\text{EFT}}(\eta_{\text{L}}) = \mathcal{L}^{d=4}(\eta_{\text{L}}) + \sum_{n=5}^{\infty} \frac{C_{n,i}}{\Lambda^{n-4}} \mathcal{O}_{n,i}(\eta_{\text{L}}) \quad \longrightarrow \quad \text{UV physics}$$

EFT matching

EFTs are used to interpret experiments and quantify observations

$$\mathcal{L}_{\text{\tiny EFT}}(\eta_{\text{\tiny L}}) = \mathcal{L}^{d=4}(\eta_{\text{\tiny L}}) + \sum_{n=5}^{\infty} \frac{C_{n,i}}{\Lambda^{n-4}} \mathcal{O}_{n,i}(\eta_{\text{\tiny L}}) \quad \longrightarrow \quad \text{UV physics}$$

NP models have to be analyzed one by one

$$\mathcal{L}_{\scriptscriptstyle {
m UV}}(\eta_{\sf H},\,\eta_{\sf L}) \quad \stackrel{{
m Matching}}{\longrightarrow} \quad \mathcal{L}_{\scriptscriptstyle {
m EFT}}(\eta_{\sf L})$$

EFT matching

EFTs are used to interpret experiments and quantify observations

$$\mathcal{L}_{\text{EFT}}(\eta_{\text{L}}) = \mathcal{L}^{d=4}(\eta_{\text{L}}) + \sum_{n=5}^{\infty} \frac{C_{n,i}}{\Lambda^{n-4}} \mathcal{O}_{n,i}(\eta_{\text{L}}) \quad \longrightarrow \quad \text{UV physics}$$

NP models have to be analyzed one by one

$$\mathcal{L}_{\scriptscriptstyle {
m UV}}(\eta_{
m H},\,\eta_{
m L}) \quad \stackrel{
m Matching}{\longrightarrow} \quad \mathcal{L}_{\scriptscriptstyle {
m EFT}}(\eta_{
m L})$$

Loop-level matching is required for many processes, e.g., in the SM

Included in codes wilson and DsixTools Aebischer, Kumar, Straub [1804.05033]

Cellis *et al.* [1704.04504 Fuentes-Martín *et al.* [2010.16341

 \mathcal{L}_{EFT} should reproduce the physics of \mathcal{L}_{uv} at energies $E \ll \Lambda$:

$$\mathcal{L}_{\text{EFT}}(\eta_{\text{L}}) = \mathcal{L}_{\text{kin}}(\eta_{\text{L}}) + \sum_{n=2}^{\infty} \sum_{\ell=0}^{\infty} \frac{C_{n,i}^{(\ell)}}{(4\pi)^{2\ell} \Lambda^{n-4}} \mathcal{O}_{n,i}^{(\ell)}(\eta_{\text{L}})$$

 \mathcal{L}_{EFT} should reproduce the physics of \mathcal{L}_{UV} at energies $E \ll \Lambda$:

$$\mathcal{L}_{\text{EFT}}(\eta_{\text{L}}) = \mathcal{L}_{\text{kin}}(\eta_{\text{L}}) + \sum_{n=2}^{\infty} \sum_{\ell=0}^{\infty} \frac{C_{n,i}^{(\ell)}}{(4\pi)^{2\ell} \Lambda^{n-4}} \mathcal{O}_{n,i}^{(\ell)}(\eta_{\text{L}})$$

 \mathcal{L}_{EFT} should reproduce the physics of \mathcal{L}_{UV} at energies $E \ll \Lambda$:

$$\mathcal{L}_{\text{EFT}}(\eta_{\text{L}}) = \mathcal{L}_{\text{kin}}(\eta_{\text{L}}) + \sum_{n=2}^{\infty} \sum_{\ell=0}^{\infty} \frac{C_{n,i}^{(\ell)}}{(4\pi)^{2\ell} \Lambda^{n-4}} \mathcal{O}_{n,i}^{(\ell)}(\eta_{\text{L}})$$

Advantages of functional matching:

- Does not require knowledge of EFT basis
- Well-suited for algorithmic approach
- Computations are manifestly gauge covariant

Separation of scales

Mixed (heavy-light) loop example:

Separation of scales

Mixed (heavy-light) loop example:

