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COMPARISON OF VISCOELASTIC AND 
DIELECTRIC PROPERTIES OF TYPE-A CHAIN:  

EXPERIMENTAL ATTEMPT FOR DEEPER 
UNDERSTANDING OF POLYMER RHEOLOGY 

ABSTRACT 
Viscoelastic and dielectric properties of type-A chains differently average the same chain 

dynamics, so that comparison of those properties resolves some details of this dynamics in a 
purely experimental way.  Some examples of this comparison are presented in the talk. 
 
INTRODUCTION  

Molecular understanding of polymer rheology has been one of the central targets in the 
community of rheology, and extensive studies have been made from both experimental and 
theoretical aspects.1,2 Comparing viscoelastic and dielectric properties of so-called type-A 
chains in long time scales, we may find some details of the molecular dynamics underlying the 
rheological behavior of those polymers, as explained below. 

The type-A chain has the electrical dipoles p parallel along 
the chain backbone (cf. Fig.1) and its viscoelastic and dielectric 
properties in long time scales commonly reflect the large-scale 
chain motion over the end-to-end distance R. Nevertheless, this 
motion is differently averaged in the viscoelastic and dielectric 
properties.  For example, the relaxation modulus G(t) under a step 
strain g and the dielectric relaxation function F(t) under a step 
electric field E are expressed in terms of the bond vector of n-th 
subchain (or coarse-grained segment) at time t, u(n,t), as3-5 

      (1) 

        (2) 

Here, n is the number density of the chain, kBT is the thermal energy, <u2>eq is the mean-square 
end-to-end distance of the subchain at equilibrium, and md is the dipole moment per unit length 
of the backbone of the type-A chain (with no dipole-inversion being considered in Eq.2).  In 
Eq.1, ux and uy stand for the components of u(n,t) in the shear (x) and shear gradient (y) 
directions, respectively, and <...>g denotes the ensemble average under the step strain.  In Eq.2, 
uE is a component of u(n,t) in the direction of the electric field, and <...>E indicates the ensemble 
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Fig.1. Schematic illustration 
of type-A chain without dipole 
inversion. 
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average under the step electric field E.  For sufficiently small g and E (in the linear response 
regime), the chain dynamics determining <uxuy>g and <uE>E coincides with the equilibrium 
dynamics.  However, G(t) and F(t) are determined by the second- and first moment averages of 
u(n,t), respectively.  Namely, the same dynamics is differently averaged in the viscoelastic G(t) 
and dielectric F(t). This difference enables us to experimentally resolve some details of the 
chain dynamics through comparison of viscoelastic and dielectric properties of type-A chains.  
Some examples of this comparison are presented below. 

  
TEST OF TUBE DILATION PICTURE FOR ENTANGLED POLYMERS  

For entangled chains, tube models consider that the chain relaxes through several different 
mechanisms, reptation (for linear chains) and/or arm retraction (for star chains), contour length 
fluctuation (CLF), and constraint release (CR).1,2 Among these mechanisms, the CR mechanism 
considers the relaxation of a given chain (probe) activated by the motion of surrounding chains, 
thereby introducing a flavor of multiple chain dynamics into the tube model. Some models 
further assume that the relaxed portion of chains serves as a solvent for the probe chain to fully 
dilate the tube (to a level in the corresponding solution), thereby successfully describing G(t) 
of linear and star chains.4,5  However, comparison of dielectric and viscoelastic data of a typical 
type-A polymer, high-cis polyisoprene (PI), resolved a limitation of this full-DTD molecular 
picture, as explained below.4,5 

For this comparison, it is convenient to rewrite Eq.2 with the aid of the Green-Kubo theorem 
(valid at equilibrium) as4,5 

 (3) 

A conformational analysis shows that F(t) is essentially identical to the survival fraction  
of the dilated tube.4,5 Thus, the F(t) data (obtained from dielectric experiments for PI) allow us 
to formulate the reduced relaxation modulus µ(t) = G(t)/G(0).  Specifically, the full-DTD 
molecular picture assumes that the relaxed portion of the chains always behaves as a solvent to 
dilate the tube diameter to af-DTD(t) = with aeq = equilibrium tube diameter and d 
@ 1.3 (tube dilation exponent).   This full-DTD assumption leads to a relationship, µf-DTD(t) = 
{aeq/af-DTD(t)}2 = .    

For binary blends of linear PI with molecular 
weights M2 = 308k and M1 = 21k, µf-DTD(t) thus 
obtained dielectrically (green curves) is compared 
with the viscoelastically measured µ(t) data (black 
circles) in Fig.2.  At t = 0.5-500 ms where the low-
M chain has fully relaxed but the high-M chain has 
not, µf-DTD(t) is smaller than the µ(t) data of the 
blends having a small fraction of the high-M chain, 
u2 = 0.2 and 0.1. This failure of the full-DTD picture 
results from the assumption that the relaxed portion 
of the chain (the whole backbone of the low-M chain 
at those t) always behaves as the solvent to fully 
dilute the tube for the high-M chain.  In reality, the 
high-M chain moving through the CR motion cannot always explore the whole part of this 
diluted tube and thus the effective tube diameter for that chain a*(t) is smaller than af-DTD(t) at 
those t.  This  problem of the full-DTD picture can be removed if we evaluate the maximum 
possible lateral displacement aCR(t) allowed by the CR motion and express the reduced 
relaxation modulus as µf-DTD(t) = {aeq/a*(t)}2 with a*(t) = min{aCR(t), af-DTD(t)}. 
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Fig.2. Comparison of µf-DTD(t) and µp-DTD(t) 
deduced within the tube model with µ(t) data of 
PI/PI blends with various u2. 
 

