

Radiation Tolerar Activities in the LHC machine

Radiation 2 Electronics (R2E) Mitigation Project

PH/ESE Seminar, April 19th 2011

M. Brugger on behalf of the R2E Project Many Thanks To Everybody !!! www.cern.ch/r2e

Overview

- Q A brief history of time... (The Challenge)
- LHC radiation fields & related monitoring
- Predictions based on Monte-Carlo codes and respective benchmarking
- Commercial equipment/systems and challenges (impossibilities)
- Test facilities and installations
- Mitigation approach
- Q Lessons learned (e.g., the endeavor of an equipment inventory)

Image: many people is a selection of results (thanks to many people is a selection

What's to Be Avoided

LHC Page1		Fill: 1147		E: 3500 GeV		10-06-	2010 08:45:4
		ACC	ESS: LHC	REPAIR			
Energy:	0 G	eV	I(B1):	0.0e+00	I(B2):	0.0e+00
FBCT Intensity a 8E10- 7E10- 6E10- 4E10- 3E10- 2E10- 1E10- 0E0-	nd Beam Energ	97 0 7: 15	07:30 07	' '45 08:00	08:15	08:30	Updated: 08:45:49 4000 -3500 -2500 -2000 -2000 -1500 -1000 -500 -0 08:45
Comments 10	-06-2011 (06:46:12:		BIS status and	SMP flags		B1 B2
				Link Statu	is of Beam Peri	mits	false false
NO BEA	M DUE	TO SEE	PROBLEMS	Globa	l Beam Permit		faise faise
INO BEI			2 HOB BEINS	Boa	etup beam m Presence		false false
				Moveable	Devices Allowe	d In	false false
				Sta	able Beams		false false
LHC Operation	in CCC : 7	77600, 7048	30	PM Status B1	ENABLED PI	M Status I	B2 ENABLED

To Put the Challenge in the Correct Perspective

Experiments:

- @ "Rigorous" design constraints for electronics installed in the experimental cavern
- Controlled approach: design reviews, tests,...
- Policy and 'Police' available from early on

Machine:

- Similar approach for tunnel equipment (e.g., QPS, 60A power converters, Cryogenics, Beam-Instrumentation) still with some shortcuts (some already discovered)
- Quantum Little (no) design criteria (limitations) for the remaining equipment (assumed to be 'save'),
- On the second second

The CNGS "Discovery"

CNGS Physics Run 2007

Issue: Solved By <u>Heavy</u> Shielding

Time-Scale So Far...

- CNGS Incident -> It's Radiation (SEEs) !!!
- **Task-Force** to look at LHC Issues (ups...)
- Solution for CNGS (Study, Implementation)
- Radiation To Electronics (R2E) Study Group
- Short-Term Actions (Safety 1st Priority)
- Full Analysis of LHC Areas (Calculations,...)
- R2E School and Getting 'Mobilized'
- Medium-Term Actions (Focus on what can be done)
- Power-Converter Review
- R2E-Workshop & Strategy
- First Long-Term Draft and List of Options
- R2E Mitigation Project
- <u>xMasBreak Actions</u>

The LHC & 'Radiation Areas'

d beam energy [MJ] Stored Α

Beam-Residual-Gas

Direct Losses

Collisions

all areas along the ring scales with both intensity and residual gas density

AS

What Are the "Issues"? – Typical Shielding

Point 2

inner triplet

AND MANY MORE ...

PX24 wall

What Are the "Issues"? – Electronics

III AND MANY MORE ... III

The LHC Challenge

Critical Area Overview (LHC Machine)

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

A "Simple" Calculation

- @ 17 Critical Areas, let's say 15!
- @ 10-30 Racks in each area, let's say 20!
- **@ 1-4 Crates** in each rack, *let's say 2 sensitive!*
- @ 10-100 Components per rack, let's say 20 critical!
- -> ~12000 critical components
- (equipment inventory: ~10000 components/system)
- @ av. device/system failure cross section: 1x10⁻⁸cm²
- @ av. radiation levels (nominal): 1x10⁸cm⁻²y⁻¹

-> 12000 failures per nominal year (MTBF ~1h)

The Mitigation Strategy (R2Ebok)

- A "Simple Recipe" to have no Radiation Issues:
- I Hand(Cook)book of Radiation Damage on Electronics
- @ 1000/ of Radiation Levels & Environment -(calculations, measurements, operation)
- @ 100t of Electronics (Inventory, Failure Modes)
- I full bag of detailed values of their radiation sensitivity
- @ 1000t of shielding
- e 2y of relocation
- @ 4y of new developments
- *a trifle* of money & people

Putting it all together, leaving it for a couple of years, A dish to be served hot...

The LHC Radiation Environment

LHC R2E Activities – PH/ESE Seminar

Radiation Physics/Effects/Monitoring

Radiation Issues - Effects

- Cumulative effect (Effect will be seen after given time, giving some freedom to react)
- **Constress level** (50 Gy max in 2030 when "standard component" can survive 20-30 Gy)

- **Stochastic Effect** ("Events scale with number of affected components")
- **Overy High stress level** (Failures observed <1x10⁷cm⁻²)

Thanks to Y. Thurel

Radiation Issues – Failure Observation

2030

April 19th 2011

Devices get slowly out of tolerance \odot (final failure can often be anticipated; access not immediately required)

Failures

2000

Failure Rates

No 'early' failures (due to radiation) \odot

Possible Scenario:

- 8 Failures will appear and rapidly increase in frequency
 - (destructive failures possible; access often required)
- **`Early Operation ' problem (observation might falsify reality)** (\mathcal{R})