Expansion by regions allows for separating scales in dimensional regularization: Beneke, Smirnov [hep-ph/9711391]; Jantzen [1111.2589]

Separation of scales

Mixed (heavy-light) loop example:

Γ⁽¹⁾_{UV}|_{soft}: long-distance contributions included in 1-loop matrix elements of tree-level EFT operators

$$\left. \Gamma_{\rm UV}^{(1)} \right|_{\rm soft} = \Gamma_{\rm eft}^{(1)}$$

• $\Gamma_{UV}^{(1)}|_{hard}$: short-distance contributions going into the EFT operators

Fuentes et al. [1607.02142]

$$d^d x \mathcal{L}_{\scriptscriptstyle \mathsf{EFT}}^{\scriptscriptstyle (1)} = \left. \Gamma_{\scriptscriptstyle \mathsf{UV}}^{\scriptscriptstyle (1)} \right|_{\sf hard}$$

Functional matching (abridged)

The theory is expanded around the classical fields, $\hat{\eta}$:

$$\mathcal{L}_{\text{uv}}[\eta + \hat{\eta}] = \mathcal{L}_{\text{uv}}[\hat{\eta}] + \eta_i \frac{\delta \mathcal{L}_{\text{uv}}}{\overbrace{}}[\hat{\eta}] + \frac{1}{2} \eta_i \eta_j \frac{\delta^2 \mathcal{L}_{\text{uv}}}{\overbrace{}}[\hat{\eta}] + \dots$$
classical piece
$$EOM \to 0$$
fluctuation operator $\mathcal{Q}_{ij}[\hat{\eta}]$

Functional matching (abridged)

The theory is expanded around the classical fields, $\hat{\eta}$:

$$\mathcal{L}_{\text{uv}}[\eta + \hat{\eta}] = \mathcal{L}_{\text{uv}}[\hat{\eta}] + \eta_i \frac{\delta \mathcal{L}_{\text{uv}}}{\overbrace{\qquad}}[\hat{\eta}] + \frac{1}{2} \eta_i \eta_j \frac{\delta^2 \mathcal{L}_{\text{uv}}}{\overbrace{\qquad}}[\hat{\eta}] + \dots$$
classical piece
$$\underset{\text{EOM} \to 0}{\text{Fluctuation operator }} \mathcal{Q}_{ij}[\hat{\eta}]$$

By saddle point approximation, the effective action is

$$e^{i\Gamma_{UV}[\hat{\eta}]} = e^{iS_{UV}[\hat{\eta}]} \int \mathcal{D}\eta \exp\left(i\int d^{d}x \frac{1}{2}\eta_{i}\mathcal{Q}_{ij}[\hat{\eta}]\eta_{j} + \dots\right)$$
$$\implies \Gamma_{UV}[\hat{\eta}] = S_{UV}[\hat{\eta}] + \frac{i}{2}STr\log\mathcal{Q}[\hat{\eta}] + \dots$$

Functional matching (abridged)

The theory is expanded around the classical fields, $\hat{\eta}$:

$$\mathcal{L}_{\text{uv}}[\eta + \hat{\eta}] = \mathcal{L}_{\text{uv}}[\hat{\eta}] + \eta_i \frac{\delta \mathcal{L}_{\text{uv}}}{\overbrace{\qquad}}[\hat{\eta}] + \frac{1}{2} \eta_i \eta_j \frac{\delta^2 \mathcal{L}_{\text{uv}}}{\overbrace{\qquad}}[\hat{\eta}] + \dots$$
classical piece
$$\underset{\text{EOM} \to 0}{\text{Fluctuation operator }} \mathcal{Q}_{ij}[\hat{\eta}]$$

By saddle point approximation, the effective action is

$$e^{i\Gamma_{UV}[\hat{\eta}]} = e^{iS_{UV}[\hat{\eta}]} \int \mathcal{D}\eta \exp\left(i\int d^d x \frac{1}{2}\eta_i \mathcal{Q}_{ij}[\hat{\eta}]\eta_j + \dots\right)$$
$$\implies \Gamma_{UV}[\hat{\eta}] = S_{UV}[\hat{\eta}] + \frac{i}{2}STr\log \mathcal{Q}[\hat{\eta}] + \dots$$

In matching the STr can be expanded around the heavy scale Λ

$$Q = \Delta^{-1}(P, M) - X(P, \hat{\eta}), \qquad \Lambda^2 \sim \Delta^{-1} \gg X$$

