>50Gs/s CMOS ADC, DAC and DSP

- ADC/DAC/DSP applications
- Design tradeoffs
- Single-chip challenges
- CMOS ADC
- CMOS DAC
- Digital noise coupling
- Package and PCB design

- ADC/DAC standard products and test chips
- Future roadmap
>50Gs/s ADC/DAC/DSP applications

- 56Gs/s ADC developed for long-haul optical transport
 - Coherent receivers for 100G systems (CMOS ADC + massive DSP)

- 55-65Gs/s DAC designed for same market
 - Coherent transceivers for 100G systems (ADC + DAC + bigger DSP)

- These are custom ASICs with DSP IP from customers

- Availability of macros has triggered interest in other areas
 - Ultrafast signal acquisition and generation
 - Test & measurement, radar, radio telescope, particle accelerators...

- Standard products needed for fragmented markets
Example ADC/DAC/DSP application – 100G

- Coherent transceiver for 100G long-haul optical transport
 - 4ch 55–65Gs/s 8b RX ADC
 - 4ch 55–65Gs/s 8b TX DAC
 - DSP for RX and TX processing
 - SFI–S interfaces to framer/FEC
What is driving ADC/DAC/DSP design?

- **Power consumption**
 - System power/thermal budget per channel in many applications

- **Cost**
 - Especially for future higher volume systems
 - Mass-production capable solution -- cost down as volumes go up

- **Single-chip CMOS is the “holy grail”**
 - Foundation of the semiconductor industry
 - Continuous process development driven by digital
 - Inherently low-cost in high volumes (“high” is not 10k pieces/year!)
 - Higher functional integration is simple
Why not use multi-chip module (MCM)?

- SiGe can make ADC/DAC design easier
 - But power consumption is higher than CMOS, especially with scaling

- “Can use same ADC/DAC with multiple DSP chips”
 - Since custom DSP is needed anyway, ADC/DAC can easily be added

- Interconnect problem between ADC/DAC and DSP
 - 4ch ADC/DAC → 4Tb/s between chips
 - Silicon interposer MCM makes this technically possible
 - Still has power penalty even with low-power transmission – OK for FPGA 😊

- Barrier to cost reduction
 - Inherently more expensive and lower yield
 - Difficult to leverage into higher-volume or cost-sensitive applications
The good...
- Device speed and power (including ADC/DAC) continually improving
- No multi-terabit chip-to-chip interconnect needed
- Integration of more functions/channels is “free”
- Can add arbitrarily complex calibration at little cost
- High yield and low cost (in high volume)

the bad...
- Very challenging ADC/DAC design in CMOS
- Decreasing supply voltages and increasing device mismatch

and the ugly 😞
- Integrating ultra-low jitter ADC/DAC with massive DSP on same die
So what’s so difficult?

- Power, efficiency, thermal design (chip/package/PCB)
 - ~70W OIF target for 100G transponder ➔ <50W for transceiver
- ADC/DAC design
 - ~60Gs/s in CMOS is “challenging” – but see later...😊
 - Large mismatch and noise for small low-power low-voltage transistors
- DSP
 - ~50TOPS needed for 100G soft-FEC TX and RX processing
 - Massively parallel interconnect problem -- bus widths 4kb or more
- Noise isolation
 - ~100fs ADC/DAC jitter on same die as ~100A DSP current peaks
- Signal integrity
 - Good S11 and bandwidth from PCB through package/chip to ADC/DAC
ADC / DAC design for high-speed systems

Many common design issues for ADC and DAC
- Very high sampling rates, wide bandwidth, low noise
- Low-jitter clock generation and distribution
- Interconnect can be more difficult than circuit design
- Low voltage design with poorly matched small transistors

Use parallel lower-speed circuits with precise MUX/DEMUX
- More power efficient in CMOS (similar reason to DSP)
- High integration levels are no obstacle (hundreds of internal ADC/DAC)