LHC High-Energy Hadron Fluences

Radiation field and device sensitivity

Radiation field and device sensitivity

The Risk of Low-Energy Neutrons

Having a look in literature

DEVICE SEU CROSS SECTIONS, FROM THERMAL AND HIGH ENERGY NEUTRONS, CURRENT MEASUREMENTS

	Туре	Vendor	DC/	Hi E SEU X-	Therm SEU	Ratio-SEU,
Part			Feat Size	Sec, cm²/bit§	X-Sec, cm ² /bit	Therm/ Hi E
S-1	SRAM	VS-1	0446/0.15µ	2.1×10 ⁻¹⁴	3.3×10 ⁻¹⁶	1.6×10 ⁻²
S-2	SRAM	VS-1	0446/0.15µ	7.9×10 ⁻¹⁵	1.7×10 ⁻¹⁹	2.2×10 ⁻⁵
D-1	DRAM	VD-1	0446/0.15µ	6.4×10 ⁻¹⁷ *	1.3×10 ⁻¹⁵	20
D-2	DRAM	VD-1	0422/0.13µ	2.95×10 ⁻¹⁶ *	1.18×10 ⁻¹⁶	0.4
P-1	μprocess	VP-1	0240/0.18µ	1.5×10 ⁻¹⁴	2.2×10 ⁻¹⁷	1.5×10 ⁻³
P-2	µcont.	VP-2	0439/0.13µ	1.02×10 ⁻³ †	1.68×10 ⁻⁵ †	1.7×10 ⁻²
P-3	μcont.	VP-2	0532/0.15µ	6.99×10 ⁻⁴ †	6.03×10 ⁻⁶ †	8.6×10 ⁻³
P-4	μcont.	VP-2	0341/0.18µ	1.54×10 ⁻⁴ †	1.34×10 ⁻⁵ †	8.7×10 ⁻²
P-5	μprocess	VP-3	0311/0.18µ	1.3×10 ⁻¹⁵	No upsets	0

† In units of Upset/dev-hr;

<u>IEEE Trans. on Nucl. Sci., Vol 5, p. 3587-3595</u>

* No actual upset detected; cross section based on 1 assumed upset § E> 10 MeV

Sensitivity ranges over four order of magnitudes

Some: similar or larger xSection

Others: a factor of 10-100 or further below

RadMon System in the LHC

- Used for monitoring of radiation close to installed electronic systems
- □ 3 types of sensors:
 - RadFets (NMRC) for TID
 - PIN diodes for 1MeV n eq.
 - SRAMs for high-E hadron fluence (SEEs)
- System of ~400 online radiation monitors
- Many calibration campaigns recently focusing on the memory and its thermal neutron response and intermediate energy (few MeV) neutrons

Additional Useful Monitoring

- LHC Beam-Loss Monitoring System (BLM)
- Radiation-Protection Monitoring (RAMSES)
 - Induced Radiation Monitors (PMIs)
 - Prompt Radiation Monitors (PATs)
- **Passive Monitoring** (installed for R2E and RP Purposes)
 - TLDs in and close to critical areas
 - Early monitoring (prior RadMon lower sensitivity)
 - Good idea about thermal neutron contribution
- **LHC Intensity & Luminosity** Monitoring
- Any other information which can be used...

RadMon Calibration

Cross sections normalized to value at 14.8 MeV

27

Location	RadMon [Error]	FLUKA [Error]	Ratio (R/F)
Pos1	3.77 x 10 ⁻⁴ [20.0%]	4.17 x 10 ⁴ [5.1%]	0.90
Pos2	5.76 x 10 ⁻⁴ [20.0%]	5.76 x 10 ⁻⁴ [4.6%]	1.00
Pos3	1.99 x 10 ⁻³ [20.0%]	1.97 x 10 ⁻³ [2.8%]	1.04
Pos4	1.75 x 10 ⁻³ [20.0%]	1.71 x 10 ⁻³ [3.4%]	1.02
Pos5	1.53 x 10 ⁻³ [20.0%]	1.67 x 10 ⁻³ [3.2%]	0.92
Pos6	2.19 x 10 ⁻³ [20.0%]	2.19 x 10 ⁻³ [2.9%]	1.00

28

© K. Røed

Location	RadMon [Error]	FLUKA [Error]	Ratio (R/F)
TSG45	1.9 x 10 ⁻⁷ [20.0%]	2.1 x 10 ⁻⁷ [5.7%]	0.9
TSG46	2.0 x 10 ⁻⁸ [20.0%]	1.9 x 10 ⁻⁸ [6.8%]	1.05

© K. Røed

LHC R2E Activities – PH/ESE Seminar

Radiation Levels & Our Confidence in Their Prediction

(strong efforts from the FLUKA Team

Confidence: FLUKA Calculations

Location	Monitors	Source	Agreement	Comments
CERF, CNGS,	RadMon, RAMSES, TLDs	Beam on target	Within 10-20%	Benchmark setup
TI2/8	RadMon	Controlled loss on TED and TCDI	Within 30%	Source term well controlled
UX/US85	RadMon, RAMSES	LHCb collissions	Within 30-50%	Detector update required
IR7/UJ76/R R77	RadMon	Losses on Collimators	Mostly within a factor of two	Very sensitive on loss distribution
IR1/5	RadMon	Collisions	Within a factor of 2-3	Only QUALITATIVE check

Uncertainty: Dominated by the source term and the considered details!

LHC R2E Activities – PH/ESE Seminar

IP8/TI8 Radiation Detectors

TED Loss: RadMon Downstream

UJ87: Loss on TCDIH.87904 © V. Boccone

LHC R2E Activities – PH/ESE Seminar

Point-8 Application Benchmark

FLUKA/RadMon benchmark

Detector	Ratio (FLUKA exp/measure)
8LE10S	1.6
8LE07S	2.0
8LE04S	1.6
8LE08S	2.2

FLUKA Simulations provide high energy hadron fluence, dose and 1 MeV Si equivalent in the LHCb cavern according to the Phase-2 shielding implementation proposed in the R2E Project

© M. Calvian

- Very good agreement with PMIs and PATs RAMSES detectors
- RadMons set at 3V more difficult (at low count rates)
- Significant uncertainties to be considered (thermal neutron contribution, detector geometry, etc...)
- Output of 2
 Output of 2
IR7 FLUKA Application Benchmark