The master formula for 1-loop matching:

Cohen, Lu, Zhang [2011.02484]

$$\int d^{d}x \ \mathcal{L}_{EFT}^{(1)} = \frac{i}{2} \operatorname{STr} \left[\ln \Delta^{-1} \right|_{\text{hard}} - \frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{STr} \left[(\Delta X)^{n} \right] \right|_{\text{hard}}$$
Loop integrals evaluated covariantly with CDE

EFT Matching

To make your way through the BSM jungle

Automated EFT matching

- Matchete v0.1 is a Mathematica package
- Matching of any model with heavy scalars/fermions
- Simple and intuitive input/output
- Handles all group theory
- Simplifies to EFT basis*

Automated EFT matching

- Matchete v0.1 is a Mathematica package
- Matching of any model with heavy scalars/fermions
- Simple and intuitive input/output
- Handles all group theory
- Simplifies to EFT basis*

Future plans:

- Handling of evanescent contribution
- Symmetry breaking and heavy vectors
- Interface with FFT tool chain
- 1-loop RG computations

Simplification and basis reduction

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_{\mu}\phi)^2$$

Simplification and basis reduction

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{24} \phi^{4} + \frac{C_{1}}{\Lambda^{2}} \phi^{6} + \frac{C_{2}}{\Lambda^{2}} \phi^{3} \partial^{2} \phi + \frac{C_{3}}{\Lambda^{2}} \phi^{2} (\partial_{\mu} \phi)^{2}$$

Exact simplification (linear):

IBP, Dirac identities, group identities, commutation relations...

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{24} \phi^4 + \frac{C_1}{\Lambda^2} \phi^6 + \frac{3C_2 - C_3}{3\Lambda^2} \phi^3 \partial^2 \phi$$

Simplification and basis reduction

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{24} \phi^{4} + \frac{C_{1}}{\Lambda^{2}} \phi^{6} + \frac{C_{2}}{\Lambda^{2}} \phi^{3} \partial^{2} \phi + \frac{C_{3}}{\Lambda^{2}} \phi^{2} (\partial_{\mu} \phi)^{2}$$

Exact simplification (linear):

IBP, Dirac identities, group identities, commutation relations...

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{24} \phi^4 + \frac{C_1}{\Lambda^2} \phi^6 + \frac{3C_2 - C_3}{3\Lambda^2} \phi^3 \partial^2 \phi$$

On-shell equivalence (non-linear):

Field redefinition:
$$\phi \longrightarrow \phi + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3$$

$$\mathcal{L} \longrightarrow \frac{1}{2}(\partial_\mu \phi)^2 - \frac{1}{2}m^2\phi^2 - \left(\frac{\lambda}{24} + \frac{(3C_2 - C_3)m^2}{3\Lambda^2}\right)\phi^4 + \frac{18C_1 - \lambda(3C_2 - C_3)}{18\Lambda^2}\phi^6$$