Take advantage of the strengths of CMOS
- If it moves, calibrate it 😊
- Move calibration into digital – an extra million gates is “free”...
CMOS ADC design issues

- Front-end sampler is the most difficult problem
 - Effective sampling pulse width <20ps
- Time interleaving is pretty much essential
 - Allows roadmap to >100Gs/s when required
- How to get accurate matching of multiple paths?
 - Gain, offset, time mismatch ~100fs
 - Need to measure/calibrate in background – how?
- How to get low noise/power and good input matching?
 - Input buffer adds noise/distortion and consumes power
 - Low noise + low voltage \(\Rightarrow \) bigger sampling capacitors and switches
 - But need small input capacitance to preserve S11 and/or keep power down
- Conventional circuits cannot do all this simultaneously
 - Some new technique is needed...
CHAIS 64Gs/s CMOS ADC

CHArge-mode Interleaved Sampler (CHAIS)

16GHz LC VCO (1 per ADC pair)

4-phase clocks

80 x ADC Inputs

80 x 8b ADC Outputs

Input

4 Phase Sampler

Trim Voltages

Calibration

DEMUX

DEMUXa

DEMUXb

DEMUXc

DEMUXd

ADCBANKA

ADCBANKB

ADCBANKC

ADCBANKD

Digital

Output
1024b
500 MHz
ADC circuit blocks

- Sampler/demux using charge-mode signal processing
 - No large voltage swings or gain errors

- 4-way sampling front end
 - Uses 4-phase 16GHz clocks from low-noise LC VCO
 - 50ohm resistive input

- 4-to-320 way demultiplexer
 - “Lossless” steering of charge packets from sampler to ADC array

- 320 8-bit 200Ms/s SAR ADCs
 - Large (~200fF) input capacitors for low noise/good matching
 - Optimised for area and power efficiency, not maximum speed

- Digital background calibration of all analogue circuits
 - For mismatches in offset, gain and time delay (skew)
Dual ADC layout (4x4mm test chip)
Measured ADC performance

- 55-65Gs/s with 8 bit resolution
 - Lower noise floor allows digital EQ/AGC after ADC
- >18GHz bandwidth
 - Closely controlled, can be extended to >20GHz using digital EQ
- Low noise and distortion
 - Small-signal: noise floor <-40dBFS
 - Large signal: THD <-40dBc for 20GHz full-scale input
 - ENOB >5.7 for signals like 100G OFE output (PAR=9dB)
- ENOB flat with input frequency
 - <0.2ENOB variation from 1GHz to 20GHz input signal
 - Total sampling clock jitter ~100fs rms
- Power consumption ~1.5W/ch in 40nm (~6W for RX macro)
 - Scales with process better than typical digital circuits
ADC calibration

- Interleaved paths need accurate delay/gain/offset matching
 - 100fs inter-sample skew generates -40dBc distortion for 16GHz input
- Clock and signal mismatches get worse as process shrinks
 - Smaller gates (for higher speed/lower power) have worse matching
- Can’t take ADC offline to calibrate *(excuse me while I turn the Internet off…)*

- How to measure and correct these errors during operation?
 - Measurement accuracy problem *(Quis custodiet ipsos custodes?)*
 - Algorithm complexity (FFTs at these rates for calibration not desirable)

- CHAIS architecture calibrated by simple output data analysis
 - Average errors calculated digitally in background during operation
 - Analogue trim coefficients calculated to drive trim DACs (>400)
CMOS DAC design issues

- Many similarities to CHAIS ADC
- Current-mode output stage with interleaved switches
 - Segmented MSBs + binary weighted LSBs, matched delays
- Same clock requirements (actually, same circuits...)
 - 4-phase clocks from 16GHz LC VCO
 - Common clock wires to all output stages ➔ no source of mismatch
- Similar matching requirements but many fewer contributors
 - Calibrate out switch Vth mismatches (delay, offset) using DACs
 - Calibrate out current source mismatches (gain) using DACs
 - Calibration at startup gives stable results
- Getting good output matching (S11) is difficult
 - DAC output capacitance (inc. ESD protection) can’t be seen at pad
64GS/s CMOS DAC – “Leia”