B1+B2

B2

B2

B1+B2

Normalisation

Assumptions

Summary (Protons)					
In	6.02E+15				
Dumped	5.82E+15	96.70%			
Lost in Machine	1.99E+14	3.30%			
Of Los					
Collisions	2.33E+13	11.73%			
Elsewhere	1.76E+14	88.27%			

BLM ratio IR7 / IR3					
		% Loss in			
	Ratio	IR7			
TCSG.A6L7.B1 / TCSG.5L3.B1	3.1	76			
TCSG.A6R7.B2 / TCSG.5R3.B2	5.6	85			

20045

20133

20208

3

5

31

1

950

18727

303

13

4R7.7**RM03**S

5R7.7**RM04**S

6R7.7**RM05**S

RR77.7**RM06**S 20241

6

4

8

22

401

13032

962

17

0.42

0.70

3.17

1.33

Radiation Levels 2010

Qurce terms, operational conditions as well as monitor readings have to be carefully evaluated

US85

5.0E+06

6.3E+06

3.6E+06

2.9E+06

	FLUKA & C	ME	
	2010 using 2009 estimations	2010 with actual operation	2010 Radi (FLU
UJ14 UJ16	2.5E+06	1.3E+06	1.68
RR13 RR17	5.0E+05	2.5E+05	1.08
UJ56	2.5E+06	1.3E+06	2.16
RR53 RR57	5.0E+05	2.5E+05	1.0E
UJ76	6.9E+06	1.1E+06	5.9E
RR73 RR77	3.4E+06	5.7E+05	2.16
UX85b	1.0E+07	1.3E+07	4.86
US85	5.0E+06	6.3E+06	3.68

Electronics & Radiation Sensitivity

Equipment Groups Performing Tests

Detailed Tests (Past & Present) [mostly tunnel equipment]:

- Cryogenics Equipment: problems found and corrected (tests ongoing)
- Interlock Controllers: hard design of tunnel card, worries with control
- Beam-Loss Monitoring: tunnel equipment seems working fine
- Beam-Position Monitoring: failure xSection known -> acceptable
- **Quench-Protection System:** hard design, problem with ISO150
- □ WorldFip: radiation tolerant design, improvements performed
- Power Converters: very complex, see next slides
- Survey Equipment: thorough design
- **Current-Lead Heaters:** problems identified

Check of commercial equipment in critical shielded areas (Recently)

Numerous systems tested, see quick overview later

LHC POWER CONVERTERS

- Minimize the number of converter types:
 - Only the LHC60A-08V was specified for a radioactive environment !
 - 3 other converter types are part now of the radioactive sensitive areas!

LHC POWER CONVERTER STRATEGY © V. Montabonnet, Y. Thurel

- Separate out the subsystems that are acceptable by industry
- Place development and production contracts

Design and build prototypes of remaining subsystems. Place production contracts

- Assume system integration responsibility
- □ Integration and test at CERN before installation
- Only equipment installed directly in the tunnel was tested

PCs: What was tested and where?

© Y. Thurel, Q. King

components tests

1MeV neutron displacement damage tests

What was not tested

© Y. Thurel, Q. King

All non 60A-Power-Converters

Consisting of a multitude of different components (partly high-power) (details available through dedicated review:)

- Latches, Burnout's at higher energies (until recently @ CNRAD)
- Thermal Neutrons
- Total dose using Gammas
 - With the exception of some WorldFIP components, for the Power-Converters components were never checked for TID

CNGS Radiation Test Area

Mixed radiation fields similar to the ones expected in LHC **Extensive Monitoring**:

- RadMons
- Compared to BLMs
- +GoldFoils, TLDs,...
- Detailed FLUKA Simulations for:
 - TID (air), Hadron>20MeV fluence
 - 1MeV neutron-equivalent fluence

2009 CNGS Tests (Examples)

LHC R2E Activities – PH/ESE Seminar

Equipments: CNRAD Update

Tested Equipment:

- PLC-S7-200 (CV) [profibus lost, reset needed]:
- **24V DC Power Supply (CV)** [burned]:
- PLC-S7-300 (CV) [blocked, reset needed]:
- **PLC-Schneider (CV)** [PS burned]:
- WIC Rack [beam dump and access]: PLC S7-300 + FM352-5 Siemens
- Fire Detectors ASD [power cycle]:

Ethernet Switch [blocked, reset needed]:

•••

- "Reset Req.": 1 every 10⁷-10¹⁰cm⁻²
- "Damaged": 1 every 10⁸-10¹¹cm⁻²

Uncertainty: up to one order of magnitude (but both directions!)

49

 $1.8 \times 10^{-7} \text{ cm}^2 \rightarrow$

Failure xSection:

1.1x10⁻⁷ cm² 1.0x10⁻⁹ cm²

~200 failures

in a nominal

year in

UJ14/16

© D. Kramer

April 19th 201:

Possible SEE Failures Observed in 2010

50

WIC crate failure in TI8

Observed in 2009 Known problem with moderate x-section

QPS Tunnel Card Failures (2x in 9L7 [ions], 2x in 8R8 [inj.], + others) ISO150 -> permanent PM trigger SEE confirmed (EMC has same effect)

QPS tunnel Card Failures in 9R7 & 9L7 uFip communication lost (2x) SEE confirmed (seen in CNRAD)

CONFIRMED or very LIKELY

CRYO tunnel card SEE in 8L2 1 Fault in uFip (as observed in CNRAD 2010) SEE confirmed

TE/EPC power supply burnout in UA87 Same effect observed in CNRAD SEE is very likely the cause (Streaming through Maze)

VAC power supply burn out In UA23 between maze and duct (TDI losses + TCDI losses) SEE rather unlikely

NOT CONFIRMED (unlikely)

Pai power supply burnout in Utro To be confirmed by producer (comparison with CNRAD burnouts) SFE unlikely (early 2010 operation)

What's Coming Next?