Matchete contains routines performing both kinds of simplifications

Example: SM + Vector-like lepton

	Setup
	SM Lagrangian
In[3]:=	LSM = LoadModel["SM"];
	Define new field
In[4]:=	DefineField[EE, Fermion, Charges → {U1Y[-1]}, Mass → {Heavy, ME}]
	Define new coupling
In[5]:=	DefineCoupling[yE, EFT0rder → 0, Indices → {Flavor}]
	Write interactions
In[6]:=	<pre>Lint = -yE[p] × Bar@l[i, p] ** PR ** EE[] ×H[i] // PlusHc; Lint // NiceForm *#come</pre>
a.[7];7714	$-\overline{y}E^{p}H_{1}\left(EE \cdot P_{L} \cdot L^{1p}\right) - yE^{p}H^{1}\left(T_{1}^{p} \cdot P_{R} \cdot EE\right)$
	Define full UV Lagrangian
In[8]:=	LUV = LSM + FreeLag[EE] + Lint; LUV // NiceForm
ut(a)//Ni	$\begin{split} &-\frac{1}{4} B^{\mu\nu2} - \frac{1}{4} G^{\mu\nu2} - \frac{1}{4} W^{\mu\nu12} + D_{\mu}H_1 D_{\mu}H^1 + \mu^2 H_1 H^1 + i \left(\vec{q}_{\mathfrak{s}}^{0} \cdot \gamma_{\mu} P_{\mathfrak{k}} \cdot D_{\mu} d^{\mathfrak{s}\mathfrak{p}} \right) + i \left(e^{\mathfrak{p}} \cdot \gamma_{\mu} P_{\mathfrak{k}} \cdot D_{\mu} e^{\mathfrak{p}} \right) \\ &+ i \left(EE \cdot \gamma_{\mu} \cdot D_{\mu} EE \right) - ME \left(EE \cdot EE \right) + i \left(1_{1}^{\mu} \cdot \gamma_{\mu} P_{\mathfrak{k}} \cdot D_{\mu} 1_{2}^{\mu} \right) + i \left(\mathbf{q}_{\mathfrak{s}}^{\mathfrak{p}} \cdot \gamma_{\mu} P_{\mathfrak{k}} \cdot D_{\mu} \mathbf{q}^{\mathfrak{s}\mathfrak{p}} \right) + i \left(\mathbf{q}_{\mathfrak{s}}^{\mathfrak{p}} \cdot \gamma_{\mu} P_{\mathfrak{k}} \cdot D_{\mu} \mathbf{q}^{\mathfrak{s}\mathfrak{p}} \right) \\ &- \frac{1}{2} \lambda H_{\mathfrak{s}} H_{\mathfrak{s}}^{\mathfrak{s}} H_{\mathfrak{s}}^{\mathfrak{s}} - H_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}} \cdot Q_{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} - V_{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} - V_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} - V_{\mathfrak{s}}^{\mathfrak{s}} C_{\mathfrak{s}}^{\mathfrak{s}} C^{\mathfrak{s}} \mathsf$

Anders Eller Thomsen (U. Bern)

8

Example: SM + Vector-like lepton

Example: SM + Vector-like lepton

Anders Eller Thomsen (U. Bern)

Evanescent Operators

Why can't QFT just play nice?

EFT from a 2HDM

Example: take SM + leptophilic Higgs, $\Phi \sim (1,~2)_{1/2}$:

$$\mathcal{L} \supset \mathcal{L}_{SM} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \overline{\ell}_{p} \Phi e_{r} + h.c. \right) + \dots$$

EFT from a 2HDM

Example: take SM + leptophilic Higgs, $\Phi \sim (1,~2)_{1/2}$:

 $\mathcal{L} \supset \mathcal{L}_{\text{SM}} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \overline{\ell}_{p} \Phi e_r + \text{h.c.} \right) + \dots$

EFT from a 2HDM

Example: take SM + leptophilic Higgs, $\Phi \sim (\mathbf{1}, \mathbf{2})_{1/2}$:

 $\mathcal{L} \supset \mathcal{L}_{\text{SM}} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \bar{\ell}_{p} \Phi e_{r} + \text{h.c.} \right) + \dots$

Below the scale $M_{\Phi} \gg v_{\scriptscriptstyle {\rm EW}}$

$$\mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst}$$

But the tree-level operator $R_{\ell e}$ is not part of the Warsaw basis

Changing basis in an EFT

In 4D, $\mathcal{L}_{\mbox{\tiny EFT}} = \widetilde{\mathcal{L}}_{\mbox{\tiny EFT}}$, where

$$\begin{split} \mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} \\ \widetilde{\mathcal{L}}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} \end{split}$$

$$\begin{aligned} R_{\ell e}^{prst} &= (\bar{\ell}_p e_r)(\bar{e}_s \ell_t) \\ Q_{\ell e}^{prst} &= (\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r) \end{aligned}$$

Changing basis in an EFT

In 4D, $\mathcal{L}_{\mbox{\tiny EFT}} = \widetilde{\mathcal{L}}_{\mbox{\tiny EFT}}$, where

$$\begin{aligned} \mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} & R_{\ell e}^{prst} = (\bar{\ell}_{\rho} e_{r})(\bar{e}_{s} \ell_{t}) \\ \tilde{\mathcal{L}}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} & Q_{\ell e}^{prst} & Q_{\ell e}^{prst} = (\bar{\ell}_{\rho} \gamma_{\mu} \ell_{t})(\bar{e}_{s} \gamma^{\mu} e_{r}) \end{aligned}$$

But the 1-loop EFT amplitudes are different!