- PLL, PPF, Mux PLL, Phase aligner derived from ADC
- DAC circuits derived from 14b 12Gs/s DAC
- 4 DAC cores in macro, common PLL clocks (same wires)
- Each DAC core contains 12 Slices
 - 3 MSB → 7 Segmented Slices
 - 5 LSB → 5 Binary Weighted Slices
- “Zero-skew” between cores (<<1ps)
- No analogue delay adjustment
- FIR filter used for EQ and deskew
- Calibration of output stage mismatches
Simulated DAC performance

- 55-65Gs/s with 8 bit resolution
 - Low noise floor allows digital EQ (pre-emphasis) before DAC
 - 2 samples per symbol allows digital skew/waveform shaping in FIR filter
- >15GHz bandwidth
 - Closely controlled, can be extended to >20GHz using digital EQ
- 1.2Vpp differential full-scale output signal
 - ~600mVpp usable after pre-emphasis -- depending on amount!
- Low noise and distortion
 - THD <1% for 20GHz full-scale output
 - Noise floor < -40dBFS
- Power consumption ~0.75W/ch in 40nm
 - ~3W for 4-channel TX macro
 - Scales with process better than typical digital circuits
Processing -- on-chip DSP vs. FPGA

- FPGA gives “unlimited” flexibility and upgradeability – but...
 - Limitations with I/O bandwidth even in next-generation FPGAs
 - One ADC/DAC needs 40-48ch 11Gb/s SERDES channels
 - Or 16ch 32Gb/s SERDES in future
 - FPGA power is high, memory capacity/bandwidth is relatively low
 - May not be able to process data even if it can be got onto chip
 - High cost for multichannel applications

- On-chip DSP/memory is much more efficient
 - ASIC power is typically 5x -10x lower than FPGA in same process
 - No need to get massive bandwidth data on/off chip
 - May still need external memory (DDRx? GDDRx?) for very big record lengths
 - Much lower unit cost per channel (10x or less) -- once you have chip...
 - Very large NRE investment needed ($5M-$20M including design)
Noise coupling – round up the usual suspects…

- Reduce aggressor (DSP logic) noise generation
 - Use intentional clock skew within each block and between blocks
 - Reduces peak current and spreads out in time ⇒ >10x lower di/dt
 - On-chip (~300nF) and low-inductance (~4pH) in-package decoupling
 - Even with this can expect >100mVpp supply ripple (see later…)

- Increase victim (ADC/DAC analogue) immunity
 - Fewest possible noise/jitter sensitive circuits, all fully differential
 - Lots of on-chip (~100nF) and low-inductance in-package decoupling
 - For 100fs jitter and delay sensitivity of 1ns/V, need 100uV of supply noise

- Improve victim-aggressor isolation
 - Build “nested walls” of isolation with most sensitive circuits in the middle
 - 100mV digital noise + 100uV analogue noise ⇒ 60dB isolation
 - Wideband noise coupling (DC to many GHz) not narrowband like RF – tricky…

- Result: <1dB measured SNR degradation due to digital noise
Package and PCB design

- 1mm pitch FCBGA, >1000 pins, ~20 internal layers
 - Test chips use 100G production package to ensure same performance
 - Low-loss high-TCE LTCC (12ppm/C) for improved second-level reliability

- Multiple power/ground regions and shields for noise isolation

- Ultra-low-inductance internal decoupling for supplies and bias/reference
 - Multiple VDD/VSS planes connect chip to multi-terminal decouplers
 - Noise dealt with inside package ➔ simplifies customer PCB design

- Coaxial via and waveguide structures, <1dB loss at 20GHz
 - Ground planes removed above signal balls to reduce capacitance
 - Increased layer spacing (wider tracks) to reduce losses