Radiation Issues – 2010 Summary

Single Event 2010 Review

- Levels in the machine
 - Only 10⁵-10⁸ cm⁻² "measured" around (UJ, RR, Tunnel) equipments
 - Only ~0.1% of nominal integrated luminosity, up to 2% of peak luminosity, ~1% of nominal lost beam, "no" scrubbing (yet)

- What is good?

- Simulations correctly verified in many pla (controlled tests & standard operation)
- Not too many failures occurred

Radiation Issues – 2010 Summary

Single Event 2010 Review

- What is worrying?
 - <u>Critical areas</u>: previsions beginning of 2010 expected quite some events in critical areas (several candidate/s, within error margins)
 - <u>Tunnel</u>: 5-10 SEE events already seen in 2010 causing Machine Stop (mostly mitigated)
 - "we are already wrong" ... in the bad direction
- What can make things worse
 - equipments can be more sensitive (most is untested)?
 - we didn't see "critical" levels (mostly < 1x10⁶)
 - losses can also be higher than expected
 (e.g., electron cloud, injection losses, life-time for ions)

Intensities, losses and luminosities (a long way to go, even with uncertainties)

LHC R2E Activities – PH/ESE Seminar

Horizontal/

Vertical Links

System Tests

April 19th 2011

Mitigation Options

Ne keep on looking

Constraints & Mandate:

- @ Minimize (Avoid) any risk of radiation induced failure to electronics
- Foresee a mitigation plan fitting in the planned shutdown periods
- Optimize with respect to planning and costs

@ Strategy:

- Output Constant And Benchmark to refine actions and planning
- Prepare "Patch-Solutions" where available
 - (not many left!)
- **@ Shield** and Envisage/Prepare/Perform **Relocations**
- Study/Pursue Major Long-Term Solutions
 - (R&D for SCLs and Rad-Tol PCs, CE as backup)
- @ ... cross fingers, review, optimize, cross fingers...

The LHC R2E Structure ÇĚRN

Radiation Tests

Calculations

Integration

Monitoring

INTENSITY [10/11/10 10:15:09

3:00 16:00 19:00 22:00 01:00 04:00 07:00

Implementation

ស ស L.5E11 1.5E1: LE11

1.5E11 1.5E

The Challenge of Planning

20261Anna

R2E Mitigation Project Plan

R2E Project Organisation

Design Calculations

- Each shielding design and all questionable relocation areas have to be carefully simulated
- Iterations are required in many cases
- Oetails are important
- Key input to benchmarks & radiation field characterization

Integration & Implementation

Shielding & Relocation @ 12 underground areas

@ 15 Groups, 4 Points, Parallel Activities, Short Time

Power-Converter R&D

□ TE-EPC Planning for Rad Tolerant Converter Project

	Project	2011	2012	2013	<mark>2</mark> 2014	2015	2016
FUNCTION PU O CONTROLLER CO.	R2E-FGClite	Design, component Choice	Prototype, demo test	Pre-series Rad Tests	Production/ installation	Installation	
FGG DICOLOOP V23	R2E-Rad-DIM	Design, component Choice	Pre-series Rad Tests	Production/ installation	Prod Installation	Installation	
				Prod			

	HC120A-10V Rad-Tol	Risk Analysis on existing converters Rad test	Modification of existing part or total redesign.	Pre-series Rad Tests	Production	Production, Recep. Tests &	Tunnel Install Commissioning
	H600A-10V Rad-Tol	Pre-Design Technical Study, Solution & Principles	Mechanical, prototype, demo board	Pre-series Rad Tests	Production	Production, Recep. Tests &	Tunnel Install Commissioning
	-LHC4-6-8kA-08V Rad-Tol	Pre-Design Technical Study, Solution & Principles	Mechanical, prototype, demo board	Pre-series Rad Tests	Production	Production, Recep. Tests & Pro	Tunnel Install Commissioning od
	Rad-Tol Analogue Studies	e Component Selection testing, bibliograp analyze	Component Selection, Component testing, bibliography, theoritical analyze				

Int/Ext Review Stop / Go

Radiation Testing

© Y. Thure

Family	Nb ref. [±50%]	Nature	Complexity	Test Leader*
Anti-fuse FGPA, Flash FPGA	4	Digital	High	EPC / STI
	5	Digital	Lliah	

- PC R&D is dominant, but there are other tests 16 RS2
 - present and future (RadMon, EN/EL, GTOs,...)
- Enormous amount of components & tests Ор Ροι
- Q Available test facilities: PSI, CNRAD, H4IRRAD DC AC-(in construction) IGE
- Lov Radiation test requirements and conditions have to be carefully reviewed Dio Lin

Osc

Op

Cur

Far

Extensive and **complex radiation test campaigns** exceed our current test possibilities (CNRAD, PSI) – Important to think ahead!

e H4IRRAD (2011)

© I. Efthymiopoulos, S. Girod, M. Calviani *et al.*

PS-EastArea (2013?)

© L. Gatignon, M. Moll, M. Glaser et al.

CERN:

CNRAD (Mar-Nov 2011)

Tests on Power converters, QPS equipment, Cryogenics

H4IRRAD (start May)

Tests on Power Converters, EN/EL equipment and GTOs

Outside CERN:

- PSI Villigen (2011)
 - Agreement with PSI to get 1 weekend test per month;
 - Test of Amplifier, ADC buffers, and ADC for the PC redesign;
 - Continue calibration of the RADMONs.
- CEA Valduc (Feb 2011)
 - Calibration of PinDiodes (RADMON) for the Displacement

Damage measurements.

TRIGA– Rome (or Prague facility) (2011)

RADMON memory calibration with a thermal neutron beam.

© J. Osborne

- Relocation/shielding purposes (e.g. long ducts in Point-5)
- Pre-Studies for long-term solution & final procurement (SCLs, Caverns)

Linked Activities

@ Betatron Collimation in IR3

Comparison levels in IR7

Ø Might be possible to reach nominal performance at 7TeV

(faster setup)

© R. Assmann *et al.*

R&D for Superconducting Links © A. Ballarino *et al.*

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

2011: What We Will Do...