$$i\left(\mathcal{A}_{eH\to\ell W}-\widetilde{\mathcal{A}}_{eH\to\ell W}\right)=\frac{g_2}{64\pi^2}\left[C_{\ell e}\right]^{prst}y_e^{ts}\left(\bar{u}\tau^{\prime}\sigma_{\mu\nu}P_R u\right)q^{\mu}\varepsilon^{*\nu}$$

Changing basis in an EFT

In 4D, $\mathcal{L}_{\mbox{\tiny EFT}} = \widetilde{\mathcal{L}}_{\mbox{\tiny EFT}}$, where

$$\begin{aligned} \mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} & R_{\ell e}^{prst} = (\bar{\ell}_{\rho} e_{r})(\bar{e}_{s} \ell_{t}) \\ \tilde{\mathcal{L}}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} & Q_{\ell e}^{prst} & Q_{\ell e}^{prst} = (\bar{\ell}_{\rho} \gamma_{\mu} \ell_{t})(\bar{e}_{s} \gamma^{\mu} e_{r}) \end{aligned}$$

But the 1-loop EFT amplitudes are different!

$$i\left(\mathcal{A}_{eH\to\ell W}-\widetilde{\mathcal{A}}_{eH\to\ell W}\right)=\frac{g_2}{64\pi^2}\left[C_{\ell e}\right]^{prst}y_e^{ts}\left(\bar{u}\tau^{\prime}\sigma_{\mu\nu}P_R u\right)q^{\mu}\varepsilon^{*\nu}$$

In $d \neq 4$, there is an *evanescent operator*:

$$R_{\ell e}^{prst} = -\frac{1}{2}Q_{\ell e}^{ptsr} + E_{\ell e}^{prst}, \qquad E_{\ell e}^{prst} \xrightarrow{d \to 4} 0$$

An evanescent operator E is an operator satisfying

$$E = \operatorname{rank}(\epsilon) \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

An evanescent operator E is an operator satisfying

1

$$\Xi = \operatorname{rank}(\epsilon) \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

The physical contributions from evanescent operators are *finite and local*

An evanescent operator E is an operator satisfying

1

$$\Xi = \operatorname{rank}(\epsilon) \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

The physical contributions from evanescent operators are finite and local

e.g., in the 2HDM example

$$E_{\ell e}^{prst} \longrightarrow -\frac{g_L y_e^{ts}}{128\pi^2} Q_{eW}^{pr} + [\text{many other contributions}]$$

Reduction of Dirac structures for 4-fermion operators, e.g., Compatibility with NDR

$$(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}P_{L})\otimes[\gamma_{\lambda}\gamma_{\nu}\gamma_{\mu}P_{L}]=4(1-2\epsilon)^{\prime}(\gamma^{\mu}P_{L})\otimes[\gamma_{\mu}P_{L}]+E_{LL}^{[3]}$$

Fierz identities for 4-fermion operators, e.g.,

$$(P_{\mathsf{R}}) \otimes [P_{\mathsf{L}}] = -\frac{1}{2}(\gamma_{\mu}P_{\mathsf{L}}] \otimes [\gamma_{\mu}P_{\mathsf{R}}) + E_{\mathsf{Fierz}}(P_{\mathsf{R}}, P_{\mathsf{L}})$$

Reduction of Dirac structures for 4-fermion operators, e.g., Compatibility with NDR

$$(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}P_{L})\otimes[\gamma_{\lambda}\gamma_{\nu}\gamma_{\mu}P_{L}]=4(1-2\epsilon)^{\prime}(\gamma^{\mu}P_{L})\otimes[\gamma_{\mu}P_{L}]+E_{LL}^{[3]}$$

Fierz identities for 4-fermion operators, e.g.,

$$(P_{\mathsf{R}}) \otimes [P_{\mathsf{L}}] = -\frac{1}{2}(\gamma_{\mu}P_{\mathsf{L}}] \otimes [\gamma_{\mu}P_{\mathsf{R}}) + E_{\mathsf{Fierz}}(P_{\mathsf{R}}, P_{\mathsf{L}})$$