- Optimized launch to G-S-G coplanar waveguide on PCB
 - Balls next to signals removed to reduce parasitic, PCB grounds cut back
 - PCB uses Megtron 6 (very low loss, lead-free multilayer compatible)
Chip-to-package transition: $S11 < -20\text{dB}$ to $\sim 100\text{GHz}$

ADC Bump-Pkg Transition

<table>
<thead>
<tr>
<th>Name</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>n2</td>
<td>100.000</td>
<td>-22.3413</td>
</tr>
<tr>
<td>n4</td>
<td>50.000</td>
<td>-30.4175</td>
</tr>
</tbody>
</table>

Insertion Loss of 13mm Package trace

<table>
<thead>
<tr>
<th>Freq (GHz)</th>
<th>Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.2</td>
</tr>
<tr>
<td>10</td>
<td>-0.4</td>
</tr>
<tr>
<td>20</td>
<td>-0.6</td>
</tr>
<tr>
<td>30</td>
<td>-0.8</td>
</tr>
<tr>
<td>40</td>
<td>-1.0</td>
</tr>
<tr>
<td>50</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

Graphs showing measurement results and analysis.
Frequency Response (test setup and 56Gs/s ADC)

- Frequency response of test setup:
 - TDR step (measured)
 - Batboard PCB (measured)
 - ENIG not Ag finish (Ni is lossy!)
 - Socket (estimated -1dB @ 20 GHz)

- Test setup loss bigger than ADC loss!

- Corrected ADC frequency response:
 - accurate measurements are not easy 😊

- ADC -3dB bandwidth 16GHz:
 - close to simulation and specification
A “gold-plated” package solution...

- Advanced package technology originally developed for server CPU
 - It’s nice to have in-house packaging 😊

- High-reliability Hi-TCE LTCC package
 - >2000 thermal cycles

- In-Ag TIM and gold-plated AlSiC lid
 - Very strong reliable chip-lid bond
 - All-metal path for heat transfer

- Very low thermal resistance
 - Theta-jc <0.2°C/W (JEDEC)

- Package structure and design changed for better noise isolation
Example 100G chip and HiTCE LTCC substrate
ADC and DAC standard products / test chips

- **56 Gs/s 65nm 4-ch ADC standard product “Blackbird”**
 - Targeted at test and measurement applications
 - On-chip RAM, digital processing, 11Gb/s SERDES outputs
 - Available in 2011/2012 for design-in to systems
 - Also available as commercial digitiser board/module through industry partner

- **55-65Gs/s 40nm 4-ch DAC test chip “Leia”**
 - Targeted at 100G/400G optical transport (also test/measurement etc.)
 - On-chip RAM (v1), digital processing +11Gb/s SERDES inputs (v2/v3)
 - Samples available for prototyping in 2012

- **110-130Gs/s 28nm ADC/DAC test chips in development**
 - Exact configuration not fixed yet, depends on customer feedback
 - On-chip RAM (v1), digital processing + 30Gb/s SERDES I/O (v2/v3?)
 - Samples available for prototyping in 2013
“Blackbird” -- high speed ADC standard product

- Fujitsu CHAIS ADC macro made 100G coherent transmission and many other high speed solutions feasible for the first time

- Following on from this:
 - 40nm 65GS/s ADC macro provides more speed and 40% less power consumption
 - 65nm 56GS/s ADC macro is turning into standard product in FCBGA packaging

- ADC standard product “Blackbird”
 - Includes both offline and online data streaming
 - Many features useful for different systems

- Available in 2012

- Future roadmap to 110-130Gs/s in 2014 (est.)
Blackbird block diagram

Power estimation

- Total device power around 45w

- Power in ADC, memory, TX
 - 4 ADCs at full rate ~ 9w
 - Memory around 6w
 - 1.5w for every 12 channel (1 clock, 1 de-skew, 10 data) TX macro
 - clocking, decoding, routing and additional logics
Blackbird – Features (1/2)