- Preparation of shielding & relocation measures
- Q 2011 experience together with detailed monitoring & scheduled radiation tests (full power-converters) will allow us a further optimization step
- **@ Monitoring** and preparation of patch solutions

Current Goals:

- **Anticipate problems** whenever possible
- Q Aim to be ready for 2012 shutdown in any case
- Optimize the long-term solution (Review in November)

Remarks & Lesson's Learned

A Few Things We Will 'Remember'

- The detailed study of the radiation environment is of utmost important (early simulations, measurements)
 -> review of possible radiation effects
 (we still have a certain doubt about SEL/SEBs and our test possibilities!)
- All equipment must be checked prior installation (it took us two years to get the inventory roughly complete)
- A clear policy (+ police) would help, but...
- Well defined time boundaries are required (for development, tests, procurrement, tests, installation) (constraints still change constantly)
- A good radiation tolerant development requires: time, knowledge, time, experience, time, money, time... (we are again in a bit of a hurry)
- Communication and knowledge exchange is a key ingredient...

Remark 0

- In all our estimates and predictions we try being as 'accurate' as possible (conservative but fairly close to reality), thus uncertainties strictly apply in all directions
 NO BIG SAFETY MARGINS LEFT
- **Safety factors (except unknowns!) usually used** in the field of SEE estimates are **in the order of 10-100** and more (depending on the application: space missions, airplanes,...)

This we can't do (afford) at the LHC, even after the mitigation actions are applied

Remark 1

Our Content of the second s

@ Example: LHCb (UX/US85: early measurements versus 'expectation'):

- PMI sees up to 30µSv/h at a luminosity of 10³¹cm⁻²s⁻¹ (expected: 10µSv/h)
- PAT sees a few μSv/h
 (expected: less than one)
- RadMons: see equivalent counts, however less statistics (expected: first count only)
- Reason: old detector geometry and magnetic field (in work!)
- Other areas: low-energy neutrons not to be forgotten! (then our estimates would be even less conservative)

In our estimations, we have to be 'wrong' by a factor of ~100-1000 (only in one direction) in order to reach acceptable SEE induced failure rates for the LHC (if nothing is done)!

- We're looking for a MTBF of 150-300h
 what concerns 'acceptable' SEE induced problems (tunnel equipment not included!)
- All test results we get, all the analysis from the available early monitoring (some shown today), make this impossible
- SEE induced problems happened already (WIC in injection line, QPS, Power-Converter, Cryogenics, μFip)

Remark 3

Seeking maximum LHC performance, we're bound to fit all R2E related work in the shutdown planning. Operational periods between long shut-downs will be challenging and require the possibility to react in case of problems

Needed:

- preparation of patchsolutions (equipment level)
- radiation tolerantdevelopments (R&D for power converters)
- e strong RadWG & collaborations within CERN
- radiation test possibilities at CERN

- A "Hitchhiker's Guide" through LHC R2E activities
- Radiation environment is known in a fairly accurate way, still some question-marks exist
- Output in the second second
- **Tunnel equipment** (radiation tolerant design) needs to be followed, including new developments
- Important radiation test requirements (especially for the challenging project of radiation tolerant power-converters)
- This and next year will be crucial to optimize the mitigation strategy and actions (time & effort)
- Knowledge (and effort) exchange is crucial

III Thank You

Oliver

adine

Leila Akhoua, Ralph Assmann, Simon Baird, Franck Bais, Amalia Ballarino, Vincent Barbet, Vincent Barbet, Sergio Batuca, Mario Batz, Caterina Bertone, Jean-marc Bianco, Bartolomej Biskup, Juny Crespo Bisquert,

And I'm sure we missed some...

Conan, Jean-pierre Corso, Gloria Corti, Pierre Dahlen, Knud Dahlerup-petersen, Ali Day, Julien De Freitas, Claude Dehavay, Bernd Dehning, Emmanuelle Delachenal, Frederic Delsaux, Reiner Denz, Luca Di, Mathieu Donze, Nuno Dos Santos, Pascal Droux, Laurent Ducimetiere, Dorothee Duret, Francois Duval,

Ewald Effinger, Ilias Efthymiopo Alfredo Ferrari, Alfredo Ferrari, I Vincent Froidbise, Sylvain Fume Girod, Giancarlo Golluccio, Paul Gschwendtner, Jean-claude Gu Geraldine Jean, Michael Jeckel, John Jowett, Tjitske Kehrer, Que Michael Lazzaroni, Naour Le, El Christophe Martin, Alessandro N Claude Mitifiot, Michael Moll, Va Mauro Nonis, Annika Nordt, Rui Michel Pangallo, John Pederser laure Perrot, Thomas Petterssor Pittet, Mirko Pojer, Nicole Polivk Daniel Ricci, Ketil Roeed, Stefar Rudiger Schmidt, Viliam Senaj, Sebastien Sonnerat, Giovanni S

), Philippe Farthouat, Benoit Favre, oray, Katy Foraz, Doris Forkel-wirth, e Gavet, Alain Gharib, Sylvain usiou, Silvia Grau, Edda rty, Sonia Infante, Cezary Jach, hodri Jones, Jean-michel Jouanigot, it, Luisella Lari, Isabelle Laugier, Losito, Betty Magnin, Antonio Marin, Alessio Mereghetti, Christophe oceo, Yvon Muttoni, Steve Myers, ohn Andrew Osborn, Julien Palluel, ⁻ernandez, Paul Peronnard, Anneregory Pigny, Mario Pinheiro, Serge ie Rasmussen, Hubert Reymond, , Christian Saint-jal, Eric Sallaz, Sierra, Florian Sonnemann, iornton, Yves Thurel, Ralf Trant,

Alparslan Tursun, Piero Valente, Lisette van Den Doogaaru, Enk van Der Bij, Olaf Van Der Vossen, Roberto Versaci, Henrik Vestergard, Heinz Vincke, Vasilis Vlachoudis, Nicolas Voumard, Sylvain Weisz, Markus Zerlauth,