For the PI 308k/PI 21k blends examined in Figure 14, we first need to decompose the U(t) data
of the blend as a whole into contributions U1(t) and U2(t) of the short and long linear chains
(components 1 and 2):34 U(t)¼(1"t2)U1(t)þt2U2(t). The mode distribution of U1(t) was found to
agree well with that of the short chain in monodisperse bulk,34 which enabled easy decomposition.
Then, from those Uj(t), uj

0(t) of the component j was evaluated through a relationship analogous to
Eq. 15 combined with Eq. 17, Uj(t)¼uj

0(t)" (1/4Nj)[{u0(t)}"d/2"1]2 with j¼1,2 and u0(t)¼ (1"
t2)u1

0(t)þt2u2
0(t).34 (This relationship considers the dilated tube diameter to be common for the

long and short chains, as noted for the factor in the second term, {u0(t)}"d/2¼af-DTD
0(t)/a for full-

DTD.) The corresponding viscoelastic relaxation function, lf-DTD(t)¼ {u0(t)}1þd with d¼ 1.3, is
compared with the l(t) data in Figures 17.34

For the monodisperse linear PI chains (Figure 15), lf-DTD(t) (green curves) is in good
agreement with the l(t) data (circles) in the entire range of t. Thus, the full-DTD assumption is valid
for consistently describing the U(t) and l(t) data of those chains. This validity has been confirmed
also for G0(x) and G 00(x) data in the frequency domain (see figure S1 in Supporting Information of
Matsumiya et al.37).

In contrast, for the monodisperse star PI (Figure 16) as well as for the blends of linear PI (Figure
17), lf-DTD(t) (green curves) is considerably smaller than the l(t) data at intermediate t. Namely, the
molecular picture of full-DTD significantly overestimates the viscoelastic relaxation at those t, as
noted also in the frequency domain.33,34 (Similar results have been found also for a Cayley-tree type
branched PI.56) In particular, for the blends with a small volume fraction of the long chain (t2¼0.1
and 0.2), this overestimation is most significant at t¼ 10"3–10"1 s where the short matrix chain
(majority in the blends) has fully relaxed but the long chain has not; see Figure 17. Nevertheless, at
either longer or shorter time scales, lf-DTD(t) agrees with the l(t) data of the blends. These results
suggest the origin of the failure of the full-DTD picture, as discussed in the following section.

Here, it is informative to examine the prediction of the Milner–McLeish (MM) model58 for
entangled monodisperse star chains. The MM model is a sophisticated tube model that incorporates
the stochastic, first-passage nature of the arm retraction but still adopts the full-DTD picture. The
normalized viscoelastic and dielectric relaxation functions of this model can be summarized as33,58
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FIG. 17. — Comparison of normalized relaxation modulus l(t) of PI 308k/PI 21k blends (circles) with dielectrically
evaluated full-DTD modulus lf-DTD(t) and partial-DTD modulus lp-DTD(t) (green and red curves). Data for t2¼0.1–0.5 are

taken from Watanabe et al.34,35 with permission, and the data for t2¼1.0 from Figure 15.
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Viscoelastic measurements for reference binary blends (containing self-unentangled high-M 
components) allow us to evaluate  aCR(t) and thus µf-DTD(t) for the partial-DTD picture.4,5  This 
µf-DTD(t), shown with the red curve in Fig.2, is in excellent agreement with the µ(t) data in the 
entire ranges of t and u2.  This result in turn demonstrates an importance of the comparison 
between dielectric and viscoelastic data.  

 
EIGENFUNCTION OF LOCAL CORRELATION FUNCTION   

Chemical coupling of living anionic PI chains of different M allows us to prepare homo-PI 
chains with inversion of type-A dipoles at a given (n*-th) segment.  For those dipole-inverted 
PI, the dielectric relaxation function is expressed in terms of C defined in Eq.3 as4 

    (4) 

The local correlation function C can be expanded with respect to its eigenfunctions fp(n) as 
C(n,t;n') = Sp fp(n)fp(n')exp(-t/tp) (with tp being p-th relaxation time).  Thus, the dielectric data 
of a series of dipole inverted PI having the same M but different n* allow us to experimentally  
resolve fp(n) for a few low-order modes. An example is 
shown in Fig.3 for PI being entangled with polybutadiene 
and exhibiting CR relaxation.4 The standard tube model 
assumes the Rouse-type CR associated with sinusoidal 
fp[R](n) = sin(ppn/N) (black curves). However, experimental 
fp(n) moderately deviate from fp[R](n). From mathematical 
coincidence of the Rouse eigenfunction equation and the 
Schrödinger equation for a quantum particle in a well 
potential, this deviation can be related to an extra relaxation 
enhanced at around the chain end4 (where the motional 
constraint is weaker compared to the middle of the chain).  

If the chain moves coherently along its backbone (as in 
the case of reptation), the eigenfunction is common for 
C(n,t;n') and the orientation function governing the 
viscoelastic relaxation, S(n,t) = {3/<u2>eq}<ux(n,t)uy(n,t)>g    
shown in Eq.1.  In contrast, if the chain motion is incoherent,  
fp(n)2 determines S(n,t). Thus, comparison of dielectrically determined fp(n) and viscoelastic 
data allows us to test this motional coherence.  It turned out that the chains in unentangled 
solutions exhibit the incoherent motion whereas some magnitude of coherence emerges for 
entangled chains in concentrated solutions/bulk.4  An importance of the comparison between 
dielectric and viscoelastic data is demonstrated also from this experimental finding. 
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Fig.3. Eigenfunction of PI relaxing 
through CR mechanism. 
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