- 4 x 56GSa/s ADCs with independent input channels,
 - supporting 56GSa/s (full rate)
 - 28GSa/s (half rate) sampling mode

- 16MB (128Mbit) of high density SRAM for on-chip (configurable 8M per ADC or 16M for single ADC)

- Full rate online streaming for 2 ADCs (half-rate for 4 ADCs)
 - 4 x 24 lanes of CEI-11G compatible Transmit interface (10.3Gbps - 11.2Gbps)
 - Source synchronous interface with differential clock and sync per 10 data lanes

- Sample averaging improves overall system SNR up to 6dB

- Sample rate reduction
 - 39-tap programmable symmetrical FIR filter for each ADC channel
 - Decimation by 2 (28GS/s)
 - Down sampling factor 2 to 128 by dropping samples
Blackbird – Features (2/2)

- Level detection and triggering
 - Triggering using 2 ADCs or 8 bi-directional trigger signals for external triggers
 - Glitch / Threshold / hysteresis trigger (improved triggering in noisy environment)
 - Pre and post trigger sample storage with user programmable record size for storage of multiple events

- Physical coding sub layer (PCS)
 - 64b/66b encoding and scrambling (allows static data)
 - Link training for startup / alignment
 - Ensures valid data transfer to FPGA or ASIC through high speed serial links
 - Power saving mode available for unused serial lanes

- Optional FEC (Forward Error Correction) for BER improvement (<1e-15)

- Device configuration and programming
 - SPI or high speed LVDS parallel port (437Mbps)
LEIA 55-65Gs/s DAC Test Chip

- **Leia1** Test chip drives DAC macro from Waveform memory
 - No need for FPGA
 - Memory for 256K 8-bit samples
 - Available September 2011

- **Leia2** Test chip drives DAC macro from Waveform memory, high speed IO or both
 - Input real-time data
 - Drive one DAC at full rate
 - 2 DACs at half-rate
 - 4 DACs at quarter-rate

- LEIA-DK will drive 4 DAC Channels
- USB interface to PC
- Driven using intuitive GUI
- SMPM/GPPO outputs
- Choice of board with socket or solder mounted test chip
- Mains powered
- Available September 2011
LEIA 55-65Gbps Arbitrary Waveform Generator

1, 2 or 4 SerDes-macro
10, 20 or 40 data lanes at up to 12.8Gbps each
offering up to 512Gbps data feed to Leia3
Leia3 output = 1ch * 64Gbps
(or 2ch * 32Gs/s or 4ch * 16Gs/s with FIR on-chip interpolation)
CHAIS ADC/DAC Roadmap

Right edge: Si proven (about 6 months after test chip tape out)

- 65nm
- 40nm
- 28nm
- 20nm

<table>
<thead>
<tr>
<th>Year</th>
<th>56Gs/s ADC</th>
<th>55~65Gs/s ADC</th>
<th>110~130Gs/s ADC & DAC</th>
<th>TSMC 40G</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Fujitsu 65LL</td>
<td>TSMC 40G</td>
<td>TSMC 28HPM</td>
<td>TSMC 20G</td>
</tr>
<tr>
<td>2010</td>
<td>55~65G DAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>55~65Gs/s ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What are the limits for CMOS ADCs?

- How close can ADCs get to theoretical speed/noise limits?
 - 130Gs/s already on roadmap for 28nm CMOS
 - Circuits portable to 20nm, 15nm, … (speed increases each time)
 - Higher ENOB achievable with circuit refinements
 - How many ENOB are really useful given front-end dynamic range?

- What limits bandwidth?
 - Sampler BW is not close to fundamental performance limit of transistor
 - ESD protection – a “conventional” ASIC needs some ESD immunity 😊

- How about sampling clock jitter?
 - Not a limit right now (~50fs rms), really only set by VCO power
 - Should be OK even for higher BW and more ENOB

- ADC performance is not the main limiting factor
 - For many applications, getting access to the technology is the real issue