Backup

Shielding & Relocation (e.g., ATLAS)

85

Shielding

Failure Rate Estimate

(1) Use the 'Aging' Radiation Level

LHC	(rea(c)		High-Ener	gy Hadron I	luence [cm	1-2/y]		Thermal	Action
Point	Alea(s)	2010	2011	2013	2014	Nominal	Ultimate	Ratio	Priority
	UJ14 UJ16	2.5E+06	2.5E+07	3.0E+08	7.0E+08	2.5E+09	5.0E+09	200.0	2
Point 1	RR13 RR17	5.0E+05	5.0E+06	6.0E+07	1.4E+08	5.0E+08	1.0E+09	10.0	3
	UPS14 UPS16	5.0E+05	5.0E+06	6.0E+07	1.4E+08	5.0E+08	1.0E+09	2 (guess)	4
	UJ33	2.2E+04	1.9E+05	5.3E+05	5.7E+05	1.3E+06	1.4E+06	3 (guess)	4
Point 3	UJ/RE32	2.3E+06	2.2E+06	1.9E+07	6.7E+07	2.5E+08	3.7E+08	50 (guess)	3
	RE38	4.6E+05	4.4E+05	3.7E+06	1.3E+07	5.0E+07	7.5E+07	20 (guess)	3
Point 4	UX45	2.3E+05	2.2E+05	1.9E+06	6.7E+06	2.5E+07	3.7E+07	50 (guess)	4
	UJ56	2.5E+06	2.5E+07	3.0E+08	7.0E+08	2.5E+09	5.0E+09	2.0	2
Point 5	RR53 RR57	5.0E+05	5.0E+06	6.0E+07	1.4E+08	5.0E+08	1.0E+09	10.0	3
	UPS54 UPS46	5.0E+05	5.0E+06	6.0E+07	1.4E+08	5.0E+08	1.0E+09	2 (guess)	4
Point 6	UA63 UA67 (next to TCDQ)	8.6E+04	1.7E+05	9.3E+05	1.0E+06	5.0E+06	5.7E+06	50-400 (guess)	1

(3) Apply the expected failure cross section

	LHC60A-08V	LHC120A-10V	LHC600A-10V	LHC4-6-8kA-08V	Inner-Triplet
Type			DDMR	DDH	DDvv
Cross Section	[1E-101E-11] /cm ²	[5E-91E-11] /cm²	[5E-85E-9] /cm ²	[5E-85E-9] /cm ²	[2E-81E-9] /cm ²
Hypothesis & Comments (DCCTs being excluded since redundant and low risk)	• power part relatively safe, with some SEGR on some Power MosFets • FGC cross section @ 1E-11 is correct	Not Real Tested spower part realitively safe, with some SEGR on some Power MosFets - Converter more complex than 60A (more components) - CPLD in Digital control - CPLD in Digital control - CPLD in Digital control board only it CPLD, then not adding too high extra failure - FGC cross section @ 1E-11 is correct	Not Real Tested power part realitively safe, with some SEGR on some Power MosFets - 5x CPLD in Digital control board only 1x CPLD, not adding too high extra failure - FGC cross section @ 1E-11 is correct - 3x DC-DCS unknown - X0-DC unknown but - A0-DC unknown but - 40-DC unknown but -	Not Reaf Teeted power part relatively safe, with some SEGR on some Power MasFets - 8x CPLD in Digital control board only tx CPLD, adding extra failure - FGC cross section @ 1E-11 is correct - 1 DC-DC - no AC-DC	Net Real Tested • power part icelaively safe, with some SEGR on some Power MosFets • 8x CPLD in Digital control board only 1x CPLD, adding extra failure • FGC cross section @ 1E-11 is correct • Sigma delta + 1 CPLD • Additional Thyristor + 1 DCDC
Risk factor (DCCTs being excluded since redundant and low risk)	No High Risk. Well tested in CNGS.	No high Risk since CERN Design, and very few critical or unknown components. A security hole remains on current lead protection (CPLD based).	High Risk since some unknown integrated devices: 5x CPLD + 1x AC-DC + 3x DC-DC in power part.	High Risk since some unknown integrated devices + & CPLD + tx DC-DC in power part	High Risk since some unknown integrated devices + 8x CPLD 1x DC-DC in power part + inner-Triplet additional components with DC- DC or CPLD
		0			

(2) Check for each equipment in each area

			numbe	er of de	vices		
de	vice type	120A	120A	120A	600A	4-6/8kA (inner Tr)	4-6/8kA (oth)
LHC Point	Area(s)	immediate dump	scheduled	other	immediate dump	immediate dump	immediate dump
	UJ14 UJ16	10			16	4	
Point 1	RR13 RR17		36		28		30
	UPS14 UPS16						
Point 3	UJ33			10	70		
r ont 3	UJ/RE32						
	UJ56	5			8	2	
Point 5	RR53 RR57		36		28		30
	UPS54 UPS46						
	UJ76				12		
Point 6	RR73 RR77			20	48		
	UX85b						
Point 8	US85						
	UW85						
TI2	UJ23			8			
TI8	UJ87			8			

(4) Result: failures per equipment/area

			FAIL	URES PER YE	AR EX	PECTED IN 2011		
	de	vice type	120A	120A	120A	600A	4-6/8kA (inner Tr)	4-6/8kA (oth)
	LHC Point	Area(s)	immediate dump and access	scheduled access	other	immediate dump and access	immediate dump and access	immediate dump and access
		UJ14 UJ16	1	1 0 0		20	10	0
	Point 1	RR13 RR17	0	1	0	7	0	8
		UPS14 UPS16	0	0	0	0	0	0
	Point 3	UJ33	0	0	0	1	0	0
	Foint 5	UJ/RE32	0	0	0	0	0	0
		UJ56	1	0	0	10	5	0
•	Point 5	RR53 RR57	0	1	0	7	0	8
		UPS54 UPS46	0	0	0	0	0	0
		UJ76	0	0	0	8	0	0
	Point 6	RR73 RR77	0	0	1	16	0	0
		UX85b	0	0	0	0	0	0
	Point 8	US85	0	0	0	0	0	0
		UW85	0	0	0	0	0	0
	TI2	UJ23	0	0	0	0	0	0
	TI8	UJ87	0	0	0	0	0	0