Choosing a set of identities allows for defining the *physical projector* \mathcal{P} :

$$O_d = \mathcal{P} O_d + \mathcal{E}_{\mathcal{P}} O_d$$
phys. part ev. part

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\Gamma}(g, \eta).$$

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\Gamma}(g, \eta).$$

Scheme		MS
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_a=g_a+\delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$
Eff. action $\mathcal{P}\Gamma$		$\int_{X} \overline{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\overline{\Gamma}}(g, \eta).$$

Scheme		MS	Compensated
ion	\mathcal{P} : O^a	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^i	$ar{\eta}_i = \eta_i + \delta \eta_i$	$\delta \eta_i + \left\lfloor \underline{\eta}_i \right\rfloor$
Eff. action $\mathcal{P}\Gamma$		$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_x (ar{g}_a + \Delta g_a) O^a \ + \mathcal{P}\overline{\Gamma}(g,\eta) - \int_x \Delta g_a O^a$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{\bar{a}}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g,\eta).$$

Scheme		MS	Compensated
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \underline{\eta}_i \right\rfloor$
Eff. action $\mathcal{P}\Gamma$		$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_x (ar{g}_a + \Delta g_a) O^a \ + \mathcal{P}\overline{\Gamma}(g,\eta) - \int_x \Delta g_a O^a$

The evanescent contribution is defined by

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)\right]$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{\bar{a}}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g,\eta).$$

Scheme		MS	Compensated
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \underline{\eta}_i \right\rfloor$
Ef P	f. action F	$\int_{X} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g,\eta)$	$\int_{x} (\bar{g}_{a} + \Delta g_{a}) O^{a} + \mathcal{P} \overline{\Gamma}(g, 0)$

The evanescent contribution is defined by

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)\right]$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\Gamma}(g, \eta).$$

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\Gamma}(g, \eta).$$

Scheme		MS	Compensated	Subtracted
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$	$ar{g}_a + \Delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^i	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \underline{\eta}_i \right\rfloor$	$\delta\eta_i$
${\sf Ef} {\cal P}$	Γ. action Γ	$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} \ + \mathcal{P}\overline{\Gamma}(g,0)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} + \mathcal{P}\overline{\Gamma}(g, 0)$

The evanescent contribution is defined by

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)\right]$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g,\eta).$$

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g,\eta).$$

Scheme		MS	Compensated	Subtracted
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$	$ar{g}_a + \Delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^i	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \underline{\eta}_i \right\rfloor$	$\delta\eta_i$
${\sf Ef} {\cal P}$	Γ. action Γ	$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} \ + \mathcal{P}\overline{\Gamma}(g,0)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} + \mathcal{P}\overline{\Gamma}(g, 0)$

The evanescent contribution is defined by

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)\right]$$

Handling evanescent contributions means computing Δg

$$\mathcal{E}\left(\begin{array}{c} O \\ \bullet \end{array} \right) \sim \frac{1}{\epsilon} \begin{array}{c} E \\ \bullet \end{array} \implies \delta\eta(g) \neq 0$$

16

Application in the SMEFT

Tree-level BSM matching to the SMEFT can produce 49 different, redundant four-fermion operators, which will result in non-trivial evanescent contribution at 1-loop order, e.g.,

$$R_{\ell e} = (\bar{\ell} e)(\bar{e}\ell) \qquad R_{qu}^{(8)} = (\bar{q}T^{A}u)(\bar{u}T^{a}q) \qquad R_{u^{c}elq^{c}} = (\bar{u}^{c}e)(\bar{l}q^{c})$$

Application in the SMEFT

Tree-level BSM matching to the SMEFT can produce 49 different, redundant four-fermion operators, which will result in non-trivial evanescent contribution at 1-loop order, e.g.,

$$R_{\ell e} = (\bar{\ell} e)(\bar{e}\ell) \qquad R_{qu}^{(8)} = (\bar{q}T^{A}u)(\bar{u}T^{a}q) \qquad R_{u^{c}elq^{c}} = (\bar{u}^{c}e)(\bar{l}q^{c})$$

For dimension-6 SMEFT, evanescent operators contribute through 6 covariant trace topologies

Fuentes-Martín, König, Pagès, AET, Wilsch [2211.09144]

Filter: Redundant SMEFT All

 $\begin{array}{c} R_{eval}^{pred} \; R_{eu}^{pred} \; R_{eu}^{pred} \; R_{qu}^{pred} \; R_{q$

Operator definition:

 $R^{prst}_{\ell q d e} = (\bar{\ell}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu e_t)$