LHC R2E Activities – PH/ESE Seminar

	2
	26
	M.M.
25	Care a

					EX	(PECTED	FAILU	RES PER Y	EAR	- LH	C ALCOV	'ES					
Failure Mode	cv	Pconv Opt	Pconv Pess	CRYO	BPWIC	Fire/ODH	QPS	CL heaters	IT	VAC	SURVEY	Collim	EN/EL	TIMING	REM RESET	BI	RP
immediate dump and access	1	29	544	13	35		14		4			0.2	0.6				
immediate dump				9	3							7	0.3	0.0			
Scheduled access	8	0.0	15	0.0		13		0.4		9			3		0.9		
other	3	0.0	9	8							0.0	12	1.3			0.1	5

0	ptimistic	Pe	ssimistic	Guess/Tested				
SUM	MTBF [days]	SUM	MTBF [days]	Ratio				
98	4	614	1	2.7				
19	19	19	19	0.02				
35	10	50	7	0.6				
30	12	39	9	0.4				

					EX	PECTED	FAILU	RES PER Y	EAR	- LH	IC ALCO	VES					
Failure Mode	сv	Pconv Opt	Pconv Pess	CRYO	BPWIC	Fire/ODH	QPS	CL heaters	IT	VAC	SURVEY	Collim	EN/EL	TIMING	REM RESET	BI	RP
immediate dump and access	2	48	912	22	60		24		8			0.4	1.1				
immediate dump				14	5							12	0.7	0.0			
Scheduled access	14	0.1	26	0.0		22		0.7		16			5		1.6		
other	7	0.0	16	14							0.0	21	2.4			0.2	8

Ο	ptimistic	Pes	simistic	Guess/Tested				
SUM	MTBF [days]	SUM	MTBF [days]	Ratio				
166	2.2	1031	0.35	2.6				
33	11	33	11	0.02				
60	6	86	4	0.5				
52	7	68	5	0.5				

Relocation and Shielding

<u>Improvements</u>

NOMINAL	No	Additional	+	
OPERATION	Changes	Shielding	relocation	
UJ14 UJ16	1666	17	8	
RR13 RR17	376	75	75	
UJ33	1	1	1	
UJ/RE32	3	3	3	
UJ56	265	265	0	
RR53 RR57	376	75	75	
UA63 UA67	4	4	4	
UJ76	85	85	0	
RR73 RR77	166	33	33	
UX85b	8	8	0	
US85	25	25	0	
UW85	2	2	2	
UJ23	0	0	0	-
UJ87	0	0	0	
SUM	2977	594	201	
MTBF [d]	0.12	0.61	1.82	

Most systems (QPS,MKS etc) excluded
 from UA63/7 list as duct shielding can be added if necessary

Only few equipments included in UW85 list

Power converters 120A in UJ23/87 classified as "other" SEE => no DUMP

า)	R		
		6	

Failure				EXP	ECTED	FAILU	RES P	ER NOMI	NAL	YEA	R - LH		OVES	5			
Mode	сv	Pconv Opt	Pconv Pess	CRYO	BPWIC	Fire/ODH	QPS	CL heaters	IT	VAC	SURVEY	Collim	EN/EL	TIMING	REM RESET	BI	RP
immediate dump and access	2	108	2001	3	0		60		3			0.1	0.0				
immediate dump				20	0							2	0.0	0.0			
Scheduled access	39	0.2	90	0.0		9		1.6		0			2		0.0		
other	21	0.1	64	2							0.0	4	2.4			0.3	0

Failure Mode	Optimistic		
	SUM	MTBF [days]	
immediate dump and access	176	2.1	
immediate dump	22	17	
Scheduled access	52	7.0	
other	29	13	

Expected SEE Failure Rates (status 08/10

2011 LHC Operation:

Failure Mode	Failure Estimate		Confidence (Tested vs. Assumed)			
	SUM	MTBF	[days]		Ratio	
Immediate Dump and Access	332		1		0.06	lsv
Immediate Dump	146		2		7	- / Idav
Scheduled Access	133		3		0.4	1 MTBF
Other	104		3		1	201

Nominal LHC Operation:

Failure Mode		Failu Estima	re ate	Confidence (Tested vs. Assumed)	о
	SUM	MTBF	[hours]	Ratio	
Immediate Dump and Access	24709		0.3	0.03	0
Immediate Dump	7500		1.0	9	0
Scheduled Access	4210		1.2	1	
Other	4682		1.4	4	

- Best possible estimate today
- Uncertainties: LHC operation & machine behavior, radiation levels, equipment sensitivities -> see next slides

2011 will be at the edge (and above) and possibly show first limitations

In order not to have problems with nominal LHC operation we would have to be wrong by a factor 500-1000 !

Radiation Tests

LHC R2E Activities – PH/ESE Seminar

CERN:

CNRAD (Mar-Nov 2011)

Tests on Power converters, QPS equipment, Cryogenics

H4IRRAD (start May)

Tests on Power Converters and EN/EL equipment.

Outside CERN:

- PSI Villigen (2011)
 - Agreement with PSI to get 1 weekend test per month;
 - Test of Amplifier, ADC buffers, and ADC for the PC redesign;
 - Continue calibration of the RADMONs.
- **CEA Valduc (Feb 2011)**
 - Calibration of PinDiodes (RADMON) for the Displacement

Damage measurements.

TRIGA– Rome (or Prague facility) (2011)

RADMON memory calibration with a thermal neutron beam.