Reduces to:

$$\begin{array}{l} Q_{\ell \ell d}^{pred}, \quad Q_{\ell d}^{(1)pred}, \quad Q_{d}^{pr}, \quad Q_{d}^{pr}, \quad Q_{d}^{pr}, \quad Q_{d}^{pr}, \quad Q_{d}^{pr}, \quad Q_{ed}^{pr}, \quad Q_{ed}^$$

Reduction Identity:

$$\begin{split} R^{prede}_{pede} &= -2Q^{pter}_{ctad} + \frac{1}{16\pi^2} \left(\frac{1}{6} \overline{y}^{gt}} y^{ut}_{du} Q^{ut}_{qd} p^{ut}_{du} + \frac{1}{4} g_Y y^{ut}_{du} Q^{pt}_{dd} \right. \\ &+ \frac{3}{4} g_Y \overline{y}^{gt}_{du} \overline{Q}^{tt}_{dd} + Q^{et}_{etf} \left(6 \overline{y}^{ut}_{du} y^{ut}_{du} y^{ut}_{du} - 3 \lambda y^{ut}_{du} \right) \\ &+ Q^{(t)ptee}_{teque} \left(\frac{3}{4} y^{ut}_{du} y^{ut}_{du} + 3 y^{tt}_{du} y^{ut}_{du} \right) + \overline{y}^{dt}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} \right. \\ &+ \frac{3}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{tt}_{ete} + 2 \overline{y}^{gt}_{du} y^{ut}_{du} Q^{tt}_{du} - \frac{1}{16} \overline{y}^{ut}_{du} y^{ut}_{u} Q^{(t)ptee}_{teque} \\ &- \frac{1}{4} g_{tt} \overline{y}^{dt}_{dt} Q^{tt}_{du} - \frac{1}{4} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} - \frac{1}{4} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{teque} \\ &- \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{tt}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} - \frac{1}{4} g^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} \\ &- \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)mee}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{(t)mee}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} - \frac{1}{4} g^{ut}_{du} Y^{ut}_{du} Q^{(t)ptee}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{(t)mee}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{(t)ptee}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} - \frac{1}{2} \overline{y}^{ut}_{du} y^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} - \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} - \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} - \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} - \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} \\ &- \overline{y}^{gt}_{du} y^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} Q^{ut}_{du} \\$$

> TeX

- (Automatic) EFT matching is crucial to BSM phenomenology
- Functional matching is ideal for automated matching
- One must carefully account for evanescent operators in computations
- Matchete is a public code for EFT matching. It already greatly simplifies the matching task and many more features are planned!

https://gitlab.com/matchete/matchete

Backup

Expansion by regions: an example

Find the result of a multi-scale integral as a series in $m^2/M^2 \ll 1$:

$$\int_{a}^{b} = \int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \frac{1}{\ell^{2} - m^{2}} \frac{1}{\ell^{2} - M^{2}} = \frac{i}{16\pi^{2}} \left(\frac{1}{\epsilon} + 1 + \log \frac{\bar{\mu}^{2}}{M^{2}} + \frac{m^{2}}{M^{2}} \log \frac{m^{2}}{M^{2}} \right)$$

$$I_{h} = \int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \frac{1}{\ell^{2}} \left(1 + \frac{m^{2}}{\ell^{2}} + \dots \right) \frac{1}{\ell^{2} - M^{2}} = \frac{i}{16\pi^{2}} \frac{m^{2} + M^{2}}{M^{2}} \left(\frac{1}{\epsilon} + 1 + \log \frac{\bar{\mu}^{2}}{M^{2}} \right)$$

$$I_{s} = \int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \frac{1}{\ell^{2} - m^{2}} \frac{-1}{M^{2}} \left(1 - \frac{\ell^{2}}{M^{2}} + \dots \right) = \frac{-i}{16\pi^{2}} \frac{m^{2}}{M^{2}} \left(\frac{1}{\epsilon} + 1 + \log \frac{\bar{\mu}^{2}}{m^{2}} \right)$$

In dimensional regularization, integrals equal the sum of their *hard* and *soft* parts Beneke, Smirnov [hep-ph/9711391]; Jantzen [1111.2589]

$$I = I_h + I_s$$

Matchete demonstration (SM implementation)