Venat Equipment is/ was

- Cooling and Ventilation (H. Jena)
 Siemens S7-300, S7-200
 Schneider Telemecanique Premium
- Warm Interlock Rack (P. Dahlen)
 - PLC 315F 2 DP, Ethernet controller
 - 24 DI safety input modules, 2 x DO
 Relay modules, 2 x 32 DO modules
 - IM153.1 ET 200M
 - Boolean Processor FM 352-5
- @ Ethernet (E. Sallaz)
 - Three Ethernet Switches
 - **#**3Com 4400

Venat Equipment is/was

Fire Detectors (S. Grau and Team) # 4 Detectors (different types) Collimation (G. Spiezia and Team) Full Rack with Drivers, I/O RIO National Instruments PXI MDC + PRS (ADC, DAC, FPGA card, power supply) Europa crate (custom electronic for LVDTs and Resolvers excitation/acquisition, power supply)

@ Timing & Remote Reset (R. Chery)

April 19th 2011

Benchmarks

Operation & Normalisation

Summary (Protons)			
In	6.02E+15		
Dumped	5.82E+15	96.70%	
Lost in Machine	1.99E+14	3.30%	
Of Lost protons			
Collisions	2.33E+13	11.73%	
Elsewhere	1.76E+14	88.27%	

(char
intensity
Bean
BCT
З

Summary (lons)			
In	7.46E+13		
Dumped	6.36E+13	85.25%	
Lost in Machine	1.10E+13	14.75%	
Of Lost protons			
Collisions	3.77E+10	0.34%	
Elsewhere	1.10E+13	99.66%	

🕅 IR7 Benchmark - Loss Scenario 2010

Summary	(Protons	B1)
---------	----------	-----

		-	
In	3.53E+15		
Dumped	3.44E+15	97.26%	
Lost in Machine	9.67E+13	2.74%	
Of Lost protons B1			
Collisions	1.17E+13	12.07%	
Elsewhere	8.50E+13	87.93%	

Summary (Protons B2)		
In	2.49E+15	
Dumped	2.38E+15	95.89%
Lost in Machine	1.02E+14	4.11%
Of Lost protons B1		
Collisions	1.17E+13	11.42%
Elsewhere	9.05E+13	88.58%

BLM ratio IR7 / IR3			
	Ratio	% Loss in IR7	
TCSG.A6L7.B1 / TCSG.5L3.B1	3.1	76	
TCSG.A6R7.B2 / TCSG.5R3.B2	5.6	85	

🕅 IR7 Benchmark - Loss Scenario 2010

Normalized BLM response distribution for straight section left of IR7

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

Shielding Benchmark:

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

RadMon/FLUKA @ CNRAD

Very Complex Geometry

Quarter Distances, 'unknown' materials, ...

Benchmark Simulations for TI2/8

Hadron flux over the TI8-IR8 area

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

Injection: TED – 1MeV N-Equiv.

© S. Roesler

RADMON 2 x 10¹⁰ cm⁻²

© S. Roesler

April 19th 2011

TCDQ Losses 07-09.11.2009

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

TCDQ Losses 07-09.11.2009

TCDQ Losses 07-09.11.2009

High energy (>20MeV) hadron fluence for (2.6+0.74)E13 protons/year

- \sim 3x10¹⁰ cm⁻² high-E hadrons for 7TeV and 2.6x10¹³
- rough scaling: ~2x10⁹ cm⁻² at 450GeV
- this results in $\sim 4x10^5$ per $5x10^9$ shot
- We had about 50 (full) shots on the TCDQ -> ~2x10⁷ expected
- 5.6x10⁷ measured at the tunnel location (~30counts!)
- In the UA, the monitor is set to 3V (factor of 10 more sensitive) -> nothing measured -> confirms the expected attenuation factor of ~1000

FLUKA

Nuclear Interaction

Hadronic Cascade

Electro-Magnetic Cascade

lonization (Positrons/Protons)

ionization fluctuations

stochastic nature of the energy loss in collisions with the electrons of the material => range straggling

Hadron-Nucleon Interaction

Elastic, charge exchange and strangeness exchange reactions

• $N_1 + N_2 \rightarrow N_1' + N_2' + \pi$ threshold at 290 MeV, important above 700 MeV • $\pi + N \rightarrow \pi' + \pi'' + N'$ opens at 170 MeV • *anti-N* + *N* opens at rest !

LHC R2E Activities – PH/ESE Seminar

April 19th 2011

Hadron-Nucleus Interactions

R2E Scoring in FLUKA

 All important quantities to estimate risks of damage to electronics can be directly scored in FLUKA :

Cumulative damage:

- Energy deposition (total dose) by scoring DOSE with any 'energy deposition like estimator' (*e.g.*, USRBIN)
- Si Lattice displacement (1-MeV neutron equivalent particle fluxes) with any 'fluence like estimator' (*e.g.*, USRTRACK)

Stochastic failures (SEU):

"high" energy hadron fluences ("E>20 MeV") with any 'fluence like estimator' (*e.g.*, USRTRACK)
(the option of special threshold functions [user defined] is currently in development and will be included in the next release together with the scoring related to the "damage by thermal neutrons")

1MeV Neutron Equivalent

Related Scoring (FLUKA)

- **DOSE** total absorbed dose in (obviously...) GeV/g!
- **SI1MEVNE** Silicon 1 MeV-neutron equivalent fluence
- HADGT20M Hadrons fluence with energy > 20 MeV
- USRTRACK scores average $d\Phi/dE$ (differential fluence) in a given region (SI1MEVNE HADGT20M or any particle type)
- **USRBDX** scores for the same quantities average $d^2\Phi/dEd\Omega$ (double-differential fluence or current) on a given surface (between two regions)
- USRBIN scores the spatial distribution either of deposited dose, or fluence (1MeV or 20MeV) in a regular mesh (cylindrical or Cartesian) described by the user
- **USRBIN** also scores the same quantites on a region basis
- **USRDUMP** allows for an event-by-event analysis
- Theses scoring options together with the analysis of particle energy spectra allows a detailed study in order to select best possible locations for electronics or efficiently design shielding implementations