Gauge Groups

```
DefineGaugeGroup[U3c, SU@3, gs, G,
FundAlphabet→CharacterRange["a", "f"],
AdjAlphabet→CharacterRange["a", "F"]]
DefineGaugeGroup[SU2L, SU@2, gt, W,
FundAlphabet→CharacterRange["i", "n"],
AdjAlphabet→CharacterRange["i", "N"]]
DefineGaugeGroup[U1Y, U@1, gY, B]
```

Generation index

```
DefineFlavorIndex[Flavor, 3,
IndexAlphabet → ("p", "r", "s", "t", "u", "v")]
```

Fermions

```
DefineField[q, Fermion,

Indices → (SU3ce fund, SU2Le fund, Flavor),

Charges → (UlY[1/6]),

Chiral → LeftHanded,

Mass → 0]

DefineField[u, Fermion,

Indices → (SU3ce fund, Flavor),

Charges → (UlY[2/3]),

Chiral – RightHanded,

Mass → 0]

DefineField[d, Fermion,

Indices → (SU3ce fund, Flavor),

Charges → (UlY[-1/3]),

Chiral – RightHanded,

Mass → 0]
```

```
DefineField[l, Fermion,
Indices → (UJY[-1/2]),
Charges → (UJY[-1/2]),
Chiral → LeftHanded,
Mass → 0]
DefineField[e, Fermion,
Indices → (FLavor),
Charges → (UIY[-1]),
Chiral → RightHanded,
Mass → 0]
```

Higgs

```
DefineField[H, Scalar,
   Indices → {SU2L@fund},
   Charges → {U1Y[1/2]},
   Mass → 0]
```

Couplings

```
DefineCoupling[A, SelfConjugate → True]

DefineCoupling[µ, SelfConjugate → True,

EFTorder - 1];

DefineCoupling[Ye,

Indices → (Flavor, Flavor)]

DefineCoupling[Yu,

Indices → (Flavor, Flavor)]

DefineCoupling[Yd,

Indices → (Flavor, Flavor)]
```

Lagrangian

```
LSM = FreeLag[] +

-µ[]<sup>2</sup> BareH[i]×H[i] -

λ[i] BareH[i]×H[i]×BareH[j]×H[j] +

PlusHc[

-Yu[p, r]×CG[epseSU2L, (i, j)]×

BareHei×Bareq[a, j, p] ++ u[a, r]

-Yd[p, r]×Hei×Bareq[a, i, p] ++ d[a, r]

-Yd[p, r]×Hei×Bareq[i, p] ++ e[r]

] // ReLabeLIndices;
```

LSM // NiceForm

```
 \begin{split} & -\frac{1}{4}\,B^{\mu\nu\,2}\,-\,\frac{1}{4}\,G^{\mu\nu\,A2}\,-\,\frac{1}{4}\,W^{\mu\nu\,I2}\,+\,D_{\mu}\,H_{1}\,D_{\mu}\,H_{1}^{1}\,-\\ & \mu^{2}\,H_{1}\,H_{1}^{1}\,+\,i\,\left(\overline{d}_{\mu}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,d^{p}\right)\,+\,i\,\left(\overline{d}_{\mu}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,e^{p}\right)\,+\\ & i\,\left(\overline{t}_{1}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,u^{ap}\right)\,-\,\frac{1}{2}\,\lambda\,H_{1}\,H_{2}\,H_{1}^{1}\,-\\ & \overline{t}\,G_{\mu}^{0P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\right)\,-\,\frac{1}{2}\,\lambda\,H_{1}\,H_{2}\,H_{1}^{1}\,-\\ & \overline{t}\,G_{\mu}^{0P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\right)\,-\,\overline{t}\,G_{\mu}^{0P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\,\right)\,-\\ & \overline{t}\,G_{\mu}^{0P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\,\right)\,-\,\overline{t}\,G_{\mu}^{0P}\,H_{1}^{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\,\right)\,-\\ & \overline{t}\,G_{\mu}^{0P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,Q^{aip}\,\right)\,-\,\overline{t}\,G_{\mu}^{0P}\,H_{1}^{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{L}\,\cdot\,Q^{ajp}\,\right)\,\overline{t}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{L}\,\cdot\,Q^{ajp}\,\right)\,\overline{t}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,G_{\mu}^{0P}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}\,H_{1}^{1}
```